
Um Algoritmo Eficiente para Cálculo de Viewshed em
Memória Externa

Salles V. G. Magalhães1, Marcus V. A. Andrade1, Mirella A. Magalhães1

1Departamento de Informática – Universidade Federal de Viçosa (UFV)
Campus da UFV – 36.570-000 – Viçosa – MG – Brazil

{smagalhaes,marcus,mirella}@dpi.ufv.br

Abstract. As more detailed terrain data has become available, many terrain
applications have processed large geographic areas at higher resolutions. The
massive data processing involved in such applications has presented significant
challenges to GIS systems and demands algorithms that are optimized for both
data movement and computation. One of these applications is the viewshed
computation, that is, to determine all visible points from a given point p. In this
paper, we present an efficient algorithm to compute the viewshed on terrains sto-
red in external memory. As shown in the results, our algorithm is more efficient
than other algorithms described in the literature.

Resumo. Com a maior disponibilidade de dados detalhados de terrenos, mui-
tas aplicações precisam processar grandes áreas geográficas em alta resolução.
O processamento massivo de dados envolvido em tais aplicações criou grandes
desafios para sistemas de SIG e demanda algoritmos otimizados tanto para pro-
cessamento interno quanto para movimento de dados. Uma dessas aplicações
é o cálculo do viewshed, que consiste em obter o conjunto de pontos visı́veis a
partir de um ponto p. Nesse artigo, apresentaremos um algoritmo eficiente para
calcular o viewshed de terrenos armazenados em memória externa. Como mos-
tram os resultados, o algoritmo proposto é mais eficiente do que os algoritmos
conhecidos descritos em literatura.

1. Introdução
A modelagem de terrenos é uma área importante em aplicações de SIG e um problema
interessante nessa área é a determinação de todos os pontos que podem ser vistos a partir
de um dado ponto (o observador); a região formada pelos pontos visı́veis é chamada de vi-
ewshed [Floriani and Magillo 2003, Franklin and Ray 1994, Schwartz and Pedrini 2001].
Esse problema é largamente estudado em muitas aplicações, como determinar o número
mı́nimo de torres de celular necessárias para cobrir uma região [Ben-Moshe et al. 2007,
Bespamyatnikh et al. 2001], otimizar o número e a posição de guardas para cobrir uma
região [Franklin and Vogt 2006], etc.

Os recentes avanços tecnológicos em obtenção de dados (como o LIDAR e IF-
SAR) têm produzido um enorme volume informação sobre a superfı́cie terrestre. Por
exemplo, um terreno de 100km × 100km amostrado com resolução de 1m resulta em
1010 pontos. A maioria dos computadores não pode armazenar e processar esse enorme
volume de dados internamente e, portanto, os algoritmos precisam processar esses da-
dos em memória externa, normalmente discos. Como o tempo necessário para acessar

SBC 2008 31

e transferir dados em memória externa é muito maior do que o processamento interno,
esses algoritmos devem tentar minimizar o acesso à memória externa.

Mais especificamente, algoritmos que processam dados em memória externa de-
vem ser projetados (e analisados) considerando um modelo computacional que avalia a
complexidade dos algoritmos baseada em operações de transferência de dados em vez
de operações de processamento interno. Um desses modelos, proposto por Aggarwal
e Vitter [Aggarwal and Vitter 1988], mede a complexidade dos algoritmos com base no
número de operações de E/S (entrada/saı́da) executadas.

Nesse trabalho, apresentaremos um algoritmo eficiente para calcular o viewshed
de um ponto em terrenos armazenados em memória externa, esse algoritmo permite a
manipulação de terrenos grandes (com 6GB ou mais). Ao comparar nosso algoritmo com
o proposto por Haverkort et al. [Haverkort et al. 2007], podemos dizer que o nosso é
muito mais fácil de implementar e é aproximadamente 6 vezes mais rápido. Esse trabalho
foi desenvolvido pelo aluno de graduação Salles V. G. de Magalhães, pela aluna de mes-
trado Mirella A. de Magalhães sob a orientação do Prof. Marcus V. A. Andrade sendo
que o aluno de gradução foi o responsável pelo projeto de boa parte do algoritmo, por sua
implementação e testes.

