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Abstract. Nowadays, online judges are very important to improve programming
skills for education and technology companies. For this reason, there are many
online judges that include large sets of programming challenges. This creates
an information overload problem that affects students due to their lack of ex-
pertise in choosing the correct challenge to solve, resulting in frustration and a
loss of interest in this topic. To solve this scenario, recommender systems ap-
pear, but programming judges have not delved much into it. Consequently, this
research aims to evaluate the performance of six selected collaborative filtering
techniques via a cloud-based software architecture. To validate our experiments
we used real online programming judges like CodeChef and NinjaCoding using
cloud based architecture with Amazon Web Services, evaluated through Fried-
man and Wilcoxon statistical tests. The results indicated that Singular Value
Decomposition is the best model evaluated with RMSE metric and the fastest in
execution time with big datasets.

Resumo. Hoje em dia, os juizes online sdo muito importantes para melhorar as
habilidades de programacdo para empresas de educagdo e tecnologia. Por esse
motivo, existem muitos juizes online que incluem grandes conjuntos de desafios
de programacdo. Isso cria um problema de sobrecarga de informacoes que
afeta os alunos devido a falta de experiéncia em escolher o desafio correto para
resolver, resultando em frustracdo e perda de interesse por esse topico. Para
resolver esse cendrio, surgiram os sistemas de recomendagcdo, mas os juizes
de programagdo ndo se aprofundaram muito nisso. Consequentemente, esta
pesquisa visa avaliar o desempenho de seis técnicas de filtragem colaborativa
selecionadas por meio de uma arquitetura de software baseada em nuvem. Para
validar nossos experimentos, usamos juizes de programagdo online reais como
CodeChef e NinjaCoding usando arquitetura baseada em nuvem com Amazon
Web Services, avaliados por meio de testes estatisticos de Friedman e Wilcoxon.
Os resultados indicaram que a Singular Value Decomposition é o melhor mod-
elo avaliado com a métrica RMSE e o mais rdpido em tempo de execugcdo com
grandes conjuntos de dados.
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1. Introduction

Programming Online Judges (POJs) have great importance in the industry and academia.
In the industry, it allows improved skills such as logical reasoning, data structure man-
agement and the use of different algorithm paradigms for various real life problems. All
these topics are an important part of interviews in Big Tech companies such as Amazon,
Google, Meta and others [McDowell, 2015]. In the education sector, it has been proven
that the use of POJs in Computer Science courses considerably improve student perfor-
mance because it allows students to practice programming and receive instant feedback
on their solutions. This helps them to learn from their mistakes, identify their weaknesses,
and improve their programming skills [Wu et al., 2016]. Also, POJs can be a motivating
factor for students, as it allows them to compete with their peers and see their progress
in real-time. Moreover, students can earn recognition and rewards for their achievements,
which can boost their confidence and encourage them to learn more.

Currently, there is a considerable number of POJs with a large number of chal-
lenges [Cruz et al., 2022, Rahman et al., 2022], which have little clarity about the dif-
ficulties (easy, medium, hard) and categories (math, graph, strings, etc) [Rahman et al.,
2021]. Some examples of these problems can be seen in the POJ UVA which has more
than 2 thousand challenges, and in the SPOJ judge which has more than 6 thousand pro-
gramming problems [Fantozzi and Laura, 2020]. This overload of information generates
frustration and abandonment in students if they do not have someone with experience to
guide them [Pereira et al., 2021, Fantozzi and Laura, 2020, Yera and Martinez, 2017]. In
POls, the classical way to recommend the next challenge is by doing the most solved chal-
lenges [Pereira et al., 2021], this approach lacks customization because it will suggest the
same challenges to all users, regardless of the problems they have solved [Caro-Martinez
and Jimenez-Diaz, 2017].

One of the most effective and common strategies for automatically recommend-
ing is by using collaborative filtering (CF) techniques [Aljunid and Dh, 2020, Bobadilla
et al., 2020]. These techniques are classified into memory-based CF and model-based
CF. In memory-based approaches, recommendations are generated using the preferred in-
formation associated with users. On the other hand, model-based approaches focus on
discovering intermediate knowledge, such as the rules of the association, patterns, and
other ways of knowledge representation, to build a predictive model that is then used to
generate final recommendations [Bhalse and Thakur, 2021, Kluver et al., 2018, Ortega
et al., 2016].

