V Congresso sobre Tecnologias na Educação (Ctrl+E 2020)

Educação do Futuro: Tecnologias e Pessoas para Transformar o Mundo João Pessoa – PB I Brasil I Online 25 a 28 de Agosto de 2020

ARminoGame: Um Jogo Colaborativo com Realidade Aumentada para Ensino de Bioquímica Estrutural

Alan Ferreira Alves¹, Liliane S. Machado², Cícero F. B. Felipe¹

¹Departamento de Biologia Molecular e ²Departamento de Informática Universidade Federal da Paraíba (UFPB)

Cidade Universitária s/n - João Pessoa/PB - 58051-900 - Brasil

xxalanferreira@gmail.com, cicero@dbm.ufpb.br, liliane@di.ufpb.br

Abstract. The incorporation of technology in educational games can combine the intrinsic characteristics of games (challenge and collaboration) with the dynamics of new technologies. In the present work, the proposal for a new teaching material for collaborative use in the form of a game is presented. This game, called ARminoGame, uses augmented reality technology, mixing real and virtual elements, which can be used for activities inside and also outside the classroom environment.

Resumo. A incorporação da tecnologia aos jogos didáticos pode unir as características intrínsecas dos jogos (desafio e colaboração) com a dinamicidade das novas tecnologias. No presente trabalho, é apresentada a proposição de um novo material didático para uso colaborativo no formato de um jogo. Este jogo, chamado ARminoGame, utiliza a tecnologia da realidade aumentada, mesclando elementos reais e virtuais, que pode ser utilizado para atividades tanto dentro quanto fora da sala de aula.

1. Introdução

O método tradicional de ensino vem passando por mudanças em sua estrutura, de modo a tornar o ensino mais dinâmico, focado na figura do discente e tornando-o ativo na construção do seu conhecimento. Dentre as técnicas que sustentam essa visão, está o emprego de materiais e jogos didáticos. A utilização destas ferramentas pode favorecer a aprendizagem de conceitos, promover maior motivação para o estudo, desenvolver capacidades e competências [Cunha 2012], além de oferecer algumas vantagens em relação ao método tradicional de ensino, como a maior imersão no assunto, interatividade e colaboração [Tlili, Essalmi e Jemni 2015].

Um aspecto importante sobre a utilização de jogos didáticos é que eles podem promover a socialização, uma vez que podem ser realizados em grupos de estudantes, melhorando a afetividade e rendimento de alunos que apresentam dificuldade de aprendizagem e relacionamento com os colegas [Cunha 2012]. O aprendizado colaborativo pode ainda aumentar o interesse dos participantes, permitindo a sua contribuição na discussão, demandar responsabilidade sobre decisões próprias e do grupo, possibilitar a visualização de novas perspectivas e estimular o pensamento crítico [Gokhale 1995].

As transformações tecnológicas vivenciadas nos últimos anos têm oferecido novas técnicas e sistemas que podem auxiliar o processo de ensino-aprendizagem por meio de jogos digitais [Machado, Moraes, Nunes e Costa 2011]. Uma dessas tecnologias é a Realidade

Estendida (RE), definida como um termo que engloba tecnologias que podem inserir os usuários em uma realidade completamente virtual ou sobrepor sobre o mundo real objetos virtuais. A RE engloba a Realidade Aumentada (RA), Realidade Virtual (RV) e Realidade Mista (RM) [Andrews, Southworth, Silva e Silva 2019]. Neste caso, a RA permite ao usuário visualizar e manipular em tempo real objetos tridimensionais virtuais sobrepostos ao ambiente físico, trazendo dinamicidade e atratividade dos estudantes ao conteúdo estudado [Alves, Felipe e Machado 2019b].

A incorporação da tecnologia aos jogos didáticos pode, portanto, unir as características intrínsecas dos jogos (desafio e colaboração) com a dinamicidade das novas tecnologias. Abordagens anteriores apresentaram o uso da RA para apoiar o processo de ensino de bioquímica estrutural, incorporando a visualização tridimensional das moléculas a um material didático textual, contribuindo para um aprendizado mais dinâmico, contextualizado e completo [Alves, Felipe, Martins e Machado 2019a]. Este trabalho visa apresentar um novo material didático, em formato de um jogo, que utiliza da RA, mesclando elementos reais e virtuais, que pode ser utilizado para atividades colaborativas tanto dentro, quanto fora da sala de aula.