2. Trabalhos relacionados

Geralmente, um terreno pode ser representado por uma malha triangular irregular (tri-
angulated irregular network (TIN)) ou por um modelo digital de elevação raster (DEM -
Raster Digital Elevation Model) [Floriani et al. 1999] . Uma TIN é uma representação ve-
torial de uma superfı́cie feita a partir de vértices distribuı́dos irregularmente com três co-
ordenadas dimensionais que estão conectados e posicionados em uma rede de triângulos
não sobrepostos. Um DEM é um arquivo digital ou uma matriz que contém elevações de
pontos posicionados em intervalos regularmente espaçados. Devido à sua simplicidade,
nesse trabalho, consideraremos terrenos representados por DEM.

A visibilidade em terrenos representados por DEM tem sido largamente estu-
dada em muitas áreas distintas. Por exemplo,o trabalho de Stewart [Stewart 1998] utiliza
visibilidade em problemas de posicionamento de torres de transmissão de rádio. Kre-
veld [van Kreveld 1996] propõe uma abordagem do tipo sweep-line para calcular o vi-
ewshed com complexidade de tempo O(nlogn) em uma matriz de tamanho

√
n ×
√
n.

Em [Franklin 2002, Franklin and Ray 1994], Franklin e Ray descrevem estudos experi-
mentais para implementações eficientes de cálculo de visibilidade. Para uma referência
sobre algoritmos de visibilidade, veja [Floriani and Magillo 2003].

Recentemente, Haverkort et al. [Haverkort et al. 2007] apresentaram uma
adaptação do método de Kreveld para calcular o viewshed em terrenos armazenados
em memória externa. A complexidade (E/S) desse algoritmo é O(sort(n)), onde n é
o número de pontos no terreno e sort(n) é a complexidade de se ordenar n elementos em
memória externa.

O algoritmo descrito nesse artigo, no pior caso, também tem complexidade
O(sort(n)), mas ele é executado mais rapidamente já que usa uma estratégia mais efi-
ciente.

SBC 2008 32

3. Viewshed

A maioria dos problemas de SIG relacionados à visibilidade envolve o cálculo do vi-
ewshed e, em geral, são problemas de otimização como o posicionamento ótimo de re-
cursos, a minimização do posicionamento de guardas, planejamento de caminhos, etc.

Os problemas de visibilidade podem ser classificados em duas categorias princi-
pais: determinação de visibilidade e cálculo de estruturas de visibilidade. A determinação
de visibilidade consiste em checar se um dado ponto é visı́vel ou não a partir de um outro
ponto situado no terreno. Isso pode ser determinado assumindo que um ponto q é visı́vel
a partir de outro ponto p se, e somente se, o segmento de reta pq, denominado linha de
visão, está estritamente acima do terreno (exceto nos pontos p e q). Veja a figura 1

Figura 1. Visibilidade de pontos: p1 e p4 são visı́veis a partir de p0; p2 e p3 não
são visı́veis a partir de p0.

O cálculo de estruturas de visibilidade consiste em determinar propriedades dos
terrenos como o horizonte, o viewshed, etc. Formalmente, o viewshed de um ponto p com
raio de interesse r em um terreno T pode ser definido como:

viewshed(p, r) = {q ∈ T | distancia(p, q) ≤ r e q é visı́vel a partir de p}

O raio de interesse é usado para restringir o viewshed para uma vizinhança do
observador. Assim, os possı́veis pontos visı́veis estão restritos a um cı́rculo centrado em p
e com raio r. A menos que explicitamente afirmado o contrário, quando o raio de interesse
for definido, usaremos viewshed(p) para se referir a viewshed(p, r).

