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Abstract. In his doctoral thesis, Manuel Blum proposed two axioms for com-
plexity measures that allows us to talk about complexity in an axiomatic man-
ner. His axioms does not even specify the machine model — it just requires it
to satisfy some properties. Blum axioms, however, are defined in the context
of function computation. This restriction is easy to implement with determin-
istic machines, since there is only one output for a given input, but how can a
nondeterministic Turing machine compute a function? This paper surveys tech-
niques to associate nondeterministic machines with functions and analyze how
they interact with computational complexity.

1. Introduction
In Theory of Computation, we usually use languages to mathematically model problems
in the real world. Decision problems (“yes/no”) are mapped to languages in a very natural
way, by just putting every “yes” instance in the language, and leaving the rest out. Search
problems usually are rewritten as a decision problem, and then this problem is converted
to a language. For instance, the task of finding a satisfying assignment for a Boolean for-
mula is reinterpreted as the task of deciding whether such an assignment exists, and this
task is then converted to a language — in this example we have SAT, the Boolean satisfi-
ability problem. This does the trick when it comes to proving that something is hard; for
instance, if we show that the decision problem is NP-hard or undecidable, then intuitively
the corresponding search problem must be at least as hard. Therefore, concepts like “de-
cidable”, “NP-complete”, “polynomial-time decidable” arise naturally in the context of
decision problems.

However, even from the theoretical standpoint, it is useful to extend these concepts
to functions. For instance, the concept of polynomial-time computable functions are re-
quired to define Karp reductions [Arora and Barak 2009, p. 42]. For single-tape determin-
istic Turing machines, this definition is easy to extend: A function f : {0, 1}∗ → {0, 1}∗
is said to be polynomial-time computable if there is a Turing machine M and a poly-
nomial p such that, when given the string x as input, M halts with f(x) in its tape
within p(|x|) steps.

Most extensions to this basic model, like the use of several tracks, or several tapes,
or multidimensional tapes, can be easily incorporated in the definition of polynomial-
time computable. Except nondeterminism. We hit a wall right in the start: how does a
nondeterministic machine computes a function in the first place?

This paper presents several attempts to establish how a nondeterministic Turing
machine could compute a function, and to extend the concept of “polynomial-time com-
putable” under each definition. Section 2 sets reasonableness criteria to both the definition
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of function computation and complexity of the computation. Section 3, which contains
the several definitions, presents and criticizes Hopcroft and Ullman’s and Goldreich’s def-
initions (sections 3.1 and 3.2), proposes one possible definition that meet the quality stan-
dards (section 3.3), and shows other two definitions, by Krentel (section 3.4) and Valiant
(section 3.5), that, altough were not proposed in the context of general nondeterministic
computation of functions, also meet the quality standards and sidesteps the problems with
the proposed definition (presented in section 3.3.1). The development of this project is
mentioned in section 5, after the concluding remarks (section 4).

2. Our approach: Gödel numberings and Blum axioms
In this paper, we will try to associate nondeterministic computation with partial recur-
sive functions, in some well-behaved manner, and preserving the apparent1 exponential
speed-up present in nondeterministic deciders. The concept of Gödel numberings (sec-
tion 2.1) captures the notion of “well-behaved”. The Blum axioms (section 2.2) capture
the notions of computational complexity. We thus will demand the definitions to satisfy
the requirements of Gödel numberings and Blum axioms.

We are restricting ourselves to using single-valued functions, but there are alter-
native approaches. Complexity classes like NPVM (see, for example, the paper of Sel-
man [Selman 1994, p. 359]) are defined using multivalued functions, which are allowed
to return several values for a single input. Another approach is to use function problems
associated to problems in NP, where the machine is required to return any certificate for
the given instance, or to reject the input if it is not in the language [Papadimitriou 1994,
p. 229]. We will not consider these approaches here.