2. Embasamento teórico

A bioquímica é uma ciência interdisciplinar, estudada nos primeiros anos da maioria dos cursos da saúde e das ciências naturais e serve como base para compreensão de processos metabólicos importantes. Ela é frequentemente considerada uma disciplina de difícil entendimento por parte dos alunos, uma vez que possui uma terminologia ampla, com muitos nomes, conceitos, fórmulas e estruturas químicas que exigem um alto grau de abstração associado a um conhecimento prévio em química [Garzón, Magrini, Costa e Galembeck 2014].

De modo a facilitar e apoiar o processo de ensino-aprendizagem da bioquímica, aplicativos, jogos e outros materiais interativos têm sido desenvolvidos como importantes ferramentas pedagógicas. Uma dessas ferramentas é o AminoViewer (Figura 1), um material didático que associa uma apostila e um aplicativo que faz uso da RA para o estudo e a visualização da estrutura tridimensional de aminoácidos [Alves, Felipe, Martins e Machado 2019a]. Este material foi lançado em 01 de maio de 2020 e, até o momento da escrita deste trabalho, o seu visualizador com realidade aumentada já contava com mais de 300 downloads, permitindo inferir o interesse dos alunos pela tecnologia.

Diversas outras propostas para ensino da bioquímica encontradas na literatura são apresentadas no formato de jogos, explorando o desafio e a competição sadia entre os alunos. Um exemplo é o "AminoGame 2.0 - Dinâmica de ionização de aminoácido" (Figura 2a), um jogo composto por cartas, painéis, tabelas e fichas, que aborda o conteúdo dos aminoácidos. Nele, o aluno tem como objetivo montar corretamente a estrutura do aminoácido ou peptídeo de acordo com as condições sorteadas [Mestanza 2017].

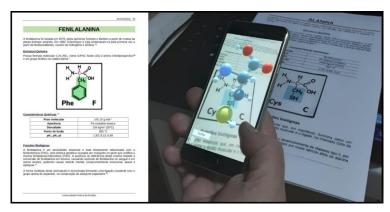


Figura 1. AminoViewer

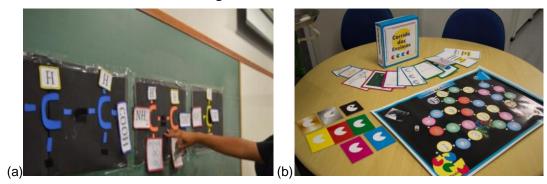


Figura 2. Os jogos AminoGame 2.0 (a) e Corrida de Enzimas (b)

Alguns jogos didáticos são estruturados na forma de tabuleiro, como é o caso de "A Corridas das Enzimas" (Figura 2b), em que os principais conceitos sobre o conteúdo de enzimas são revisados por meio de perguntas e respostas [Mestanza 2017]. Outro jogo disponível é o Bioquim4x (figura 3a), que aborda diversos tópicos de bioquímica, como sistemas tampão, aminoácidos e proteínas, carboidratos, lipídios e enzimas. O objetivo do jogo é chegar à casa Bioquim4x, resolvendo tarefas diferentes de quatro categorias ("desenho", "equação incompleta", "palavras proibidas" e "pergunta"), sorteadas a partir de um baralho de cartas [Farkuh e Leite 2014]. Em adição, outros jogos como "Glicotrilha" (figura 3b) e "Jogo metabolismo do glicogênio" (figura 4a) abordam o conteúdo de carboidratos. Enquanto que no primeiro o objetivo dos participantes é chegar ao final com o menor número de cartas na mão, utilizando-as para realizar atividades como produção de energia e quebra de moléculas [Miranda, Herculano, Santos e Soares 2019], no segundo vence quem obtiver uma maior cadeia e números de ramificações em seus tabuleiros individuais, a partir do acúmulo de peças de resíduos de glicoses [Nascimento 2017]. Outro jogo de abordagem um pouco diferente é o ARMET (figura 4b): um recurso didático para o ensino das vias metabólicas que permite visualizar biomoléculas (modo Estudo) e completar um tabuleiro físico com as moléculas estudadas a partir de uma aplicação com uso de realidade aumentada. A partir de dicas geradas na tela, o estudante precisa escolher a molécula correta para receber a próxima dica e completar o tabuleiro [Garzón, Magrini, Costa e Galembeck 2014].