Normalmente, o viewshed é representado por uma matriz de lado 2r. Cada célula
armazena 1 ou 0 para indicar se essa célula é visı́vel ou não, respectivamente.

4. Algoritmos eficientes para E/S

Durante o processamento de grande volume de dados, a transferência de dados entre a
memória interna rápida e o armazenamento externo lento (como os discos) freqüente-
mente se torna o gargalo do processamento. Portanto, o projeto (e análise) de algorit-
mos usados para processar esses dados precisa ser feito sob um modelo computacional
que avalia as operações de entrada e saı́da. Um modelo freqüentemente usado foi pro-
posto por Aggarwal e Vitter [Aggarwal and Vitter 1988]. Nesse modelo, cada operação
de E/S corresponde à transferência de um bloco de tamanho B entre a memória externa e
a memória interna. O número de operações de E/S executadas determina o desempenho
do algoritmo.

SBC 2008 33

A complexidade de um algoritmo é definida com base na complexidade de proble-
mas fundamentais como varredura e ordenação de N elementos contı́guos armazenados
em memória externa. Tais complexidades relacionadas a operações de E/S são:

scan(N) = Θ
(

N
B

)
e sort(N) = Θ

(
N
B

log(M
B)

(
N

B

))
onde M é o tamanho da memória interna.

É importante salientar que normalmente scan(N) < sort(N) << N e, então, é
significantemente melhor ter um algoritmo que realiza sort(N) em vez de N operações
de E/S. Assim, muitos algoritmos tentam reorganizar os dados na memória externa com
o objetivo de diminuir o número de operações de E/S feitas.

5. Cálculo de Viewshed em Memória Externa (EMVS)
Nosso algoritmo, chamado External Memory Viewshed (EMVS), é baseado no método
proposto por Franklin e Ray [Franklin and Ray 1994] que calcula o viewshed de um ponto
em um terreno representado por uma matriz em memória interna. Uma breve descrição
desse método é dada a seguir.

5.1. O método de Franklin e Ray

Dado um terreno representado por uma matriz de elevação T de dimensões n× n e dado
um ponto p em T , o algoritmo calcula o viewshed de p restrito a um cı́rculo de raio r
(o raio de interesse) centrado em p. O algoritmo realiza uma varredura radial do cı́rculo
usando um raio, ou linha de visão (LOS – line of sight), iniciando em p e caminha por
cada LOS para determinar se as posições (as células) na LOS são visı́veis a partir de p ou
não. Uma posição q do terreno é visı́vel a partir de p se o segmento pq não intercepta
nenhuma posição cuja altura seja maior do que a de q.

Para simplificar a varredura do cı́rculo, o algoritmo utiliza um quadrado (chamado
de quadrado de varredura) que circunscreve o cı́rculo, tem lado 2r e é centrado em p.
As linhas de visão são definidas conectando p a cada ponto da borda desse quadrado.
Inicialmente, todas as células que estão dentro do quadrado são consideradas não visı́veis
e, para cada linha de visão l, o algoritmo começa em p definindo a inclinação de l como
−∞ (isto é, um número negativo grande). Então, essa inclinação é atualizada cada vez
que uma célula que gera uma LOS de inclinação maior é alcançada. Isso é, supondo que
a altura atual de l em um ponto c é h e a altura de c é h′, se h < h′ então a célula c é
marcada como visı́vel e a inclinação de l é atualizada para que a altura de l seja h′. Por
outro lado, se h ≥ h′, o status da célula e a inclinação de l são preservados.

Como as células são acessadas em uma ordem definida pela varredura radial, o
uso desse algoritmo para grandes terrenos exigiria um acesso aleatório ao arquivo e a
execução seria ineficiente. A adaptação descrita abaixo evita esse tipo de acesso.

