

Uma abordagem baseada em lógica para escalonamento
offline de sistemas embarcados de tempo real considerando o

tempo adicional do despachante

Osman Seixas Júnior e Raimundo Barreto

Departamento de Ciência da Computação – Universidade Federal do Amazonas
Manaus, AM – Brasil

{ospj,rbarreto}@dcc.ufam.edu.br

Abstract. The offline scheduling approach requires a higher cost in the system
project phase since this problem is NP-hard and the tasks’ schedule must be
generated in the project time. To reduce this cost, it is necessary to develop
tools that support a more complex tasks set and consider the additional time
spent by the dispatcher, which is often neglected by researchers. This paper
presents a logic approach to build an offline schedule for embedded real time
systems. We also show experiments conducted using the proposed schedule
generation algorithm.

Resumo. A abordagem de escalonamento offline exige um maior custo na fase
de projeto do sistema visto que este problema é NP-difícil e a escala das
tarefas tem que ser gerada em tempo de projeto. Para amenizar este custo é
necessário que sejam desenvolvidas ferramentas que dêem suporte a
conjuntos de tarefas mais complexos e que considerem o tempo adicional
gasto pelo despachante que é frequentemente negligenciado pelos
pesquisadores. Este artigo apresenta uma abordagem lógica para construir
uma escala offline para sistemas embarcados de tempo real. Também
mostramos experimentos realizados utilizando o algoritmo de geração de
escalas proposto.

1. Introdução
Além de todas as atribuições de um sistema convencional, um sistema de tempo real
(STR) deve cumprir o atendimento de restrições temporais que são impostas na
execução de seus processos. Essa característica adicional é fundamental para que um
sistema de tempo real funcione corretamente, pois, além de executarem a lógica de
forma correta, os processos devem executar em um tempo hábil de modo que não
comprometa o atendimento das restrições temporais. Em um STR, o não atendimento de
alguma restrição temporal pode gerar conseqüências graves e irreversíveis, tais como:
danos materiais, ambientais e humanos. Estes sistemas são classificados como Sistemas
Críticos de Tempo Real (Hard Real-Time Systems) e exigem garantias de que todas as
restrições temporais serão atendidas, ou seja, deve existir previsibilidade do
comportamento do sistema em tempo de projeto. Neste trabalho adotaremos uma
abordagem de escalonamento executada em tempo de projeto cuja escala gerada garante
o atendimento das restrições impostas ao sistema, inclusive na situação de carga de
pico. Desta forma podemos utilizar a ferramenta desenvolvida neste trabalho para

SBC 2008 51

garantir se o conjunto de tarefas de uma dada aplicação (compatível com o modelo de
tarefas descrito na Seção 4) atenderá todas as restrições durante sua execução. Esta
garantia é indispensável ao desenvolvimento de aplicações de tempo-real crítico.

 O restante deste trabalho está organizado como segue. A Seção 2 introduz o
problema de escalonamento. Na Seção 3 são descritos os trabalhos relacionados e na
Seção 4 é descrito o modelo de tarefas adotado neste trabalho. A Seção 5 apresenta a
solução proposta para o problema de escalonamento. A Seção 6 apresenta a interface
gráfica desenvolvida principalmente para visualização das escalas geradas na forma de
Diagrama de Gantt. A Seção 7 discute os resultados experimentais. Finalmente, a Seção
8 apresenta as conclusões e possíveis trabalhos futuros.

2. Problema de escalonamento
Um sistema embarcado de tempo real possui um conjunto de tarefas, onde cada uma
possui propriedades e relacionamentos que se apresentam na forma de restrições e
devem ser consideradas durante a execução do sistema. Desta forma, a política de
escalonamento adotada por um sistema de tempo real deve considerar todas as
restrições impostas às tarefas. As abordagens de escalonamento de tempo real podem
ser classificadas quanto ao tipo de carga do sistema (estática ou dinâmica) e ao
momento em que a escala é gerada (offline ou online). Neste trabalho adotaremos uma
abordagem de escalonamento offline para sistemas com carga estática. Mais
especificamente, o modelo de escalonamento utilizado é o executivo cíclico [Baker and
Shaw 1988].