2.1. Reasonableness criterion: acceptable Gödel numberings
One of the most important theoretical results concerning Turing machines is the existence
of undecidable problems. Namely, the halting problem (the task of deciding whether a
given Turing machine will halt on a given input) cannot be solved by Turing machines
[Arora and Barak 2009, p. 23]. The formalization (and proof) of this fact requires the
definition of some sort of encoding; since Turing machines can only reason about strings,
we need somehow to encode Turing machines into strings, to be able to pose the halting
problem as a language question.

Each Turing machine can be associated to the corresponding partial recursive
function it computes. There are several ways to encode Turing machines as strings, but
what is most important about them is that they allow us to manipulate these partial recur-
sive functions indirectly — partial recursive functions are (potentially) infinite objects, so
we cannot write them down on a Turing machine tape, but we can write the encoding of
a Turing machine that compute these functions.

Therefore, these encodings provide a way to associate a string (which is a finite,
manipulable object) with a partial recursive function (which is an infinite, mathematical,
“untouchable” object). Encodings are enumerations of all partial recursive functions.

1It is apparent in the sense that, if proven would show P �= NP, and if disproved (showing a polynomial
slowdown is the best we can do) would show P = NP. Although most researchers expect the former to be
the case [Gasarch 2012, p. 54], as Papadimitriou noted [Papadimitriou 1994, p. 412], in the absence of a
proof that P �= NP we should not be too emphatic in stating the simulation require (as opposed to seemingly
require) exponential slowdown.
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One important feature about the standard encodings of deterministic Turing ma-
chines is the Universal Turing Machine Theorem: the existence of a partial recursive
function U : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ such that, if w encodes the machine M , then
U(m, x) is the result of running the machine M on x. A machines that compute U is
called universal Turing machine.

The concept of acceptable Gödel numbering ([Rogers 1987, p. 41], [Blum 1967,
p. 324]) encompasses the existence of universal machines and a little more. We will use
it as our reasonableness criteria to our definitions.
Definition 1. Let P be the set of all partial recursive functions. An acceptable Gödel
numbering is a function φ : {0, 1}∗ → P , that associates each string (or program2)
w ∈ {0, 1}∗ to a function φw ∈ P , that satisfies

1. φ is surjective; that is, every partial recursive function f ∈ P has a program
w ∈ {0, 1}∗ such that φw = f ;

2. There is a partial recursive function U : {0, 1}∗ ×{0, 1}∗ → {0, 1}∗ such that, for
every w and x, U(w, x) is defined if and only if φw(x) is defined, and, in this case,

U(w, x) = φw(x);

3. There is a total recursive function σ : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ such that, for
every y, φw(x, y) is defined if and only if φσ(w,x)(y) is defined, and, in this case,

φw(x, y) = φσ(w,x)(y).

This concept captures the intuitive notion of “well-behaved numbering”.

Condition 1 guarantees that the image of φ is all of P , so that the numbering
neither “forgets” a partial recursive function nor generate a function that is not partial
recursive. Condition 2 is the universal Turing machine theorem.

Condition 3 is the “little more” we mentioned earlier. It is known as the Smn theo-
rem [Rogers 1987, p. 24]. Essentially, given a partial recursive function of two variables,
we can obtain a partial recursive function of one variable by fixing the first argument.
The function σ provides a systematic way of doing this: given a description w of a partial
recursive function of two variables and the value x to be fixed as the first variable, σ(w, x)
is a machine that computes this new partial recursive function.
Example 2. Any encoding of deterministic Turing machines as a binary string yields an
acceptable numbering of the recursive functions.
Example 3. Any programming language can be understood as an acceptable Gödel num-
bering. For example, if we restrict a C program to perform input and output only using the
standard input and standard output (that is, forbid interactions with the user, file reading,
GUIs, access to system clock, etc.), the resulting program will map a binary input to a
binary output, characterizing a partial recursive function. Thus, we can see a C compiler
as an implementation of an acceptable Gödel numbering.3

2In texts like Rogers’ [Rogers 1987], the partial recursive functions have the naturals as domain and
codomain (that is, they are of the form f : N → N), and Gödel numberings associates natural numbers with
recursive functions. In this paper we will work with binary strings instead of numbers, which will simplify
the definition of complexity classes and allows us to think the string w as a program for φw (see example 3).

