
Análise de Desempenho de Algoritmos para Detecção de
Colisão em Ambientes Gráficos Interativos

Rafael de Sousa Rocha1, Maria Andréia Formico Rodrigues1

1Mestrado em Informática Aplicada (MIA) – Universidade de Fortaleza (UNIFOR)
60811-905 – Fortaleza – CE – Brasil

rafaelrocha@edu.unifor.br, mafr@unifor.br

Abstract. Interactive graphical environments containing a great number of 3D
objects need fast, accurate and scalable collision detection methods. This work
presents a detailed performance analysis of broad phase collision detection al-
gorithms: Brute Force, Grid, Octree, and Sweep & Prune. The broad phase al-
gorithm with the best performance (Sweep & Prune) was integrated to a narrow
phase algorithm based on Sphere-Trees, composing a hybrid collision detection
algorithm. The results obtained show that this algorithm is fast, accurate and
scalable, hence, it is recommended for interactive applications that contain a
great number of colliding objects with complex geometry.

Resumo. Ambientes gráficos interativos, contendo um grande número de obje-
tos 3D, necessitam de métodos para detecção de colisão rápidos, precisos e com
alta escalabilidade. Este trabalho apresenta uma análise de desempenho deta-
lhada de algoritmos para detecção de colisão broad phase: Força Bruta, Grid,
Octree, e Sweep & Prune. O algoritmo de broad phase com melhor desempe-
nho (Sweep & Prune) foi integrado a um algoritmo de narrow phase baseado em
Sphere-Trees, compondo um algoritmo hı́brido para detecção de colisão. Os re-
sultados obtidos mostram que este algoritmo é rápido, preciso e escalável, por-
tanto, sendo recomendado para aplicações interativas que contêm um grande
número de objetos colidentes com geometria complexa.

1. Introdução

Ambientes gráficos contendo um grande número de objetos 3D necessitam de métodos
para detecção de colisão rápidos, precisos e com alta escalabilidade, de tal forma a garan-
tir a interatividade do usuário com a aplicação. Entretanto, apesar dos recentes avanços
das tecnologias de computação, a detecção de colisão é ainda um dos grande gargalos
para o desenvolvimento de aplicações gráficas interativas. Estas possuem taxas interati-
vas e constantes de quadros por segundo (q/s), restringindo o tempo disponı́vel para a
detecção [Bergen 2004]. Contudo, existem alternativas de otimização, tais como, o uso
de coerência espacial e/ou temporal. A coerência espacial pode ser alcançada realizando-
se a detecção de colisão em duas fases: na primeira (broad phase), os pares de obje-
tos próximos são calculados; já na segunda (narrow phase), o teste de interseção entre
esses pares é refinado. Outra abordagem para otimização da detecção de colisão é a
substituição de objetos complexos (utilizados no processo de renderização do ambiente
gráfico) por representações geométricas com menor nı́vel de detalhamento. Existem ba-
sicamente dois métodos para detecção de colisão: contı́nuos e discretos [Redon 2004].

1925

Algoritmos contı́nuos não são apropriados para ambientes interativos com um grande
número de objetos, pois interpolar suas posições para efetuar o cálculo do instante das
colisões é computacionalmente caro. Por outro lado, algoritmos discretos, amplamente
utilizados em ambientes interativos, amostram as posições dos objetos em intervalos de
tempo para determinar a ocorrência de colisões. Contudo, algoritmos discretos podem
falhar para objetos em alta velocidade (neste caso, um objeto poderá eventualmente atra-
vessar um outro, termo conhecido como collision tunneling [Ericson 2005]).