 Para considerar a carga de pico do sistema na geração da escala do sistema foi
assumido que, no início da escala, todas as tarefas do sistema são instanciadas ao
mesmo tempo a fim de garantir que a escala gerada pelo algoritmo atenda todas as
restrições impostas, inclusive na situação de pico de carga do sistema.

3. Trabalhos relacionados
Em [Ekelin and Jonsson 1999] são descritas restrições comumente encontradas em
aplicações de sistemas embarcados de tempo real. Este trabalho possibilita o
desenvolvimento de algoritmos de escalonamento que dêem suporte a modelos de
tarefas com relações e propriedades mais complexas. Algoritmos de escalonamento e
alocação de tarefas em sistemas de tempo-real distribuídos foram elaborados por
[Schild and Wurtz 1998] e [Ekelin and Jonsson 2001] e foram implementados no
paradigma CLP (Constraint Logic Programming) que corresponde à implementação de
problemas CSP (Constraint Satisfaction Problem) em linguagens de programação
lógica. Tais trabalhos sugerem simplicidade oferecida na definição do problema de
escalonamento em CSP. Entretanto, o algoritmo de busca deve ser ajustado para que a
complexidade natural do problema (complexidade exponencial) seja reduzida e torne
viável o tempo de execução do algoritmo para conjunto de tarefas maiores.

 Este trabalho diferencia-se dos demais por fornecer um algoritmo de busca
específico para o problema de escalonamento de conjunto de tarefas compatíveis com o
modelo de tarefas adotado neste trabalho, contrariamente aos trabalhos anteriores que
possibilitavam apenas a modelagem do problema utilizando algoritmos de busca
genéricos. Além disso, o modelo de tarefas suportado pelo algoritmo considera o custo
associado à ação do despachante que costuma ser negligenciado em outros trabalhos.

SBC 2008 52

4. Modelo de tarefas
Um sistema de tempo real pode ser visto como um conjunto de tarefas que são
executadas periodicamente durante todo o funcionamento do sistema na forma de
instâncias. Em uma visão mais operacional, cada tarefa corresponde a um programa
diferente e as instâncias de uma mesma tarefa são processos criados sequencialmente
que estão submetidos às mesmas restrições. Baseado no trabalho proposto por [Ekelin
and Jonsson 1999], as tarefas do sistema possuem as seguintes propriedades:

• Período: Duração de tempo entre a criação de dois processos
consecutivos de uma mesma tarefa.

• WCET (Worst Case Execution Time): Tempo de duração de execução
do processo no seu pior caso. Este valor deve ser estimado por
ferramentas que fogem ao escopo deste trabalho.

• Liberação (Release): Tempo de espera a partir da criação do processo
para que ele seja colocado na lista de prontos do processador.

• Prazo (Deadline): Tempo limite que um processo tem para finalizar sua
execução. Este tempo é relativo ao tempo em que o processo foi criado.

• Preempção: Indica se a tarefa pode ter sua execução interrompida por
alguma outra tarefa.

Quanto aos relacionamentos entre tarefas, temos:

• Precedência: Situação em que uma tarefa produz como saída algum
dado que servirá de entrada para outra tarefa. Assim, a tarefa precedente
deve terminar sua execução antes que a outra tarefa comece a executar.
É importante notar que este tipo de relação exige que ambas as tarefas
possuam o mesmo período de execução para que a quantidade de
processos produtores e consumidores sejam iguais.

• Exclusão: Situação em que um processo, ao iniciar sua execução, proíbe
que outra tarefa execute enquanto estiver executando. Neste trabalho, a
relação de exclusão é definida como anti-simétrica.

Outro fator que é considerado neste modelo de tarefas é o custo causado pelas
trocas de contexto ocorridas no processador. Existem dois custos associados à execução
do despachante:

• Salvamento de contexto: Quando um processo é preemptado, o
despachante deve salvar o contexto do processo para que futuramente
seja possível retomar sua execução do ponto em que parou.

• Restauração de contexto: O despachante deve restaurar o contexto cada
vez que um processo ganha o processador para iniciar ou reiniciar sua
execução.

5. Algoritmo de escalonamento
Neste trabalho propomos um algoritmo de escalonamento utilizando a abordagem
lógica que busca uma escala viável para o conjunto de tarefas de entrada. Os dados de

SBC 2008 53

entrada necessários para execução da ferramenta correspondem ao modelo de tarefas
(descrito na Seção 4) representado na Figura 1.