A strong and scalable recommender system that is specifically designed for POJ
has only seldom been the subject of investigations. When creating such systems, it is
important to take into account the distinctive qualities of POJs, such as the enormous
quantity of tasks, the variety of difficulty levels and categories, and the rise in online
users. Although recommender systems have been thoroughly studied in many different
fields, little has been done to apply these methods to the unique difficulties faced by
POlJs. It is necessary to take into account strategies that are appropriate for addressing
the scope and complexity of these systems in order to construct an efficient recommender
system for POJs. For these reasons, in this research we have three main objectives. The
first objective is to propose a cloud architecture that enables us to couple a recommender
system to programming judges using REST APIs. This allows us to take advantage of



cloud computing resources and ensure scalability and availability of the system. The
second is to identify machine and deep learning models that provide significantly better
recommendations, which are validated through statistical tests such as the Friedman test
and Post-hoc tests. Our third is to measure the time of execution of these models, which
helps us evaluate their efficiency and select the most suitable model for large datasets and
real time applications. By achieving these aims, we provide a comprehensive solution
that can help improve the user experience on the Programming Online Judges platform.

This paper’s remaining sections are organized as follows: Section II describes the
background, III the methodology, IV experimentation and results, and finally V conclu-
sions and future works.

2. Background

2.1. Programming Online Judges

Programming Online Judges are web platforms that have a list of problems. These prob-
lems are solved by users sending their solutions (source code) developed in a program-
ming language supported by the platform. The submitted source code is automatically
evaluated and the verdict is given back to the user. The POJs were mainly inspired by
the most prestigious contest in the world, known as ACM-ICPC I where different teams
from around the world compete in-person. This contest lasts 5 hours and the participants
try to solve between 10 to 13 programming problems, the winners being the ones who
solve the most in the shortest time. POJs these days is a very effective tool for learning
programming. Many of them have been established for the purpose of online learning and
competitions [Intisar et al., 2019]. For example, globally, we have POJs like Peking Uni-
versity, Valladolid University, Timus, and Saratov State University [Yera and Martinez,
2017]. Furthermore, in Latin America there are the Caribbean Online Judge, Beecrowd,
OmegaUp and finally in Peru NinjaCoding and Huahcoding are used in different univer-
sities and events [Julca-Mejia et al., 2018].

2.2. Collaborative Recommender Systems in POJ

Recommender systems (RS) provide a collection of recommended elements to alleviate
the search process in an overloaded environment. In the POJ scenario, the recommender
systems that have been developed are based on content and user-item interactions. In
this research we focus on this matrix of interactions where if a programming challenge
has been solved or not, a rating is assigned and a history of each user and item is gener-
ated, allowing us to carry out a collaborative recommendation system. The most relevant
investigations found in our review of the literature are:

Caro-Martinez and Jimenez-Diaz [2017] implement a user-based approach by rep-
resenting them in graphs, using different similarity functions, and eliminating all user
submissions to a problem, except the one last resolved. The results indicate that the se-
lection of the highest-performing similarity metric is crucial to achieving the best results
and that user-based approaches perform better with unweighted metrics.

Yera and Martinez [2017] use a collaborative filtering recommendation approach,
which is composed of three main steps: 1) The construction of the extended matrix of user
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problems, 2) the preprocessing of the extended matrix of user problems for managing
natural noise, and 3) the recommendation of the problems. Experimental results show
that steps 1) and 2) guarantee the formation of a more accurate neighborhood positively
impacting accuracy. For the evaluation of their proposal, they use a dataset from the
POJ Caribbean Online Judge. For the authors to obtain the value K of neighbours, they
tested different values of K where these results conclude that the precision stabilizes for
K > 130 and tends to increase when K increases in the range [90, 130].

Pereira et al. [2021] use a POJ called CodeBench from the Federal University of
Amazonas in Brazil to measure the effort it took to solve a problem using the average
number of attempts, the average number of code lines, average number of variables, al-
gorithmic complexity, number of attempts and other indicators for each problem. Using
cosine similarity as the distance metric, nearest neighbor analysis is used to calculate the
degree of similarity between the recommended problem and the target problem. With the
qualitative Kappa Cohen test, they obtained a result of 0.83, which is considered a good
result. Then, through the statistical test of Bonferroni’s correction, it is shown that the
proposed model maximizes the positive emotional state, while minimizing frustration.