3Note we are ignoring here issues like compilation and run-time errors. These can be dealt with as in
the case of Turing machines: any invalid program will signify some fixed partial recursive function (say, the
function that is defined nowhere); and any invalid step in computation makes the function to be not defined
on that input.
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One important theorem that can be proven using acceptable Gödel numberings
alone is the recursion theorem [Rogers 1987, p. 181]. It states that, if φ is any acceptable
Gödel numbering and f is any total recursive function, then there is some program w0

such that φw0 = φf(w0). That is, if f is any systematic transformation on programs,
there is a program w (a fixed point for f ) whose meaning under φ is unchanged. The
recursion theorem can be used, for example, to show the existence of quines (programs
whose output are their own source codes) in any Turing-complete programming language:
choose f to be the function that, given a program w, returns another program f(w) that
prints the string w when run.4 Then, by the recursion theorem, there is some program
w0 that is equivalent to its transformed version f(w0); thus, w0 already writes the string
w0, its own source code. Therefore, any programming language has quines [Kozen 2006,
p. 227].

2.2. Efficiency criterion: Blum axioms
The complexity of a computation is how much of a resource that is invested in that compu-
tation [Hopcroft and Ullman 1979, p. 285]. For each model of computation and each re-
source under that model, we can establish a complexity measure concerning that resource.
This section is devoted to formalizing this notion. As we did with the machine encod-
ings, we will impose some restrictions on what can be a complexity measure to be able
to manipulate it (at least indirectly). In our case, we will use Blum axioms [Blum 1967,
p. 324].

Definition 4. Given an acceptable Gödel numbering φ, a complexity measure for φ is a
function Φ : Σ∗ × Σ∗ → N of two variables that satisfies [Blum 1967, p. 324]:

1. For every w and x, φw(x) exists if and only if Φ(w, x) exists; and
2. For every string w, x and every natural number k, the predicate “Φ(w, x) = k?”

is decidable.
Φ(w, x) is the complexity of computing φw(x) using the program w. The first

axiom says that it only makes sense to talk about the complexity of a computation that
ends. The second axiom gives minimum tools to manipulate Φ indirectly, in the same
manner we require φ to be an acceptable Gödel numbering.

Example 5. The standard measures of time and space can be constructed over the accept-
able numbering of example 2. They are, respectively, the number of moves and tape cells
scanned before halting. Leave the complexity undefined if the machine does not halt —
this satisfies the first axiom. The predicate of the second axiom is simple for time com-
plexity; for space complexity, we must keep the whole history of computation to make
sure the machine does not loop in a limited amount of space (because the complexity is
not defined in this case).

Definition 6. Given a complexity measure Φ for an acceptable Gödel numbering φ and a
total recursive function f : N → N, define the complexity class CΦ(f) by ([Kozen 2006,
p. 232])

CΦ(f) = {φw | Φ(w, x) ≤ f(|x|) almost everywhere5}.

4For Turing machines, for instance, we can encode the bits of w in the transition table of f(w).
5Almost everywhere means that the inequality Φi(x) ≤ f(|x|) holds for all but a finite number of

different x.
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This formalizes the notion of complexity class. There are some important theo-
rems concerning complexity classes under the Blum axioms; we mention only the Union
Theorem [Kozen 2006, p. 234]. It states that, if {fi} is any recursive list of increasing
functions such that fi(n) ≤ fi+1(n) for all x (that is, each fi is greater than the previous),
then there is some function g such that

CΦ(g) =
⋃
i∈N

CΦ(fi).