Figura 1. Representação textual do conjunto de tarefas do sistema

 Com o conjunto de tarefas definido, podemos executar o algoritmo de
escalonamento em busca de uma escala viável para as tarefas de modo que todas as
restrições sejam atendidas. Os principais predicados que definem se as restrições do
sistema são atendidas na alocação de cada slot de tempo são apresentados na Figura 2.

Figura 2. Principais predicados que representam as restrições do sistema.

 O algoritmo consiste em dividir todas as instâncias do sistema em unidades de
execução que serão alocados nos slots de tempo disponíveis da escala a ser gerada, de
modo que as restrições do sistema não sejam violadas como ilustrado na Figura 3.

Figura 3. Visualização geral do algoritmo de escalonamento

consomeWCET(Tar,Inst,Instancias).

satisfazPrecedencia(Tar,Inst,Instancias).

satisfazExclusao(Tar,Instancias).

satisfazNaoPreempcao(Tar,SlotAnt,Instancias).

atendeTrocaContexto(Despachante,(Tar,Inst),UltimoSlot,Instancias).

preveDeadlines(SlotAtual,Instancias,Tar,Inst).

%% Tarefas e propriedades
nome_tarefa1(WCET1,Deadline1, Período1,Release1).
nome_tarefa2(WCET2,Deadline2, Período2,Release2).
nome_tarefa3(WCET3,Deadline3, Período3,Release3).
...
nome_tarefan(WCETn,Deadlinen, Períodon,Releasen).
%% onde nome_tarefai corresponde ao nome da tarefa i do conjunto.

%% Relações
relação(tarefa1,tarefa2).
relação(tarefa1,tarefa3).
...
relação(tarefa3,tarefan).
%% onde a relação pode ser: precede ou exclui.

%% Tipo Tarefa
tipo_tarefa(tarefa1).
tipo_tarefa(tarefa2).
...
tipo_tarefa(tarefan).
%% onde tipo_tarefa pode ser: preemptiva ou naoPreemptiva.

%% Custos da troca de contexto
salvar_contexto(Custo1).
restaurar_contexto(Custo2).

SBC 2008 54

5.1. Espaço de busca

Uma solução trivial que utiliza força-bruta seria analisar todas as combinações entre as
unidades de execução das instâncias e os slots da escala em que cada unidade poderia
ser alocada. Este algoritmo apresenta alta complexidade temporal que pode ser
representada na Figura 4:

Figura 4. Representação do espaço de busca de um algoritmo força-bruta.

 A complexidade do tempo de execução deste algoritmo é igual a (I+1)n
combinações (todos os caminhos possíveis entre as folhas da árvore e o nodo raiz), onde
I representa um número médio de instâncias que podem ser alocadas em cada um dos
slots disponíveis na escala e n é a quantidade de unidades de execução que devem ser
alocadas pelas instâncias.

 Para tornar o algoritmo de escalonamento viável principalmente quanto ao
tempo de execução é necessário realizar podas na árvore de busca evitando-se que
escolhas erradas sejam feitas durante a busca. A complexidade espacial da árvore de
busca pode ser reduzida se as unidades de execução das instâncias que podem ser
alocadas no próximo slot da escala são definidas dinamicamente de acordo com as
instâncias que estão em execução no momento, ou seja, o próximo nível da árvore de
busca é criado considerando o nós percorridos até o momento eliminando combinações
que não atendam as condições definidas a seguir:

• Relações de precedência e exclusão: Dentre as possíveis instâncias que
podem ser alocadas no próximo slot de tempo da escala, aquelas que são
precedidas ou exclusas por alguma das instâncias que está em execução
não podem ser alocadas no próximo slot sem violar alguma restrição.
Assim, este(s) nodo(s) são eliminados do próximo nível da árvore.

• Tarefas não-preemptivas: Se a instância que foi alocada no último slot da
escala é não preemptiva e ainda possui unidades de execução a serem
alocados, podemos afirmar que a única possibilidade de alocação do
próximo slot seria outra unidade de execução da própria instância, visto
que ela não pode ser preemptada.