Este trabalho apresenta inicialmente uma análise detalhada do desempenho de al-
goritmos para detecção de colisão broad phase em ambientes virtuais interativos: Força
Bruta [Rocha e Rodrigues 2005]; utilizando Grid [Rocha e Rodrigues 2006a]; utilizando
Octree [Rocha e Rodrigues 2006b]; e Sweep & Prune [Cohen et al. 1995]. A partir dos
resultados obtidos em nossos experimentos, o algoritmo com melhor desempenho de
broad phase (Sweep & Prune) foi integrado a um algoritmo de narrow phase baseado em
Sphere-Trees (hierarquia de esferas) [Hubbard 1996], compondo um algoritmo hı́brido de
detecção de colisão [Rocha et al. 2006]. O desempenho deste algoritmo hı́brido foi então
avaliado exaustivamente, utilizando duas abordagens para a geração de Sphere-Trees
(construção através de Octrees e o algoritmo Combined [Bradshaw e O’Sullivan 2004]).
Os resultados obtidos mostram que o algoritmo hı́brido é rápido, preciso e escalável,
portanto, sendo recomendado para aplicações gráficas interativas contendo um grande
número de objetos de geometria complexa, potencialmente colidentes. Mais especifica-
mente, obtemos taxas médias de aproximadamente 24 q/s e 16 q/s para cenários com
1000 objetos movendo-se em xyz, utilizando Sphere-Trees com 2 e 3 nı́veis de profundi-
dade, respectivamente. Uma descrição completa e detalhada dos algoritmos implementa-
dos e dos experimentos conduzidos pode ser obtida em [Rocha 2006].

2. Trabalhos Relacionados
Vários algoritmos eficientes de detecção de colisão para ambientes interativos têm sido
propostos [Cohen et al. 1995, O’Sullivan e Dingliana 1999, Bergen 2004]. No entanto,
muitos se limitam a uma classe especı́fica de aplicações e nenhum soluciona o pro-
blema da detecção de colisão para todos os casos. Comumente, volumes envoltórios
são utilizados para a rejeição rápida de pares de objetos distantes. Exemplos são cai-
xas alinhadas aos eixos [Bergen 2004], caixas orientadas [Gottschalk et al. 1996], es-
feras [Hubbard 1996] e k-DOPs [Klosowski et al. 1998]. No entanto, para ambientes
com um grande número de objetos colidentes, o teste entre volumes envoltórios pode
ser um gargalo. É tarefa da broad phase diminuir o número de testes realizados. Uma
forma de se implementar a broad phase é utilizar estruturas de partição espacial (por
exemplo, Grids [Lawlor e Kalée 2002], Octrees [Bandi e Thalmann 1995] e BSP-Trees
[Luque et al. 2005]), pois estas permitem o uso de coerência espacial entre os objetos.
Já outros algoritmos de broad phase não utilizam estruturas de partição espacial (por
exemplo, o Sweep & Prune, que pode utilizar a coerência temporal entre os quadros da
animação [Cohen et al. 1995]).

Para a narrow phase da detecção de colisão, é possı́vel usar a própria geometria do
objeto (como no algoritmo GJK [Bergen 2004], por exemplo) ou uma representação sim-
plificada desta. Hierarquias de volumes envoltórios (AABB-Trees [Bergen 2004], OBB-
Trees [Gottschalk et al. 1996], Sphere-Trees e hierarquias de k-DOPs) são exemplos de
estruturas que aproximam a geometria dos objetos. Sphere-Trees são estruturas particular-

1926

mente interessantes, pois as esferas que as compõem podem ser utilizadas para aproximar
o cálculo da detecção e resposta à colisão [O’Sullivan e Dingliana 1999]. Isso possibilita
a implementação de um algoritmo interruptı́vel [Hubbard 1996], bastante apropriado para
aplicações interativas nas quais precisão e velocidade devem ser balanceadas. Utilizando
esta técnica, é possı́vel alocar um intervalo de tempo para o processo de detecção de co-
lisão. Nos casos em que este não possa ser concluı́do no intervalo de tempo alocado, o
algoritmo interrompe o processo e utiliza uma heurı́stica para aproximar o resultado.

3. Broad Phase

O algoritmo de Força Bruta para a broad phase verifica a existência de interseção entre os
volumes envoltórios de todos os objetos da cena. Portanto, para n objetos, são necessários(

n
2

)
testes de interseção, resultando em um algoritmo de complexidade O(n2).

3.1. Grids e Octrees

Uma forma simples de otimizar o algoritmo de Força Bruta é o uso de estruturas de
partição espacial, as quais particionam o espaço considerado para a detecção de colisão
em regiões. Apenas os objetos pertencentes a uma mesma região são testados por colisão.
É possı́vel particionar o espaço em um grande número de regiões, diminuindo considera-
velmente o número de testes. Contudo, a sobrecarga de atualização das estruturas pode
comprometer o desempenho da detecção de colisão.