That is, the class CΦ(g) contains exactly all functions present in the classes CΦ(fi). Choos-
ing Φ as the time complexity and fi(n) = ni (the polynomial functions), the union in the
right is exactly the class P, the problems solvable in polynomial time. By the Union The-
orem, P is CΦ(g) for some recursive function g, so, even though P does not have an easily
specifiable bounding function, such function exists nevertheless.

3. Nondeterministic computation of functions
This section surveys several approaches for defining nondeterministic computation of
functions.

Sections 2.1 and 2.2 introduced the concept of acceptable Gödel numbering, the
Blum axioms, and its complexity classes. As we want to regard these concepts as “quality
requirements” for the definitions, we will analyze each of them to see whether they de-
fine acceptable Gödel numberings, the analogous time complexity satisfies Blum axioms,
and that the characteristic function6 of the Boolean satisfiability problem can be solved
in “polynomial time” according to that complexity measure. (This last requirement ex-
presses that the definition preserves the exponential speed-up that nondeterminism gives
to deciders.)

3.1. Hopcroft-Ullman’s definition

Definition 7 (Hopcroft and Ullman’s definition7). If w is an encoding for the Turing
machine M , we say that φw(x) = y if and only if, when processing x, there is some
branch of M that halts with y in the tape, and there is no branch that halts with some
z �= x in the tape.

The problem with their definition is that φw(x) is allowed to be defined, even if
some branch of computation does not halt. This allows us to solve the complement of the
halting problem.

Proposition 8. Define the partial function f : Σ∗ × Σ∗ → {0, 1} by

f(w, x) =

{
1, if the machine w does not halt on x.
undefined, if w halts on x.

This function can be computed by a nondeterministic Turing machine under Hopcroft and
Ullman’s definition.

6The characteristic function of a set A is the function 1A defined to be 1 for x ∈ A and 0 for x /∈ A.
7Hopcroft and Ullman’s original definition [Hopcroft and Ullman 1979, p. 313] was defined in the con-

text of computation of integer functions. We are rephrasing here in terms of strings, but keeping the relation
they imposed on the execution branches.
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Proof. On input (w, x), create two branches of computation. On the first, write 1 on the
tape and halt. On the second, simulate the universal Turing machine U in the input, and
if U halts, write 0 on the tape and halt too.

If w halts on x, there will be two halting branches of computation, each writing a
different value in the tape, so, by definition, the function is not defined on this input. If
w never halts, then only the first branch will halt (and with 1 written on the tape), so the
function is defined on this input and its value is 1.

Therefore, under Hopcroft and Ullman’s definition, we can compute some non-
computable functions, violating the requirement 1 of Gödel numberings.

We can try to fix this definition by forcing all branches to halt; but then, as all
branches are required to return the same value, the machine will be (almost) determin-
istic. Therefore, if there is a machine M that computes the characteristic function of
the satisfiability problem in nondeterministic polynomial time, we could simulate M on a
given input, choosing (say) always the first option when confronted with nondeterminism.
If this branch of computation returns 1, then every branch returns 1 and the input is satisfi-
able; if this branch returns 0, every branch returns 0 and the input is unsatisfiable. We thus
could solve SAT in deterministic polynomial time. So, with this restriction, we lose the
apparent exponential speed-up in computation time we have when using nondeterminism.

3.2. Goldreich’s definition
Definition 9 (Goldreich’s definition). Let ⊥ be some special symbol not in {0, 1}∗.
(This symbol will represents “don’t know”.) A nondeterministic machine M com-
putes the function f if, when processing the input x, both the following conditions hold
[Goldreich 2008, p. 168]:

• Every branch of M halts and outputs either f(x) or ⊥.
• At least one branch of M halts with f(x) on the tape.