Com a aplicação destas condições na alocação de cada slot de tempo da escala, o
tamanho da árvore de busca é reduzido pela eliminação de algumas combinações que
violam restrições do sistema.

SBC 2008 55

 A complexidade do tempo de busca ainda pode ser reduzida. Para atingir este
objetivo foi adotada a seguinte estratégia: durante a geração da escala, na alocação de
cada um dos slots de tempo da escala, são realizados cálculos para verificar se é
possível que todas as instâncias que faltam executar respeitarão todas as suas restrições.
Caso este cálculo indique que alguma restrição será violada, uma unidade de execução
de outra instância deve ser alocada no slot de tempo atual da escala. Com isso, escolhas
incorretas não são tomadas evitando-se que novos níveis da árvore sejam percorridos
sem que exista a possibilidade de gerar uma escala viável.

Mais detalhadamente, este cálculo é realizado com segue:

• Para cada instância I que não executou completamente:

o Seja X a soma dos tempos de execução restante de todas as
instâncias de deadline menor ou igual ao deadline da instância I.

o Seja Y a soma dos tempos de execução restante de todas as
instâncias que estão em execução, excluem a instância I e que
possuem deadline maior que o deadline da instância I.

o Seja Z a soma dos tempos de execução restante de todas as
instâncias que precedem a instância I e que possuem deadline
maior que o deadline da instância I.

o X, Y e Z correspondem à soma das unidades de execução das
instâncias que devem executar até o tempo de deadline de I devido
às restrições de deadline, exclusão e precedência, respectivamente.

o A seguinte condição deve ser satisfeita: A quantidade das unidades
de execução que devem ser alocadas no intervalo entre o slot de
tempo atual e o deadline de I deve ser menor ou igual à quantidade
de slots de tempo disponíveis (vide Figura 5a).

X+Y+Z ≤ Deadline(I) – SlotDeTempoAtual (C1)

Quando esta condição é verdadeira garante a existência de pelo menos uma
escala que atenda todas as restrições temporais do sistema. Este cálculo ainda não
considera o custo associado ao tempo gasto pelo despachante para realizar as trocas de
contexto ocorridas no processador. Para considerarmos os custos de trocas de contexto
na condição (C1) devemos acrescentar um novo termo W, onde W corresponde ao custo
associado à ação de restauração do contexto de cada uma das instâncias que devem
executar entre o slot de tempo atual e o tempo de deadline da tarefa I. Assim, a nova
condição (Figura 5b) fica:

X+Y+Z+W ≤ Deadline(I) – SlotDeTempoAtual (C2)

Figura 5. (a) Condição de previsão do atendimento do deadline da instância I.

(b) Condição considerando o custo do despachante na previsão.

SBC 2008 56

Podemos notar que o valor de W é baseado no menor tempo possível gasto pelo
despachante, entretanto, se houver uma preempção entre tarefas na faixa de tempo
considerada, o custo do despachante aumenta devido às ações adicionais de salvamento
e restauração de contexto, portanto, esta previsão não garante que existe uma escala
viável se a condição for satisfeita, entretanto, se existe uma escala viável, a condição é
verdadeira.

6. Interface Gráfica
Visando oferecer aos usuários maior facilidade de utilização do algoritmo proposto foi
desenvolvida uma interface gráfica em Java que se apresenta mais intuitiva para
declaração do conjunto de tarefas do que um arquivo texto no formato especificado
anteriormente (Figura 6a). Outra vantagem da interface gráfica consiste na apresentação
da escala gerada pela ferramenta na forma de Diagrama de Gantt que proporciona ao
usuário uma representação mais natural da escala gerada (Vide a Figura 6b).

Figura 6. (a) Definição das propriedades das tarefas do sistema. (b)

Apresentação da escala gerada na forma de diagrama de Gantt.

 Como o algoritmo de escalonamento foi implementado em Prolog/Sicstus,
tornou-se necessária uma interface entre a ferramenta desenvolvida em Prolog com a
interface gráfica desenvolvida em Java. Para isto utilizamos uma biblioteca
disponibilizada para o SICStus Prolog chamada prologbeans que possui predicados e
métodos implementados em Prolog e Java, respectivamente, que se comunicam durante
a execução dos dois processos como mostrado na Figura 7. Neste esquema, o programa
escrito em Prolog funciona como um servidor de consultas, enquanto a aplicação Java
deve solicitar a prova dos predicados implementados no servidor. Na realização de
qualquer consulta, o servidor Prolog busca provar a regra solicitada na aplicação Java e,
ao final, responde se o predicado é válido retornando inclusive valores de argumentos
não-instanciados passados na consulta.