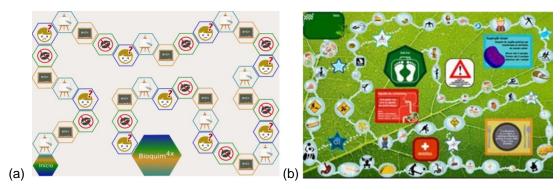


Figura 3. Os jogos Bioquim^{4x} (a) e Glicotrilha (b)

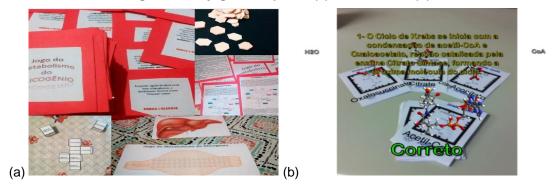


Figura 4. Jogo Metabolismo do glicogênio (a) e ARMET (b)

Uma das razões para se utilizar jogos como ferramenta pedagógica é o seu potencial de engajamento [Dörner, Görbel, Effelsberg e Wiemeyer, 2016]. Dessa forma, de acordo com os trabalhos apresentados (quadro 1), percebe-se que a maioria dos recursos utilizados para ensino da bioquímica são jogos que não fazem uso de ferramentas tecnológicas, à exceção do ARMET e do AminoViewer. É importante ressaltar que o AminoViewer não é considerado um jogo e apenas o ARMET aborda o uso de tecnologias digitais associadas a um material físico, tendo sido desenvolvido para uso individual.

Quadro 1. materiais didáticos para suporte ao ensino de bioquímica

Nome	Tipo de Recurso	Recurso	Uso	Local	Nível de Ensino	
AminoGame 2.0	Físico	Jogo	Coletivo	Escolar	Superior	
AminoViewer	Físico + Digital	Apostila + Aplicativo	Individual	Geral	Superior	
ARMET	Físico + Digital	Jogo	Individual	Geral	Superior	
Bioquim ^{4x}	Físico	Jogo	Coletivo	Escolar	Superior	
Corrida de Enzimas	Físico	Jogo	Coletivo	Escolar	Superior	
Glicotrilha	Físico	Jogo	Coletivo	Escolar	Superior	
Jogo Metabolismo do Glicogênio	Físico	Jogo	Coletivo	Escolar	Superior	

Considerando as características dos trabalhos anteriores ligados ao ensino de bioquímica que utilizaram jogos, verificou-se que apenas um fazia uso de realidade aumentada, mesclando atividades em meio físico e digital. Entretanto, este trabalho não permitia jogar em grupo [Garzón, Magrini, Costa e Galembeck 2014]. Neste sentido, o

ARminoGame surge como uma proposta que une três características importantes, a saber: jogo, utilização da realidade aumentada associada a um material didático físico e destinado a atividades em grupo.

3. Metodologia

A proposta de desenvolvimento do ARminoGame surgiu de uma pesquisa realizada com alunos que haviam utilizado o material didático AminoViewer [Alves, Felipe, Martins and Machado 2019a]. Na pesquisa, os participantes foram convidados a responder a 3 perguntas objetivas e fornecer sugestões em uma questão aberta; caso a resposta da primeira pergunta fosse negativa, apenas a quarta questão seria considerada. As quatro perguntas foram:

- 1) Você gostaria de aprender sobre bioquímica usando um jogo? (S/N)
- 2) Você gostaria que nesse jogo você tivesse colegas ou equipes adversárias? (S/N)
- 3) Você gostaria que esse jogo combinasse um tabuleiro real com realidade aumentada (como no AminoViewer3D)? (S/N)
- 4) Fique à vontade para dar sugestões.

A partir dos resultados da pesquisa, partiu-se para a especificação do jogo e composição do seu documento de design, considerando os elementos da tétrade expandida de Schell (figura 5), específica para serious games [Machado, Costa e Moraes 2018]. A tétrade original destaca 4 elementos básicos, igualmente importantes e considerados essenciais para os jogos: a mecânica, referente aos procedimentos e regras do jogo; a narrativa, representando a sequência de eventos; a estética, envolvendo a aparência e sensações que o jogo transmite; e a tecnologia, correspondente às interações e materiais que tornam o jogo possível, sejam eles físicos ou digitais [Schell 2014]. Para os jogos digitais com conteúdos específicos, também conhecidos como serious games [Dörner, Görbel, Effelsberg e Wiemeyer 2016], a tétrade foi expandida para integrar um quinto elemento, o conteúdo específico, o qual serve como ponto central para desenvolvimento do jogo [Machado, Costa e Moraes 2018].