The extra symbol ⊥ sidesteps the problems of a branch looping forever. This al-
lows us to mechanically convert nondeterministic machines under Goldreich’s definition
to deterministic machines via simulation — the deterministic machine just need to simu-
late all branches until completion, to actually be sure every branch halts; if some branch
do not halt, then the simulating machine will not halt either, but the function is not defined
in this case, so this behavior is correct.

Thus, we only enumerate computable functions. To show the universal machine
theorem and the Smn, we can simply first convert the machine in question to a deter-
ministic machine and use their theorems; thus, this definition yields an acceptable Gödel
numbering. And, by counting the number of steps of the deepest branch, we have a Blum
complexity measure.

So, Goldreich’s definition defines an acceptable Gödel numbering and we can
form a complexity measure that satisfies Blum axioms. But, again, we have trouble with
the “exponential speed-up” requirement. For instance, a machine trying to solve the sat-
isfiability problem would correctly return 1 for a satisfiable instance, but no branch can
write a 0 alone because it cannot be sure that instance is unsatisfiable — so, the function
would be undefined for unsatisfiable formulas.

That is, unless NP = coNP.
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Proposition 10. If there is a nondeterministic Turing machine that computes in polyno-
mial time, according to Goldreich’s definition, the characteristic function of the satisfia-
bility problem, then NP = coNP.8

Proof. Suppose M is the machine that computes SAT’s characteristic function, under
Goldreich’s definition, in polynomial time.

The characteristic function of SAT is a total function, and its only outputs are 0
and 1. Therefore, in every computation of M , there is at least one branch that writes
something different that ⊥ on the tape, and whatever it writes is the correct answer. So, if
we convert this to a nondeterministic decider and invert the output (branches that write 0
will accept the input and vice-versa; branches that write ⊥ always reject), any satisfiable
formula will be rejected, because no branch of M ever writes 0 on the tape for these
formulas; and any unsatisfiable formula will be accepted, because at least one branch of
M writes 0 for these formulas. Thus, we can decide SAT, the complement of SAT.

Since SAT is coNP-complete, the existence of such a machine M would show that
coNP ⊆ NP, and this implies that coNP = NP.9

Therefore, even though Goldreich’s definition yields an acceptable Gödel number-
ing and a Blum complexity measure, it also have trouble in transposing the exponential
speed-up we have using nondeterminism.

3.3. Proposed definition

Analyzing the problems with the first two definitions, we know the nondeterministic ma-
chine must be allowed to return several values (one for each branch) and somehow pick
only one to be the value of the function.

If M is any deterministic decider for the language L, we can create a machine that
computes the characteristic function of L by running M and returning 1 if M accepted
and 0 if it rejected.

If we apply this transformation to a nondeterministic machine that recognizes the
Boolean satisfiability problem, then, when running this machine, we have three possible
results.

• For tautological formulas, the set of possible answers is only {1}.
• For contradictory formulas, the set of answers is {0}.
• For satisfiable formulas that are not tautological, we have both values: {0, 1}.

We want the return value for all satisfiable formulas to be 1 and for unsatisfiable formulas
to be 0. Note that this corresponds exactly to the maximum value of each set; so, our def-
inition of nondeterministic computation of functions will preserve exactly this behavior.
Definition 11 (Proposed definition). Let M be a nondeterministic Turing machine, and
x an input. If every branch of M halts when processing x, the value of the function

8NP = coNP implies that NP = PH; that is, the polynomial hierarchy collapses to the first level
[Kozen 2006, p. 280].

9To see why coNP ⊆ NP implies coNP = NP, pick a language L ∈ NP. Its complement L is in coNP,
by the definition of coNP. But by hypothesis, L is in NP, so, by the definition of coNP, its complement,
L = L is in coNP, thus showing coNP = NP.
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computed by M on x is the lexicographically maximum between all strings written in the
computation branches. If some branch does not halt, leave the function undefined in x.

The same reasoning of Goldreich’s definition applies here; therefore, we have an
acceptable Gödel numbering, and counting steps of the deepest branch (as in Goldreich’s
definition) yields a Blum complexity measure.