SBC 2008 57

Figura 7. Interface disponível pela biblioteca prologbeans entre aplicações
desenvolvidas em Java e SICStus Prolog.

7. Resultados obtidos
A ferramenta desenvolvida neste trabalho foi submetida a experimentos com o objetivo
de analisar a viabilidade de utilização da ferramenta em tempo de projeto para geração
de escalas para conjuntos de tarefas compatíveis com o modelo especificado na Seção 4.
Os experimentos foram executados em uma máquina com processador Pentium-M de
1.7 Ghz com 2 MBytes de Memória Cache e 512 MBytes de Memória RAM. A
distribuição do SICStus Prolog foi executada no sistema operacional Windows XP.

7.1. Conjunto de tarefas 01
Tabela 1. Representação do conjunto de tarefas 01

Tarefas WCET Deadline Período Release Preemptiva?

Temp-sensor-start 1 1500 10000 0 sim

Temp-sensor-handler 1 1500 10000 11 sim

PWM 8 1500 10000 0 sim

Pulse-generator 4 50 50 0 sim

Temp-adjust-part1 1 5000 10000 0 sim

Temp-adjust-part2 2 5000 10000 1501 sim

t1 precede t2, t2 precede t3, t5 precede t6

Restaurar Contexto = 10 e Salvar Contexto = 10

Este conjunto de tarefas representa uma aplicação real responsável pela manutenção da
temperatura da água em um valor constante. Podemos perceber que os tempos de
execução das tarefas são mais curtas que o tempo gasto pelo despachante para efetuar a
troca de contexto no processador. Este tipo de sistema sugere que o custo associado à
execução do despachante não deve ser negligenciado durante a geração da escala, pois
quando os tempos de WCET das tarefas do sistema são curtos tornam a execução do
despachante relevante para que a escala gerada em tempo de projeto mantenha-se
consistente durante a execução do sistema sem violação das restrições temporais.

7.2. Conjunto de tarefas 02
 Tabela 2. Representação do conjunto de tarefas 02

Tarefas WCET Deadline Período Release Preemptiva?

t1 30 161 161 0 Sim

t2 30 51 161 11 Sim

t3 30 90 161 60 Sim

t4 10 100 161 41 Sim

t5 50 140 161 90 Sim

t2 precede t4, t2 exclui t1 e t1 exclui t4

Restaurar Contexto = 0 e Salvar Contexto = 0

Este conjunto de tarefas foi idealizado sob medida por [Xu and Parnas 1993] de modo
que a escala viável exige que os 11 primeiros slots de tempo permaneçam ociosos
devido às relações entre t1, t2 e t4. A abordagem de escalonamento offline possibilita

SBC 2008 58

que o algoritmo de escalonamento tenha uma visão do todo maior permitindo, por
exemplo, que sejam feitas previsões das possíveis conseqüências da alocação de cada
slot de tempo. Ao contrário, abordagens online tendem a gerar escalas considerando
apenas dados atuais do sistema impossibilitando escalas para modelos de tarefas
semelhantes a esses sejam encontradas.

7.3. Conjunto de tarefas 03
Tabela 3. Representação do conjunto de tarefas 03

Tarefas WCET Deadline Periodo Release Preemptiva?

Vehicle Braking 3 11 30 0 Sim

Hazard Response 23 51 150 0 Sim

Sensor Data Fusion 10 80 500 0 Sim

Steering Control 4 20 20 0 Sim

Steering Set Point 3 11 50 0 Sim

Velocity Control 4 20 20 0 Sim

Velocity Set Point 3 11 50 0 Sim

System Management 5 50 100 0 Sim

CPU status 2 100 500 0 Sim

Electrical System Status 2 100 500 0 Sim

Power Train Status 2 100 500 0 Sim

T4 precede t6, t5 precede t7, t2 exclui t3 e t3 exclui t2

Restaurar Contexto = 0 e Salvar Contexto = 0

Este conjunto de tarefas representa uma aplicação denominada UGV (Unmanned
Ground Vehicle) que possui 297 instâncias que devem ser escalonadas em 1500 slots de
tempo. Devido ao grande número de instâncias e ao grande número de slots de tempo,
este conjunto de tarefas é propicio para mostrar se o algoritmo de escalonamento é
eficiente quanto ao tempo de execução.