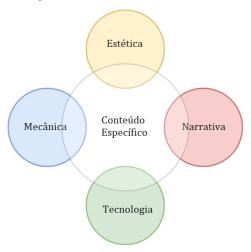


Figura 5. Tétrade expandida de Schell

Deste modo, o jogo foi concebido para auxiliar o ensino de bioquímica estrutural por meio de uma atividade a ser realizada em grupo, integrando a visualização tridimensional de moléculas e um material físico.

4. Resultados

4.1 Pesquisa com Potenciais Usuários

O resultado da pesquisa (quadro 2) com os alunos resultou em vinte e quatro respondentes, todos com respostas afirmativas para as questões 1 e 3. Apenas uma pessoa respondeu "Não" para a segunda afirmativa. A única sugestão recebida solicitava a consideração da atividade para um sistema de recompensa na disciplina sem, entretanto, mencionar que isso deveria ser feito ou controlado pelo jogo. Este resultado permitiu verificar a aceitação do uso de um jogo entre os alunos e, mais claramente, o interesse na combinação deste com a tecnologia da RA, anteriormente experimentada por eles.

Quadro 2. Resultado da Pesquisa

Perguntas		Respostas	
		Não	
Você gostaria de aprender sobre bioquímica usando um jogo?		0	
Você gostaria que nesse jogo você tivesse colegas ou equipes adversárias?		1	
Você gostaria que esse jogo combinasse um tabuleiro real com realidade aumentada (como no AminoViewer3D)?		0	

4.2 Desenvolvimento do ARminoGame

Tendo em vista o propósito pedagógico e educativo, a delimitação e organização do conteúdo foi o elemento central da proposta. Assim, o desenvolvimento do jogo contou com uma equipe multidisciplinar que integrou um docente da área de bioquímica a especialistas no desenvolvimento de jogos educacionais.

O conteúdo de aminoácidos é abordado nas disciplinas de bioquímica. Eles são pequenas moléculas orgânicas com funções diversas nos sistemas biológicos. A estrutura geral destes compostos (figura 6a) é formada por um carbono (C_{α}) ligado a um grupo amina (-NH₃), um grupo carboxila (-COOH) e um átomo de hidrogênio (H), além de uma cadeia lateral (-R) [Nelson e Cox 2014], que pode variar em tamanho, estrutura e carga. Pequenas variações nesses elementos, como a mudança de um átomo, de um grupo químico ou até a orientação espacial (Figura 6a e b), podem alterar significativamente a atividade biológica e a apresentação tridimensional do aminoácido. Tais alterações, por demandarem algum grau de abstração, são, geralmente, identificadas com dificuldade pelos alunos [Tavares e Vannucchi 2016], justificando o desenvolvimento de diferentes metodologias voltadas para o estudo e reforço desse conteúdo.

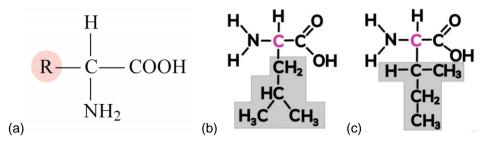


Figura 6. Estrutura geral dos aminoácidos (a), onde R representa a cadeia lateral, e os aminoácidos Leucina (b) e Isoleucina (c) evidenciando as diferenças na cadeia lateral.

O principal requisito do jogo, que recebeu o nome de ARminoGame (AR - uma alusão ao termo *augmented reality*), foi que este material pudesse ser utilizado dentro ou fora de sala de aula, de modo a integrar os alunos em uma atividade coletiva, que combinasse materiais físicos e virtuais para fixação do tema abordado, que envolve estrutura, características e funções biológicas dos aminoácidos, com ênfase na cadeia lateral destes compostos. A tecnologia da realidade aumentada foi considerada no jogo pela sua capacidade de oferecer a visualização com interação tridimensional das moléculas, algo referido pelos alunos como um elemento de dificuldade durante o aprendizado [Alves, Felipe e Machado 2019b].

O ARminoGame foi concebido para mesclar o jogo em dois ambientes diferentes: o ambiente real e o ambiente virtual, considerando a ideia de realidade expandida. Assim, o jogo é composto por:

- 1 tabuleiro (figura 7a);
- 1 conjunto de 4 peões de cores diferentes;
- 2 conjuntos de 20 cartas (figura 7b), contendo cada um deles a estrutura química de um dos 20 aminoácidos conhecidos;
- 1 aplicativo para dispositivos móveis capaz de: gerar perguntas, cronometrar o tempo, aferir as respostas e mostrar a molécula em 3D para interação.