And, using exactly the algorithm mentioned above, we can compute the charac-
teristic function of the satisfiability problem under linear time; thus, this definition meets
all the requirements proposed in the beginning of section 3.

3.3.1. Extending NP-completeness

The last definition provides an extension of the class NP to function computation, so the
next step is extend the concept of NP-completeness.

Call FNP the class of all functions computable in polynomial time, under our
definition10. A language L is NP-complete if both L ∈ NP and every language in NP
reduces to L; that is, for every language L′ ∈ NP, there is a polynomial-time computable
function f such that, for every x,

x ∈ L′ if and only if f(x) ∈ L.

(We are using Karp reductions here [Arora and Barak 2009, p. 42].) If we rephrase in
terms of the characteristic functions 1L and 1L′ , of L and L′, respectively, we have
1L′(x) = 1L(f(x)) for all x. We will generalize specifically this equation to define FNP-
completeness.

Definition 12. A function f is FNP-complete if f ∈ FNP and, for every function g in
FNP, there is a polynomial-time computable function h such that

g(x) = f(h(x))

for every x ∈ {0, 1}∗.

We can construct a FNP-complete function based on the halting problem: define
f : {0, 1}∗×N → {0, 1}∗ such that f(w, n) is the lexicographically greatest value written
by any branch of w after running for n steps. Such functions are FNP-complete because
they simulate Turing machines directly. However, this definition is very rigid and allow
for few functions to be FNP-complete; the requirement of directly returning the output
of the function g above restricts the class of FNP-complete functions to functions that
perform simulations.

3.4. Krentel’s OptP class

The next two authors were not specifically concerned with nondeterministic computation
of functions, but rather in generalizing the NP class for functions. Therefore, the corre-
sponding notion of NP-completeness behave better than our proposed generalization.

Krentel’s definition, in particular, are very similar to ours.

10Note that this definition is different from the one given by Papadimitriou [Papadimitriou 1994, p 229].
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And, using exactly the algorithm mentioned above, we can compute the charac-
teristic function of the satisfiability problem under linear time; thus, this definition meets
all the requirements proposed in the beginning of section 3.

3.3.1. Extending NP-completeness

The last definition provides an extension of the class NP to function computation, so the
next step is extend the concept of NP-completeness.

Call FNP the class of all functions computable in polynomial time, under our
definition10. A language L is NP-complete if both L ∈ NP and every language in NP
reduces to L; that is, for every language L′ ∈ NP, there is a polynomial-time computable
function f such that, for every x,

x ∈ L′ if and only if f(x) ∈ L.

(We are using Karp reductions here [Arora and Barak 2009, p. 42].) If we rephrase in
terms of the characteristic functions 1L and 1L′ , of L and L′, respectively, we have
1L′(x) = 1L(f(x)) for all x. We will generalize specifically this equation to define FNP-
completeness.

Definition 12. A function f is FNP-complete if f ∈ FNP and, for every function g in
FNP, there is a polynomial-time computable function h such that

g(x) = f(h(x))

for every x ∈ {0, 1}∗.

We can construct a FNP-complete function based on the halting problem: define
f : {0, 1}∗×N → {0, 1}∗ such that f(w, n) is the lexicographically greatest value written
by any branch of w after running for n steps. Such functions are FNP-complete because
they simulate Turing machines directly. However, this definition is very rigid and allow
for few functions to be FNP-complete; the requirement of directly returning the output
of the function g above restricts the class of FNP-complete functions to functions that
perform simulations.

3.4. Krentel’s OptP class

The next two authors were not specifically concerned with nondeterministic computation
of functions, but rather in generalizing the NP class for functions. Therefore, the corre-
sponding notion of NP-completeness behave better than our proposed generalization.

Krentel’s definition, in particular, are very similar to ours.

10Note that this definition is different from the one given by Papadimitriou [Papadimitriou 1994, p 229].