5.2. O algoritmo EMVS

A idéia básica consiste em gerar uma lista com os pontos do terreno ordenados pela or-
dem de processamento. Para calcular o viewshed, o algoritmo percorre a lista evitando

SBC 2008 34

acessar o arquivo aleatoriamente. Essa lista é armazenada em memória externa e é ge-
renciada por uma biblioteca especial chamada STXXL (Standard Template Library for
Extra Large Data Sets – Biblioteca Padrão de Gabaritos para Grandes Conjuntos de
Dados) [Dementiev et al. 2005].

Mais especificamente, o algoritmo cria uma lista L de pares (c, i) onde c é uma
célula e i é um ı́ndice que indica ”quando” c deveria ser processada. Isso é, se uma célula
c está associada a um ı́ndice k, então c será a k-ésima célula a ser processada.

Para determinar os ı́ndices, as linhas de visão (que iniciam no observador em
p) são numeradas em sentido anti-horário. Assim, as células são numeradas de forma
crescente em cada linha de visão; quando o fim de uma linha de visão é alcançado, a
numeração continua a partir do observador seguindo a próxima linha de visão. Uma
mesma célula pode receber vários ı́ndices (e possuir várias cópias em L) já que ela pode
ser interceptada por múltiplas linhas de visão.

(a) (b)

Figura 2. (a) Projeção de LOS e cálculo dos ı́ndices de uma célula e (b) linhas de
visão interceptando uma célula

Para criar a lista L, o algoritmo lê as células do terreno seqüencialmente a partir
do arquivo externo e, para cada célula c, determina o número de todas as linhas de visão
que interceptam aquela célula.

Como as células não são ”unidimensionais”, podemos determinar as células
interceptadas pela linha de visão usando um processo similar à rasterização de li-
nhas [Bresenham 1965]. Isto é, seja s o lado de cada célula (quadrada) e suponha
que a referência da célula é o seu centro. Seja a a linha de visão cuja inclinação é
α : 0 < α ≤ 45◦ 1. Então, dada uma célula c = (cx, cy), veja a figura 2(b), a linha de
visão a ”intercepta”a célula c entre os pontos (cx, cy − 0.5s) e (cx, cy + 0.5s); mais preci-
samente, dado (qx; qy) = a∩cx, a intercepta c se, e somente se, cy−0.5s ≤ qy < cy +0.5s
. Nesse caso, a linha pontilhada na figura 2(b) interceptará a célula que está acima de c.

Assim, todas as linhas de visão que interceptam c são as que estão entre as duas
linhas que conectam o observador aos pontos (cx, cy−0.5s) e (cx, cy +0.5s) - Figura 2(b).
Sejam k1 e k2 os números dessas duas linhas, respectivamente. Os números de todas as

1Para 45◦ < α ≤ 90◦, use uma idéia similar trocando x e y.

SBC 2008 35

linhas que interceptam c são dados pelas células cujo centro estejam entre k1 e k2 - veja a
figura 2(a). Nessa figura, por exemplo, a célula c é interceptada pelas linhas 5, 6, 7 e 8.

Dada uma célula c, seja r o número de uma linha de visão que intercepta c. O
ı́ndice i de c associada a r é dado pela formula i = r∗n+d, onde n é o número de células
em cada raio e d é a distância entre os pontos c e p - veja a figura 2(a).

Após isso, a lista L é ordenada usando os ı́ndices dos elementos como chave de
comparação e, então, as células são processadas na ordem dada pela lista ordenada. Esse
processamento é feito por um algoritmo similar ao de memória interna que, nesse caso,
lê os dados de elevação diretamente de L. Além disso, esse algoritmo utiliza uma outra
lista L′ onde as células visı́veis são inseridas. Após o processamento de todas as células,
L′ é ordenada lexicograficamente por x e y e as células visı́veis são armazenadas em um
arquivo onde as posições visı́veis são indicadas por 1 e as não visı́veis por 0.

Finalmente, um ganho de eficiência é alcançado armazenando-se uma parte da
matriz do terreno em memória interna. As células que estão em memória interna não são
inseridas em L e L′ e, quando uma célula precisa ser processada, o algoritmo verifica
se essa célula está em memória interna. Se estiver, ela é processada normalmente; caso
contrário, ela é lida de L.