As estruturas de partição espacial mais utilizadas são os Grids e as Octrees. Grids
regulares particionam o espaço em voxels (células cúbicas) de mesmas dimensões, de
acordo com uma granularidade pré-definida. Estas estruturas são estáticas e, geralmente,
não se alteram durante a geração da animação (apenas as listas de objetos de cada região
são atualizadas), sendo indicadas para cenários onde os objetos estejam uniformemente
distribuı́dos. Já as Octrees são Grids hierárquicos de granularidade 2×2×2 (8 octantes),
as quais particionam recursivamente os voxels que interceptam, pelo menos, o volume
envoltório de um objeto, até uma profundidade pré-definida. Voxels que não interceptam
nenhum objeto são descartados da hierarquia. Uma vez construı́da a Octree para um
determinado quadro da animação, não há garantia de que esta continuará válida para o
próximo quadro, portanto, sendo necessário reconstruir a Octree a cada novo quadro.

Apesar da otimização significativa obtida pelos algoritmos de broad phase que
utilizam Grids e Octrees em relação ao algoritmo de Força Bruta, estes ainda possuem
outras limitações, além das já mencionadas. Por exemplo, para diferentes cenários, é
difı́cil estimar a melhor granularidade do Grid e a melhor profundidade da Octree. Outro
problema é o aumento da memória necessária para a execução destes algoritmos, pois um
objeto pode interceptar vários voxels simultaneamente, devendo ser referenciado várias
vezes.

3.2. Sweep & Prune

O algoritmo Sweep & Prune busca diminuir o número de testes da broad phase através do
cálculo eficiente de interseção entre caixas alinhadas aos eixos. Esse volume envoltório
pode ser representado pelos três intervalos resultantes de sua projeção, nos três eixos
coordenados x, y e z. Além disso, é possı́vel mostrar que se os três intervalos resultantes
das projeções possuem interseção, então, as duas caixas alinhadas aos eixos possuem

1927

interseção [Cohen et al. 1995]. A idéia principal deste algoritmo é manter os intervalos
de todas as caixas em três listas ordenadas (uma para cada eixo) e, a partir destas, derivar
os pares colidentes. Uma vantagem desta abordagem é a possibilidade da utilização de
coerência temporal, pois, geralmente, os objetos se movem a pequenas distâncias entre
quadros da animação. Como as três listas do quadro corrente estão ordenadas, é provável
que, no próximo quadro, a lista esteja próxima de estar ordenada. O algoritmo insertion
sort de ordenação pode, então, ser utilizado para manter as listas ordenadas em tempo
linear, fazendo com que o algoritmo tenha baixa sobrecarga de atualização, se comparado
às abordagens apresentadas na Seção 3.1. O Sweep & Prune possui complexidade média
de O(n +m) [Bergen 2004], onde n é o número total de caixas e m é o número de caixas
em estado de colisão.

A implementação do Sweep & Prune neste trabalho foi baseada no algoritmo apre-
sentado em [Ericson 2005]. Uma limitação do Sweep & Prune ocorre para arranjos de
objetos em fila, nos quais as caixas envoltórias possuem interseção em dois eixos coorde-
nados. Nesta situação, o algoritmo deverá testar todas as caixas, portanto, sendo indicado
para cenários onde não ocorra esse tipo de distribuição dos objetos.

4. Narrow Phase

Na narrow phase da detecção de colisão é realizado um teste mais refinado dos pares
resultantes da broad phase. Em particular, utilizamos Sphere-Trees para a representação
dos objetos.

4.1. Sphere-Trees

Sphere-Trees correspondem a hierarquias de esferas comumente utilizadas para aproxi-
mar a geometria dos objetos. Optamos por utilizar Sphere-Trees devido aos seguintes
fatos: esferas são rotacionalmente invariantes, o que facilita a atualização das Sphere-
Trees; o cálculo de interseção entre esferas é simples e de baixo custo computacional;
existem vários algoritmos eficientes para geração automática de Sphere-Trees; e Sphere-
Trees podem ser usadas na implementação de um algoritmo interruptı́vel para tratamento
de colisões [Bradshaw e O’Sullivan 2004].