Definition 13. A function f : {0, 1}∗ → N is in OptP if there is some nondeterministic
Turing machine M such that [Krentel 1988, p. 493]:

• For every input, every branch of M halts within a polynomial number of steps and
writes in its tape a number in binary; and

• Either, for all x, the largest number written by M on x is f(x), or, for all x, the
smallest number written by M on x is f(x).
Therefore, Krentel’s OptP class contains the optimization problems that can be

“solved” in polynomial time by nondeterministic Turing machines. (Note we must always
take the maximum value, or always take the minimum value.) The definition of OptP-
completeness, however, is significantly different.

Definition 14. A function f is OptP-complete if f ∈ OptP and, for every function g ∈
OptP, there are two functions T1 : {0, 1}∗ → {0, 1}∗ and T2 : {0, 1}∗ × N → {0, 1}∗,
both computable in deterministic polynomial time, such that, for all x,

g(x) = T2

(
x, f(T1(x))

)
.

That is, besides the preprocessing function T1, we are allowed to make a post-
processing which have access both to the input x and to the “reduced output” f(T1(x)).
Under this definition, the traveling salesperson problem and 0− 1 integer linear program-
ming are both OptP-complete [Krentel 1988, p 495].

3.5. Valiant’s #P class
Definition 15 (Valiant’s definition). A nondeterministic machine M computes a function
f : {0, 1}∗ → N if, for every input x, M halts on every branch11 and the number of
accepting branches of computation is f(x) [Valiant 1979, p. 191].

The class #P is the set of functions computed in polynomial time, under Valiant’s
definition. #P-completeness is defined through oracles; that is, a function f is #P-
complete if f ∈ #P and #P ⊆ FPf (that is, every function of #P can be computed by a
deterministic machine with access to an oracle that computes f ) [Valiant 1979, p. 191].

Besides problems like counting the number of satisfying assignments for a given
formula, Valiant also proves less trivial problems are #P-complete, like the task of com-
puting the permanent of a matrix [Valiant 1979, p. 194]. Therefore, this definition is also
flexible, like Krentel’s.

Krentel note that both his and Valiant’s definition arise from applying an associa-
tive operator to all values returned in the branches of computation — maximum/minimum
in Krentel’s case, and cardinality (counting) in Valiant’s case. Therefore, using other asso-
ciative operations yield alternative definitions of nondeterministic function computation
[Krentel 1988, p. 493].

4. Concluding Remarks
As we have seen, it is possible to associate nondeterministic Turing machines with func-
tion computation, although the association is not so straightforward as with deterministic
machines.

11Valiant did not include the requirement of halting in his definition, but we will include it to avoid having
the same problems of Hopcroft and Ullman’s definition.
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Through the use of the notions of acceptable Gödel numberings and Blum axioms,
we formalized the notion of “reasonable” definition for nondeterministic function compu-
tation, and by consequence we formalized what is a “generalization of NP to functions”.
Krentel’s and Valiant’s definitions, besides generalizing NP, in particular, also allow for a
flexible generalization of NP-completeness — that is, they allow for interesting problems
to be “functionally NP-complete”, under each definition.

5. Project Development
Tiago Royer studied this problem of associating a nondeterministic machine with a func-
tion in his undergraduate thesis12, under the supervision of Jerusa Marchi. After finding
Hopcroft and Ullman’s definition (section 3.1) and noting it yields a computation that is
very close to be deterministic, he devised the definition of section 3.3 (using the concept of
acceptable Gödel numberings and Blum axioms to be sure his definition would not bee too
unreasonable). As noted in section 3.3.1, his generalization to NP and NP-completeness
are very rigid.

Krentel’s and Valiant’s definitions (which were discovered later in the project),
although not created specifically to associate nondeterministic machine with functions,
provides a more elegant generalization of NP and NP-completeness; this paper summarize
all these findings under the light of Gödel numberings and Blum axioms.
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