6. Complexidade do Algoritmo

Seja T o terreno representado por uma matriz de elevação de dimensões n× n. Então, T
possui n2 células. Além disso, seja p a posição do observador e seja r o raio de interesse.
Como descrito na seção 5.2, o algoritmo considera as células que estão dentro do quadrado
de dimensões 2r × 2r centrado em p. Assumindo que o lado de cada célula é s, haverá,
no máximo, 2r

s
células em cada lado do quadrado o que implica que há 8r

s
células no

perı́metro do quadrado. Seja K = r
s
. Então, o algoritmo traça 8K linhas de visão e, já

que cada linha de visão tem K células, a lista L possui, no pior caso, O(K2) elementos.

No primeiro passo, o algoritmo realiza n2

B
operações de E/S para ler as células do

terreno e criar a lista L. Depois, a lista comO(K2) elementos é ordenada e então é varrida
para se calcular a visibilidade das células. Assim, o número total de operações de E/S é:

O

(
n2

B

)
+O

(
K2

B
log(M

B)

(
K2

B

))
+O

(
K2

B

)

Normalmente, o raio de interesse r é (muito) menor do que n (o lado da matriz
do terreno), assim K é menor do que n e então, geralmente, o número de operações
de E/S é dada por O(n2

B
) = O(scan(n2)). Mas no pior (não usual) caso, se o raio de

interesse é grande a ponto de cobrir quase todo o terreno, o número de operações de E/S

é O
(

K2

B
log(M

B)

(
K2

B

))
= O(sort(K2)).

O algoritmo também usa uma lista externa adicional L′ para manter as células
visı́veis e essa lista precisa ser ordenada. Como o tamanho dessa lista é (muito) menor do
que o tamanho de L, o número de operações de E/S executadas nesse passo não muda a
complexidade do algoritmo.

SBC 2008 36

7. Resultados

O algoritmo EMVS foi implementado em C++, usando g++ 4.1.1, e os testes foram exe-
cutados em um PC Pentium com 2.8 GHZ, 1 GB de RAM, hd serial ATA de 80 GB e 7200
RPM e sistema operacional Mandriva Linux. Para uma avaliação melhor das operações de
E/S, consideramos duas configurações: uma usando toda a memória RAM (1 GB) e per-
mitindo o uso de 800 MB para armazenar os dados internamente e outra usando 256MB
e permitindo o uso de 200 MB para dados.

Os terrenos usados nos testes foram adquiridos na página do
SRTM [The Shuttle Radar Topography Mission (SRTM) 2007], possuem menos de
1.5 % de dados inválidos, e pertencem a três regiões distintas dos EUA. Nos tes-
tes, usamos várias porções desses terrenos com tamanhos diferentes2. Para cada
tamanho de terreno, foi determinada a média do tempo necessário para proces-
sar dados das três regiões. Resultados mais detalhados podem ser obtidos em
http://www.dpi.ufv.br/projetos/EMViewshed.

A tabela 1 mostra o tempo médio de execução do EMVS nesses terrenos. Em
todos os testes, consideramos o pior caso, isso é, usamos um raio de interesse grande a
ponto de cobrir todo terreno. Para avaliar a influência do número de pontos visı́veis (a
coluna # Pts. Vis.) no tempo de execução, o observador foi posicionado em diferentes
elevações acima do terreno (1,50,100,1000 e 10000 metros). Embora 1000 e 10000 me-
tros não sejam elevações muito comuns em aplicações práticas, usamos esses valores para
confirmar a escalabilidade do algoritmo.

A figura 3 resume os tempos médios de processamento interno e externo. Como
esperado, o tempo de processamento externo é muito maior em terrenos maiores do que a
memória interna; veja os gráficos (c), (d) e, principalmente, (b) onde o tempo de processa-
mento externo é maior (menor) do que o de processamento interno quando se usa 256 MB
(1 GB). Essa diferença em (b) ocorre porque o terreno de 1122 MB pode ser armazenado
(quase) completamente nos 1 GB de memória, necessitando, assim, de menos operações
de E/S.