4.2. Construção de Sphere-Trees

Uma forma para construção de Sphere-Trees é via Octrees, que são construı́das utilizando-
se a caixa envoltória do objeto como raiz e circunscrevendo-se cada um de seus nós. As
esferas resultantes deste processo formam a Sphere-Tree do objeto. Apesar deste método
ser simples e rápido, este não gera Sphere-Trees precisas.

Hubbard desenvolveu uma abordagem mais sofisticada para a construção de
Sphere-Trees [Hubbard 1996], baseada na aproximação do eixo medial do objeto (defi-
nido como sendo a união dos centros de todas as esferas máximas dentro da figura, re-
sultando em uma estrutura que se assemelha a um esqueleto para o objeto). Para calcular
uma aproximação do eixo medial, Hubbard utilizou diagramas de Voronoi. A partir desta
estrutura, o autor mostra que é possı́vel derivar um conjunto inicial de esferas e, destas,
a própria Sphere-Tree. O nó raiz da Sphere-Tree pode ser calculado como sendo a esfera
envoltória do objeto. Cada nó após a raiz é construı́do em um processo bottom-up, através
da fusão recursiva de pares de esferas. A adição dos nós na Sphere-Tree, no entanto, é
feita em um processo top-down.

1928

Bradshaw e O’Sullivan propuseram outros métodos para a construção de
Sphere-Trees baseados no algoritmo de Hubbard (algoritmos Merge, Burst, Expand)
[Bradshaw e O’Sullivan 2004]. Estes algoritmos melhoram o algoritmo de Hubbard
através da tentativa de redução do número de esferas na Sphere-Tree. Os autores também
apresentaram outras formas para a construção de Sphere-Trees (algoritmos Grid e Spawn).
Adicionalmente, também desenvolveram uma abordagem nomeada Combined, que pode
utilizar vários algoritmos de redução de esferas em conjunto (geralmente os algoritmos
Merge e Expand) para gerar Sphere-Trees bastante precisas. Neste trabalho, utilizamos o
Sphere-Tree Construction Toolkit [Bradshaw 2003] para gerar as Sphere-Trees dos obje-
tos e armazená-las em arquivos. A aplicação que desenvolvemos carrega as Sphere-Trees
dos arquivos e as posiciona na superfı́cie dos objetos.

A Figura 1 exibe os nı́veis 0, 1, 2 e 3 da Sphere-Tree do objeto “dragão”, gerada
pelo algoritmo Combined em (a), (b), (c) e (d), respectivamente. Observe que o nı́vel 3
da Sphere-Tree em (d) possui um alto grau de precisão. Uma desvantagem do algoritmo
Combined é que este pode demorar para calcular as Sphere-Trees, porém, este cálculo
pode ser realizado em uma fase de pré-processamento.

(a) “Dragão” (b) Nı́vel 1 (c) Nı́vel 2 (d) Nı́vel 3

Figura 1. Sphere-Tree gerada com o algoritmo Combined.

5. Cenários da Aplicação

Os cenários que projetamos para realizar todos os experimentos foram implementados
utilizando-se o pacote gráfico Java3D [Rowe 2001] e um joystick com force feedback
para controlar o movimento dos objetos circunscritos na Figura 2 (“caixa” em (a) e “coe-
lho” em (b)) e interagir mais realisticamente com a aplicação [Rocha e Rodrigues 2006b].
O ambiente gráfico é representado por uma sala, contendo 1000 objetos potencialmente
colidentes. Implementamos um cenário 1 com objetos do tipo “caixa” e “coelho” (em
(a) da Figura 2), e um cenário 2 com objetos do tipo “coelho” e “dragão” (em (b) da
Figura 2). Os objetos movem-se no espaço xyz, possuem velocidade linear constante e
relativamente pequena (evitando a ocorrência de collision tunnelling), e não rotacionam
(evitando a necessidade de recalcular as caixas alinhadas aos eixos que envolvem os ob-
jetos). Apesar do cenário implementado possuir estas restrições, em aplicações reais, a
velocidade dos objetos é geralmente controlada e relativamente baixa. Além disso, para
cenários onde os objetos rotacionam, é possı́vel utilizar caixas envoltórias amplas o sufici-
ente de tal forma a garantir que o objeto, mesmo rotacionado, permaneça englobado pelo
envoltório. Esta técnica foi utilizada com sucesso, por exemplo, em [Cohen et al. 1995].