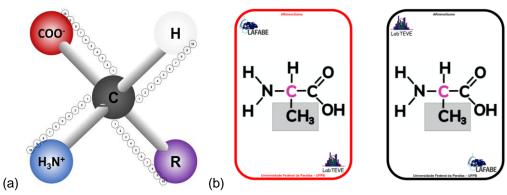


Figura 7. Proposta de leiaute do tabuleiro do ARminoGame (a) e cartas dos aminoácidos (b).

O objetivo do jogo é apresentar uma ou mais cartas carta que sejam reconhecidas como a resposta correta para uma pergunta gerada pelo aplicativo. A partida pode ser disputada de 2 a 4 jogadores ou equipes e vence aquele(a) que conseguir responder corretamente a 10 perguntas antes dos adversários. O elemento sorte é considerado em função das cartas de cada jogador ou grupo, pois este pode não dispor da carta com o aminoácido correspondente à pergunta. As cartas contêm a estrutura bidimensional dos aminoácidos e funcionam como marcadores sobre os quais a molécula é apresentada em RA, sempre que a resposta estiver correta. A figura 8 apresenta o sistema de fluxo do jogo, no qual as formas

marcadas com linhas e pontos tracejados representam as interações realizadas no aplicativo, enquanto que as formas com linha contínua representam as interações realizadas no mundo físico.

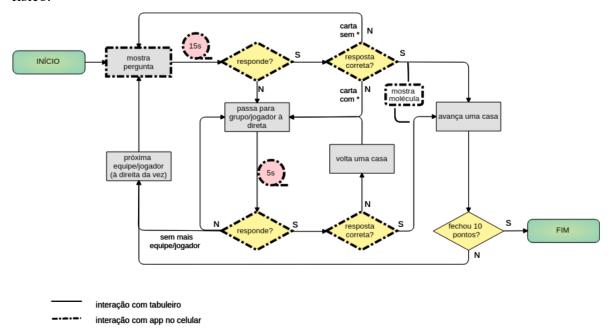


Figura 8. Fluxo de atividades no ARminoGame.

A figura 9 representa o conjunto de telas do aplicativo: inicialmente uma pergunta é mostrada (figura 9a) e em seguida o jogador/equipe opta por responder ou passar sua vez. Caso escolha responder, um participante direciona a câmera do celular para carta escolhida, de modo que o aplicativo irá identificar se a resposta está correta ou não. Caso a resposta esteja correta (figura 9c), a estrutura molecular do aminoácido é apresentada automaticamente em realidade aumentada; do contrário (figura 9b), é apresentada a tela "resposta incorreta" e um novo jogador/equipe ganha o direito de responder à pergunta (figura 9a).

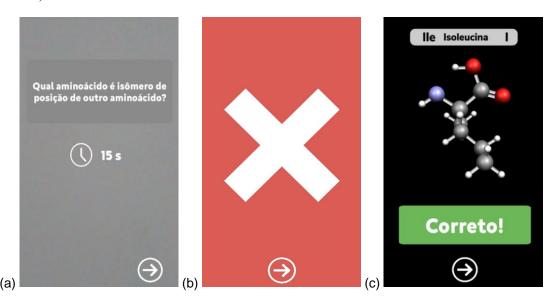


Figura 9. Fluxo de telas do aplicativo do ARminoGame: (a) pergunta, (b) resposta incorreta, e (c) resposta correta com a visualização em realidade aumentada do aminoácido.

De acordo com a proposta e características do jogo, o professor pode exercer diversos papéis na construção do conhecimento do aluno durante a realização da atividade, como revisar conceitos importantes, ressaltar informações relevantes para o conteúdo, contextualizar temas, integrar de forma interdisciplinar e avaliar conteúdos já apresentados [Cunha 2016]. Além disso, ele pode conhecer melhor o grupo de estudantes com quem atua e pode identificar dificuldades individuais e incentivar o aprendizado por parte dos estudantes [Nascimento 2017].

5. Considerações Finais

O ARminoGame é uma proposta de jogo inovadora, que surgiu como uma demanda dos alunos de bioquímica, frente às dificuldades que são intrínsecas a este componente curricular. O desenvolvimento do material leva em consideração a tétrade expandida de Schell, onde a tecnologia, a estética e a mecânica são diretamente relacionadas ao conteúdo. O jogo utilizará elementos físicos de fácil aquisição ou impressão, tais como cartas, peões e tabuleiro, associados a um aplicativo baseado em realidade aumentada, que trabalha a visualização e interação com as estruturas tridimensionais dos aminoácidos, um importante tópico estudado nas disciplinas bioquímica em diversos cursos de ensino superior. O desenvolvimento do jogo ainda demanda a conclusão de parte da estética (design visual) e da mecânica (implementação da base de perguntas), bem como de fases de testes de execução. Após a conclusão destas etapas o jogo será testado com alunos e professores.