Além disso, o desempenho do EMVS foi comparado com o desempenho do al-
goritmo de Haverkort et al. (IO VS). A figura 4 resume essa comparação considerando
os resultados disponı́veis em [Haverkort et al. 2007] e assumindo que o observador esteja
1 metro acima do terreno. Os resultados do EMVS foram obtidos a partir dos tempos
dados na tabela 1. Note que o EMVS é mais de 6 vezes mais rápido do que o IO VS
e, vale a pena mencionar que os testes do IO VS foram executados em um computador
Power Macintosh G5 dual 2.5 GHz, 1 GB de RAM e hd de 80 GB com 7200 RPM que
é significantemente mais rápido do que a máquina utilizada em nosso testes. Assim, po-
demos supor que nosso algoritmo é ainda mais rápido do que aquele. Finalmente, como
vantagem adicional, o EMVS é mais simples de implementar do que o IO VS.

Na nossa opnião, as razões principais para o melhor desempenho do EMVS são:
ele usa uma estrutura de dados simples (uma lista ordenada) e, após a ordenação (externa)
da lista, não são feitas atualizações (inserção e/ou remoção) na lista. Por outro lado, o
algoritmo IO VS utiliza estruturas de dados mais elaboradas que são manipuladas por

2Para comparar a eficiência de nosso algoritmo com o de Haverkort et al., usamos terrenos com tamanhos
similares àqueles usados por eles.

SBC 2008 37

Tabela 1. Tempo médio de execução do EMVS utilizando 1 GB e 256 MB de RAM e
altura do observador acima do terreno variável (gerando viewshed com número
diferente de pontos visı́veis - mostrado na coluna # Pts Vis.).

Tamanho Altura # Pts Tempo (s) 1 GB Tempo (s) 256 MB
Terreno Obs. Vis. Externo Total Externo Total

1 4.9× 105 19 46 21 49
50 3.5× 107 17 50 22 56

90292 311 MB 102 4.6× 107 18 50 21 58
103 6.1× 107 18 57 22 60
104 6.3× 107 19 58 21 61

1 2.2× 105 69 209 523 709
50 1.0× 108 67 223 527 737

171502 1122 MB 102 1.0× 108 67 233 528 744
103 2.0× 108 67 240 525 752
104 2.2× 108 68 247 520 746

1 4.0× 105 1746 2627 4143 5099
50 7.9× 107 1759 2662 4647 5636

334332 4264 MB 102 2.9× 108 1774 2725 5067 6124
103 7.8× 108 1752 2796 5315 6513
104 8.6× 108 1758 2816 5401 6626

1 2.1× 106 3402 4860 6752 8143
50 8.3× 107 3786 5330 6978 8418

400002 6103 MB 102 2.8× 108 4415 6161 7489 8996
103 9.1× 108 4462 6312 7937 9672
104 1.1× 109 4820 6734 8242 10066

processos recursivos que envolvem operações de busca e atualização.

8. Conclusão

Apresentamos um algoritmo muito eficiente para calcular o viewshed de um ponto
em terrenos grandes armazenados em memória externa. Como os testes mos-
traram, nosso algoritmo é mais de 6 vezes mais rápido do que o desenvol-
vido por Haverkort et al [Haverkort et al. 2007] e, também, pode processar terre-
nos muito grandes (nós o testamos em terrenos de 6.1 GB). Além disso, o algo-
ritmo é simples de entender e implementar. A implementação do algoritmo está
disponı́vel em http://www.dpi.ufv.br/ marcus/TerrainModeling/EMViewshed/EMVS.tgz
como um código open source distribuı́do sob licença Creative Common GNU
GPL [Commons 2007].

9. Agradecimento

Este trabalho foi parcialmente financiado pelo CNPq e pela FAPEMIG.