1929

(a) Cenário 1 (b) Cenário 2

Figura 2. Cenários da aplicação.

6. Experimentos e Resultados

No cenário 1, avaliamos o desempenho dos algoritmos, sem levar em consideração o
processo de renderização da animação, utilizando um computador o qual chamaremos
de computador 1 (com uma placa gráfica on-board regular, processador Pentium HT
3,06Ghz e memória RAM de 768Mb, da qual a placa gráfica utiliza 64Mb). Já no cenário
2, levamos em consideração também o processo de renderização da animação, escolhendo
para nossas novas análises o algoritmo que obteve o melhor desempenho nos experimen-
tos anteriores, utilizando, para fins comparativos, além do computador 1, um outro, o qual
chamaremos de computador 2 (com uma placa gráfica GeForce 7300 GT da NVIDIA com
256Mb de memória, processador Pentium D 3,00Ghz e memória RAM de 512Mb).

6.1. Cenário 1

Inicialmente, para o cenário 1, foram realizados vários experimentos utilizando somente
os algoritmos de broad phase. A resposta à colisão foi implementada aplicando-se um
algoritmo heurı́stico que utiliza os intervalos das caixas envoltórias dos objetos colidentes
para determinar quais componentes da velocidade inverter.

Inicialmente, avaliamos o desempenho dos algoritmos de Força Bruta e dos que
utilizam Grids e Octrees, para um número de objetos variando de 100 a 500 (em (a) da
Figura 3). Nota-se que as abordagens que utilizam estruturas de partição espacial têm de-
sempenhos notadamente superiores ao do algoritmo de Força Bruta. Além disso, devido
ao fato do Grid ser uma estrutura estática, construı́da em uma fase de pré-processamento,
a abordagem que a utiliza possui desempenho melhor do que a que utiliza Octree, já que
essa última necessita que a Octree seja reconstruı́da a cada quadro da animação. Em par-
ticular, os algoritmos que utilizam Grid e Octree necessitam de parâmetros especı́ficos: a
granularidade do Grid e a profundidade da Octree, respectivamente. Em nossos experi-
mentos, os melhores parâmetros encontrados e utilizados na comparação dos algoritmos
de broad phase foram: uma granularidade de 10 × 4 × 10 para o Grid e uma profun-
didade de 3 nı́veis para a Octree. Por sua vez, o algoritmo Sweep & Prune (em (b) da
Figura 3) tem desempenho superior ao algoritmo que utiliza Grid, alcançando uma alta
taxa de q/s, sem degradar drasticamente o seu desempenho à medida que o número de
objetos aumenta. Para 1000 objetos, por exemplo, enquanto o algoritmo que utiliza Grid
alcança uma taxa de 14 q/s, o algoritmo Sweep & Prune atinge 54 q/s. Isto demonstra
que esta abordagem, além de rápida, também apresenta maior escalabilidade e é, portanto,

1930

a mais apropriada para detectar colisões na broad phase para o ambiente interativo que
implementamos.

Mais especificamente, para analisar as diferenças entre o algoritmo que utiliza
Grid e o Sweep & Prune, foram comparados os tempos gastos na atualização das estru-
turas de dados utilizadas e nos testes de interseção entre os pares de caixas envoltórias,
durante 500 quadros da animação (Figura 4). Em particular, observamos uma grande dis-
paridade entre ambos algoritmos no tempo gasto para a realização dos testes de interseção.
O algoritmo Sweep & Prune calcula os pares colidentes em muito menos tempo. O tempo
necessário para a atualização das estruturas de dados é relativamente maior no algoritmo
Sweep & Prune do que no que utiliza Grid (o primeiro consome aproximadamente 78%
a 98% do tempo total da broad phase, enquanto que o segundo varia de 53% a 62%).