 Ao executarmos a ferramenta para este conjunto, em 3 segundos foi identificado
que não existe escala viável para este conjunto de tarefas. Este tempo de resposta foi
alcançado devido à previsão de deadlines que é realizada na alocação de cada slot,
portanto, conjuntos de tarefas que não são escalonáveis são identificados na tentativa de
alocação dos primeiros slots da escala. Ao diminuirmos a carga deste conjunto de
tarefas de modo que seja possível gerar alguma escala viável, o tempo de execução para
encontrar um escala viável foi de aproximadamente 4 minutos.

8. Conclusões
O projeto de sistemas embarcados de tempo real pode ser simplificado com o uso de
ferramentas que sejam compatíveis com modelos de tarefas um pouco mais complexos e
que considerem fatores mais próximos da realidade encontrada em aplicações reais. Isto
reduz significativamente o custo associado ao tempo de projeto do sistema que utilizam
a abordagem de escalonamento offline. Em sistemas críticos de tempo real, o
funcionamento do sistema deve ser previsível para evitar que ocorram tragédias devido
à alguma falha do sistema. Esta previsibilidade pode ser obtida na geração da escala em
tempo de projeto quando o sistema possui tarefas fixas cujos tempos de execução no
pior caso são conhecidos previamente. Para que a escala gerada em tempo de projeto

SBC 2008 59

funcione corretamente durante a execução do sistema, o tempo gasto pelo despachante
nas trocas de contexto ocorridas no processador não podem ser negligenciadas, pois
existem aplicações reais em que o despachante consome mais tempo que as próprias
tarefas do sistema. Mesmo em uma abordagem offline deve ser verificada a eficiência
do algoritmo de escalonamento para conjuntos de tarefas maiores com o objetivo de
verificar a viabilidade do tempo de execução. Neste trabalho foram realizadas podas
durante a busca que viabilizaram a execução do algoritmo de escalonamento. As
previsões de deadlines realizadas direcionam o caminho da busca por uma escala viável
melhorando significativamente o desempenho do algoritmo, mesmo exigindo um tempo
maior para realização do cálculo proposto.

 Aplicações mais complexas podem tornar-se compatíveis com esta ferramenta se
novos tipos de relacionamento entre tarefas forem incorporados ao modelo de tarefas
como, por exemplo, as relações descritas em [Ekelin and Jonsson 1999]. Além disso, as
escalas geradas podem ser otimizadas de acordo com alguma métrica de avaliação
como, por exemplo, a quantidade de trocas de contexto ocorridas no processador.
Entretanto, devido à complexidade do problema de escalonamento, heurísticas deverão
der adotadas durante a busca da escala ótima para tornar viável a execução do algoritmo
de escalonamento. Uma possível solução seria adaptar o algoritmo Minimax cuja
função de avaliação seria uma análise das escalas de acordo com a métrica adotada.

Referências
Baker, T.P. and Shaw, A. (1988). The Cyclic Executive Model and Ada. In Proceedings
of the 9th IEEE Real-Time Systems Symposium, pp. 120-129.

Ekelin, C. and Jonsson, J. (1999). Real-Time System Constraints: Where do They Come
From and Where do They Go?. In Proceedings of the Int'l Workshop on Real-Time
Constraints, Alexandria, Virginia, USA, pp. 53-57.

Ekelin, C. and Jonsson, J. (2001). A CLP Framework for Allocation and Scheduling in
Embedded Real-Time Systems, TR-01-10, 2001.

Schild, K. and Wurtz, J. (1998). Off-line scheduling of a real-time system. In K. M.
George.

Xu, J and Parnas, D. On satisfying timing constraints in hard real-time systems. IEEE
Trans. Soft. Engineering, 19(1):70–84, January 1993.

SBC 2008 60