SBC 2008 38

Figura 3. O tempo de processamento interno e externo usando 256 MB e 1 GB
de RAM em terrenos com tamanhos diferentes.

Tamanho do Terreno Tempo de exec. (s)
(1GB de RAM)

EMVS IO VS
119 MB 18 353
311 MB 46 865

1122 MB 209 3546
4264 MB 2627 16895

(a)

Tamanho do Terreno Tempo de exec. (s)
(256MB de RAM

EMVS IO VS
119 MB 22 364
311 MB 49 916

1122 MB 709 4831
4264 MB 5099 40734

(b)

Figura 4. Comparação do tempo de execução do EMVS e do IO VS usando: (a)
1GB e (b) 256 MB de RAM.

Referências
Aggarwal, A. and Vitter, J. S. (1988). The input/output complexity of sorting and related

problems. Communications of the ACM, 9:1116–1127.

SBC 2008 39

Ben-Moshe, B., Ben-Shimol, Y., and Y. Ben-Yehezkel, A. Dvir, M. S. (2007). Auto-
mated antenna positioning algorithms for wireless fixed-access networks. Journal of
Heuristics, 13(3):243–263.

Bespamyatnikh, S., Chen, Z., Wang, K., and Zhu, B. (2001). On the planar two-
watchtower problem. In In 7th International Computing and Combinatorics Confe-
rence, pages 121–130.

Bresenham, J. (1965). An incremental algorithm for digital plotting. IBM Systems Jour-
nal.

Commons, C. (2007). http://creativecommons.org/license/cc-gpl (acessado em Março de
2008).

Dementiev, R., Kettner, L., and Sanders, P. (2005). Stxxl : Standard template library
for xxl data sets. Technical report, Fakultat fur Informatik, Universitat Karlsruhe.
http://stxxl.sourceforge.net/ (acessado em Março de 2008).

Floriani, L. D. and Magillo, P. (2003). Algorithms for visibility computation on terrains:
a survey. Environment and Planning B - Planning and Design, 30:709–728.

Floriani, L. D., Puppo, E., and Magillo, P. (1999). Applications of computational geo-
metry to geographic information systems. In J. R. Sack, J. U., editor, Handbook of
Computational Geometry, pages 303–311. Elsevier Science.

Franklin, W. R. (2002). Siting observers on terrain. In Springer-Verlag, editor, In D.
Richardson and P. van Oosterom editors, Advances in Spatial Data Handling: 10th
International Symposium on Spatial Data Handling, pages 109–120.

Franklin, W. R. and Ray, C. (1994). Higher isn’t necessarily better - visibility algorithms
and experiments. In 6th Symposium on Spatial Data Handling, Edinburgh, Scotland.

Franklin, W. R. and Vogt, C. (2006). Tradeoffs when multiple observer siting on large
terrain cells. In 12th International Symposium on Spatial Data Handling.

Haverkort, H., Toma, L., and Zhuang, Y. (2007). Computing visibility on terrains in
external memory. In Proceedings of the Ninth Workshop on Algorithm Enginee-
ring and Experiments / Workshop on Analytic Algorithms and Combinatorics (ALE-
NEX/ANALCO).

The Shuttle Radar Topography Mission (SRTM) (2007). http://www2.jpl.nasa.gov/srtm/
(acessado em Março de 2008).

Schwartz, W. R. and Pedrini, H. (2001). Determinação de mapas de visibilidade em
modelos digitais de terrenos. In II Colóquio Brasileiro de Ciências Geodésicas
(CBCG’2001), pages 44–45, Curitiba-PR, Brazil.

Stewart, A. J. (1998). Fast horizon computation at all points of a terrain with visibility
and shading applications. In IEEE Trans. Visualization Computer Graphics, pages 82
– 93.

van Kreveld, M. (1996). Variations on sweep algorithms: efficient computation of ex-
tended viewsheds and class intervals. In Symposium on Spatial Data Handling, pages
15–27.

SBC 2008 40