Também utilizamos o algoritmo Sweep & Prune em conjunto com o algoritmo
baseado em Sphere-Trees. A resposta foi implementada utilizando-se as esferas coliden-
tes das Sphere-Trees para calcular quais componentes da velocidade inverter. A Figura
5 mostra o desempenho deste algoritmo hı́brido utilizando Sphere-Trees construı́das com
Octrees de 4 e 5 nı́veis de profundidade, bem como construı́das com o algoritmo Com-
bined com 2 e 3 nı́veis de profundidade (considerando-se o nı́vel 0 como o primeiro).
O desempenho do algoritmo de narrow phase é diretamente afetado pela profundidade
das Sphere-Trees. Portanto, o algoritmo Combined é mais apropriado para os cenários
implementados, pois gera Sphere-Trees mais precisas e com menor profundidade.

6.2. Cenário 2

Para o cenário 2, coletamos então os percentuais de processamento da broad phase e
da narrow phase do algoritmo hı́brido (Figura 6). Constatamos que, à medida que o
número de objetos aumenta, os percentuais da broad phase diminuem e os da narrow
phase aumentam (cenários com poucos objetos possuem menos colisões e, portanto, a
única sobrecarga do algoritmo hı́brido será a manutenção das listas ordenadas do algo-
ritmo Sweep & Prune para a broad phase). Por outro lado, para cenários com muitos
objetos, o número de colisões é maior e, portanto, o algoritmo baseado em Sphere-trees
para a narrow phase será invocado diversas vezes. Por exemplo, quando o ambiente pos-
sui 1000 objetos colidentes, o algoritmo hı́brido utilizando Sphere-trees com 2 nı́veis de
profundidade consome aproximadamente 70% do tempo de processamento da detecção
na broad phase e 30% na narrow phase e, utilizando Sphere-trees com 3 nı́veis de pro-
fundidade, consome aproximadamente 40% do tempo de processamento da detecção na
broad phase e 60% na narrow phase.

A Figura 7 mostra em (a) a taxa de q/s, considerando-se apenas o tempo gasto
na detecção de colisão para o cenário 2. Note que o desempenho dos computadores sem
e com placa gráfica aceleradora (computadores 1 e 2, respectivamente) são comparáveis,
pois o processo de renderização não influencia as curvas de desempenho exibidas. Para
1000 objetos colidentes, utilizando-se Sphere-trees com 2 nı́veis de profundidade, obte-
mos taxas médias de 39 q/s e 38 q/s para os computadores 1 e 2, respectivamente. Já para
Sphere-trees com 3 nı́veis de profundidade, obtemos taxas médias de 21 q/s em ambos
computadores.

Já em (b) da Figura 7 são mostradas as taxas de q/s alcançadas no cenário 2, in-
cluindo o processo de renderização. Obtemos um melhor desempenho utilizando Sphere-

1931

trees com 3 nı́veis de profundidade no computador 2, do que utilizando Sphere-trees com
2 nı́veis de profundidade no computador 1. Especificamente, para 1000 objetos coliden-
tes, alcançamos uma taxa média de 24 q/s e 16 q/s no computador 2 para Sphere-trees
com 2 e 3 nı́veis de profundidade, respectivamente, enquanto 12 q/s e 10 q/s para os
mesmos nı́veis de profundidade no computador 1.

7. Conclusões

Neste trabalho, implementamos e avaliamos o desempenho de quatro algoritmos para a
broad phase (Força Bruta, utilizando Grid, utilizando Octree, e Sweep & Prune). O al-
goritmo Sweep & Prune obteve o melhor desempenho e, entre os algoritmos testados,
possui a maior escalabilidade para os cenários da aplicação implementada. Já para a nar-
row phase, utilizamos um algoritmo baseado em Sphere-Trees. Foram comparadas duas
abordagens de construção de Sphere-Trees (utilizando Octree e o algoritmo Combined).
Mostramos que o algoritmo Combined gera Sphere-Trees mais precisas e, portanto, é mais
apropriado para representar a detecção de colisão narrow phase dos objetos modelados.