Ao propor a combinação de materiais convencionais e tecnológicos à potencialidade dos jogos, espera-se contribuir com a motivação dos alunos no processo de aprendizagem. Neste aspecto, a abordagem proposta também considera a colaboração como elemento de contribuição coletiva do conhecimento.

7. Referências

- Alves, A. F., Felipe, C., Martins, J., Machado, L. S. (2019a) "Uso da Realidade Aumentada como Estratégia para o Ensino de Bioquímica Estrutural". In: Revista Tecnologias na Educação 31: art 7.
- Alves, A. F., Felipe, C., Machado, L. S. (2019b) "Investigação de Novas Estratégias para o Ensino de Bioquímica Estrutural por Meio de Realidade Aumentada". In: Anais do IV CTRL+E. Recife/PE Brazil. DOI: 10.5753/ctrle.2019.8871.
- Andrews, C., Southworth, M., Silva, J. and Silva, J. (2019) "Extended Reality in Medical Practice" In: Current Treatment Options in Cardiovascular Medicine.
- Cunha, M. B. (2012) "Jogos no Ensino de Química: Considerações Teóricas para sua Utilização em Sala de Aula", In: Química Nova na Escola, pages 92-98.
- Dörner, R., Göbel, S., Effelsberg, W., Wiemeyer, J. (2016) Serious Games: Foundations, Concepts and Practice. Springer. 1a ed.
- Farkuh, L. and Leite, C. P. (2014) "Bioquim4x: um jogo didático para rever conceitos de bioquímica". In: Revista de Ensino de Bioquímica. 12. 37-54. DOI: 10.16923/reb.v12i2.342.
- Garzón, J. C. V., Magrini, M. L., Costa, C., Galembeck, E. (2014) "Metodologias inovadoras: Realidade aumentada no ensino de vias metabólicas". In: Revista de Ensino de Bioquímica, pages 128-143.

- Gokhale, A. A. (1995) "Collaborative Learning Enhances Critical Thinking". In: Journal of Technology Education. DOI: 10.21061/jte.v7i1.a.2.
- Machado, L.S., Costa, T. K. L., Moraes, R. M. (2018) "Multidisciplinaridade e o Desenvolvimento de Serious Games e Simuladores para Educação em Saúde". In: Revista Observatório. pages: 149-172. DOI: 10.20873/uft.2447-4266.2018v4n4p149
- Machado, L. S., Moraes, R. M., Nunes, F.L.S., Costa, R. M. E. M. (2011) "Serious games baseados em realidade virtual para educação médica". In: Revista Brasileira de Educação Médica, p: 254-262. DOI: 10.1590/S0100-55022011000200015
- Mestanza, P. E. C. (2017) "O uso de jogos didáticos como abordagens alternativas para o ensino de bioquímica". Pages: 1-56. Monografia Curso de Ciências Biológicas, UFU.
- Miranda, S. G. D., Herculano, M. F., Santos, M. F., Soares, M. H. F. B. (2019) "Elaboração, aplicação e avaliação de um jogo didático para o ensino de conceitos de bioquímica". In: XII ENPEC. Natal/RN Brazil.
- Nascimento, L. S. (2017) "Desenvolvimento de um Jogo no Ensino do Metabolismo de Glicogênio para Estudantes das Disciplinas de Bioquímica Geral II e Bioquímica para Áreas Agrárias da UFRJ". Monografia (Especialização) Curso de Ciências Biológicas, UFRJ.
- Nelson, D. L and Cox, M. M. (2014), Princípios de Bioquímica de Lehninger, Artmed, 6ª Edição.
- Schell, J. (2014), The Art of Game Design: A Book of Lenses, Second Edition. A K Peters/CRC Press. DOI: 10.1201/b17723
- Tavares, H. F. M. and Vanucchi, H. (2016), Aminoácidos: funções e segurança. Aminoácidos. Capítulo I, p. 13-36, International Life Sciences Institute do Brasil.
- Tlili, A., Essalmi, F. and Jemni, M. (2015) "A Mobile Educational Game for Teaching Computer Architecture", In: IEEE 15th International Conference on Advanced Learning Technologies, Hualien, 2015, p. 161-163. DOI: 10.1109/ICALT.2015.133.