Adicionalmente, propomos e implementamos um algoritmo hı́brido para a
detecção de colisão que utiliza Sweep & Prune para a broad phase e o algoritmo baseado
em Sphere-Trees para a narrow phase. Os resultados obtidos na análise de desempenho do
algoritmo hı́brido comprovam que este pode ser aplicado em ambientes interativos con-
tendo um número considerável de objetos. Por exemplo, para cenários com até 1000 ob-
jetos movendo-se em xyz, alcançamos taxas superiores a 20 q/s, utilizando Sphere-trees
com 2 nı́veis de profundidade, geradas pelo algoritmo Combined. Neste caso, mostramos
que o algoritmo hı́brido consome aproximadamente 70% do tempo de processamento da
detecção na broad phase e 30% na narrow phase. Também demonstramos como o al-
goritmo hı́brido pode ser utilizado para balancear velocidade, precisão e escalabilidade
na detecção de colisão. Por exemplo, Sphere-trees com 2 nı́veis de profundidade podem
ser utilizadas em aplicações que requerem maior velocidade e escalabilidade (por exem-
plo, na área de Jogos por computador, mono ou multi-usuário). Já Sphere-trees com 3
nı́veis de profundidade podem ser utilizadas em aplicações que requerem maior precisão
na detecção de colisão (por exemplo, em Aplicações Gráficas em Medicina, Robótica,
Engenharia, etc).

Agradecimentos

Rafael de Sousa Rocha gostaria de agradecer o apoio financeiro concedido para o desen-
volvimento deste trabalho, enquanto bolsista de Iniciação Cientı́fica PIBIC/CNPq.

Referências

Bandi, S. e Thalmann, D. (1995). An Adaptive Spatial Subdivision of the Object Space
for Fast Collision Detection of Animated Rigid Bodies. CGF, 14(3):259–270.

Bergen, G. V. D. (2004). Collision Detection in Interactive 3D Environments. Morgan
and Kaufmann Publishers.

Bradshaw, G. (2003). Sphere-Tree Construction Toolkit. http://isg.cs.tcd.ie/spheretree/.

Bradshaw, G. e O’Sullivan, C. (2004). Adaptive Medial-Axis Approximation for Sphere-
Tree Construction. ACM Transactions on Graphics, 23(1):1–26.

1932

Cohen, J. D., Lin, M. C., Manocha, D., e Ponamgi, M. K. (1995). I-COLLIDE: An
Interactive and Exact Collision Detection System for Large-Scale Environments. In
Proc. of the Symposium on Interactive 3D Graphics, pages 189–196, USA. ACM Press.

Ericson, C. (2005). Real-Time Collision Detection. Morgan and Kaufmann Publishers.

Gottschalk, S., Lin, M. C., e Manocha, D. (1996). OBBTree: A Hierarchical Structure
for Rapid Interference Detection. Computer Graphics, 30:171–180.

Hubbard, P. M. (1996). Approximating Polyhedra with Spheres for Time-Critical Colli-
sion Detection. ACM Transactions on Graphics, 15(3):179–210.

Klosowski, J. T., Held, M., Mitchell, J. S., Sowizral, H., e Zikan, K. (1998). Efficient Col-
lision Detection using Bounding Volume Hierarchies of k-DOPs. IEEE Transactions
on Visualization and Computer Graphics, 4(1):21–36.

Lawlor, O. S. e Kalée, L. V. (2002). A Voxel-Based Parallel Collision Detection Al-
gorithm. In Proc. of the 16th International Conference on Supercomputing, pages
285–293, New York, USA. ACM Press.

Luque, R. G., Comba, J. L. D., e Freitas, C. M. D. S. (2005). Broad-Phase Collision
Detection using Semi-Adjusting BSP-Trees. In Proc. of the Symposium on Interactive
3D Graphics and Games, pages 179–186. SIGGRAPH, ACM Press.

O’Sullivan, C. e Dingliana, J. (1999). Real-Time Collision Detection and Response Using
Sphere-Trees. In Proc. of the 15th Spring Conference on Computer Graphics, pages
83–92, Budmerice, Slovakia.

Redon, S. (2004). Continuous Collision Detection for Rigid and Articulated Bodies.
Tutorial. ACM SIGGRAPH Course Notes.

Rocha, R. S. (2006). Avaliação Experimental de Métodos para Detecção de Colisão
em Ambientes Gráficos Interativos. Monografia de Final de Curso, Universidade de
Fortaleza, UNIFOR.

Rocha, R. S. e Rodrigues, M. A. F. (2005). Ambientes Interativos com Detecção de
Colisão Broad Phase Utilizando Grids. In Anais do III Workshop de Iniciação Ci-
entı́fica do XVIII Brazilian Symposium on Computer Graphics and Image Processing
(SIBGRAPI), Natal, RN. Meio digital.

Rocha, R. S. e Rodrigues, M. A. F. (2006a). Detecção de Colisão Broad Phase utilizando
Grids para Ambientes Interativos. Revista Eletrônica de Iniciação Cientı́fica (REIC),
6(2):1–17.

Rocha, R. S. e Rodrigues, M. A. F. (2006b). Investigating Broad Phase Collision Detec-
tion Methods for 3D Scenarios Using Force Feedback Devices. In Proc. of the XXXII
Latin-American Conference on Informatics (CLEI), Santiago do Chile, Chile. Meio
digital.

Rocha, R. S., Rodrigues, M. A. F., e Taddeo, L. S. (2006). Performance Evaluation of
a Hybrid Algorithm for Collision Detection in Crowded Interactive Environments. In
Proc. of the XIX Brazilian Symposium on Computer Graphics and Image Processing
(SIBGRAPI), pages 86–93, Manaus, AM, Brazil. IEEE CS Press.

Rowe, G. W. (2001). Computer Graphics with Java. Grassroots Series. Palgrave.

1933

0

50

100

150

200

250

100 200 300 400 500

Objetos

T
a
x
a

d
e

Q
u

a
d

ro
s

p
o

r

S
e
g

u
n

d
o

s
e
m

R
e
n

d
e
ri

z
a
ç
ã
o

Força Bruta Octree 3 Grid 10x4x10

(a)

0

25

50

75

100

125

150

500 600 700 800 900 1000

Objetos

T
a
x
a

d
e

Q
u

a
d

ro
s

p
o

r

S
e
g

u
n

d
o

s
e
m

R
e
n

d
e
ri

z
a
ç
ã
o

Octree 3 Grid 10x4x10 Sweep & Prune

(b)

Figura 3. Comparação entre algoritmos de broad phase.

0

4

8

12

16

20

500 600 700 800 900 1000

Objetos

T
e
m

p
o

T
o

ta
l

(s
)

Atualização Testes

(a) Algoritmo que utiliza Grid

0

4

8

12

16

20

500 600 700 800 900 1000

Objetos

T
e
m

p
o

T
o

ta
l

(s
)

Atualização Testes

(b) Algoritmo Sweep & Prune

Figura 4. Comparação entre o algoritmo que utiliza Grid e o Sweep & Prune.

0

20

40

60

80

100

120

500 600 700 800 900 1000

Objetos

T
a
x
a

d
e

Q
u

a
d

ro
s

p
o

r

S
e
g

u
n

d
o

s
e
m

R
e
n

d
e
ri

z
a
ç
ã
o

Octree 5 Octree 4 Combined 3 Combined 2

Figura 5. Desempenho do al-
goritmo hı́brido (cenário 1).

0

0,2

0,4

0,6

0,8

1

100 500 1000

Objetos

P
e
rc

e
n

tu
a
is

2 Níveis - Computador 2 (Broad Phase)

2 Níveis - Computador 2 (Narrow Phase)

3 Níveis - Computador 2 (Broad Phase)

3 Níveis - Computador 2 (Narrow Phase)

Figura 6. Percentuais do al-
goritmo hı́brido.

0

20

40

60

80

100

120

500 600 700 800 900 1000

Objetos

T
a
x
a

d
e

Q
u

a
d

ro
s

p
o

r

S
e
g

u
n

d
o

2 Níveis - Computador 1 3 Níveis - Computador 1

2 Níveis - Computador 2 3 Níveis - Computador 2

(a) Sem renderização

0

10

20

30

40

50

60

500 600 700 800 900 1000

Objetos

T
a
x
a

d
e

Q
u

a
d

ro
s

p
o

r

S
e
g

u
n

d
o

2 Níveis - Computador 1 3 Níveis - Computador 1

2 Níveis - Computador 2 3 Níveis - Computador 2

(b) Com renderização

Figura 7. Desempenho do algoritmo hı́brido (cenário 2).

1934

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