Lara-Cabrera et al. [2020] use a recursive approach to matrix factorization and
deep learning. Its objective is to improve the quality of the recommendations made to
the user using successive training with a recursive matrix factorization approach and deep
learning. The evaluation of the model is carried out through the MAE and Precision
metrics, giving better results than models such as the Probabilistic Matrix Factorization,
Non-Negative Matrix Factorization and SVD++. The author concludes by commenting
that his model breaks the trend of using deep learning with neural networks and applying
it to matrix factorization.

3. Methodology

3.1. Materials and Methods

The datasets used in this research are CodeChef ? and NinjaCoding [Julca-Mejia et al.,
2018]. Codechef contains data between the years 2009 and 2016 with 565,027 user-item
interactions, of which there are 59,322 users and 541 unique problems, and Ninjacoding
contains 1,145 user-item interactions.

The methodology we used is CRISP-DM, which provides phases and establishes a
set of tasks and activities for each phase for data science projects[Martinez-Plumed et al.,
2019].

The experiments were initially carried out on the Google Colaboratory platform
with Python 3 through Jupyter notebooks. Then the Colab notebook was transferred to a
AWS SageMaker notebook to be able to make it available through Amazon AWS compo-
nents, so that the architecture is robust and in a productive environment.

3.2. Recommender System

We tested 6 models such as KNN based in Cosine, Pearson, Mean Squared Difference
(MSD) similarity functions and Probabilistic Matrix Factorization (SVD), Not Negative

Zhttps://www.codechef.com/



Matrix Factorization (NMF) and Deep Matrix Factorization (DeepMF) evaluated through
the RMSE metric.

The mentioned models work with the history of user-item interactions. These
interactions are represented by a matrix M, where each cell M|u, i| represents the eval-
uation result of the programming judge (AC, WA, TLE,CFE). Inspired by [Toledo and
Mota, 2014] we are modeled with the value 1 if the programming challenge was not
solved or tried and 2 if the programming challenge was ever solved.

3.3. Architecture

Our proposed architecture was developed by applying the Architecture Centric Design
Method (ACDM), because any change in requirements is mitigated with the early stage
of rapid prototyping adoption. Therefore, it can be used to establish high fidelity estimates
and track the progress of any project construction [Devadiga, 2017].

The POJ and the recommender system communicate through REST APIS, where
the /interactions API provides the recommendation system with the list of verdicts in
the POJ and the recommendations/ < idUser > API recommends the suggested items
for the :dU ser to be with the active session.

In this research, we have tested with the Amazon cloud provider, since it is im-
portant that it can be scaled horizontally and vertically, in addition to providing easily
integrated components to carry out the recommendation system. This system is available
through the Amazon SageMaker, Notebooks, S3, Lambda, Api Gateway and Single Sign
One. We use the Api Gateway to manage the recommendations/ < idUser > API
with the lambda, which allows us to expose the sagemaker model via the boto3 library
and Sagemaker allows training and the deployment of models. The data are consumed
from POJ through the python requests library and the test and training sets are saved in
S3 files. Finally, Single Sign One allows multiple access for the researchers with a single
account enabling them to develop and test the architecture using several AWS services.

4. Experimentation and Results

4.1. Models and parameterization

The models used in this research are those based on KNN and Matrix Factorization. With
KNN we have Cosine, Pearson and Mean Squared Difference (MSD) similarity and the
models based on Matrix Factorization are Singular Value Descomposition (SVD), Non-
Negative Matrix Factorization (NMF) and DeepMF that blends matrix factorization with
deep learning.

a. KNN models based

Number of Minimum number of

Model neighbors neighbors User based
KNN models for Codechef 30 1 True
KNN models for NinjaCoding 5 1 True

Table 1. Cosine, Pearson and MSD models parameters

b. Matrix Factorization models based



Model Number of factors Number of epochs Regularizer Learning rate

SVD for Codechef 10 20 0.02 0.005
SVD for NinjaCoding 20 50 0.1 0.02

Table 2. SVD model parameters

Learning  Learning

Model Number of factors Number of epochs  Regularizer .
rate users rate items
NMF for CodeChef 50 50 0.02 0.005 0.005
NMF for NinjaCoding 15 20 0.1 0.02 0.001
Table 3. NMF model parameters
Latent Regularizer Number
Model dimensions lambda Number of epochs of layers
DeepMF for CodeChef 50 0.02 10 4
DeepMF for NinjaCoding 15 0.1 10 4

Table 4. DeepMF model parameters

4.2. Results and Discuss

The RMSE results obtained from different datasets for models Cosine, DeepMF, MSD,
NMEF, Pearson, and SVD have been presented in Table 5. The datasets used for evaluation
include different samples of CodeChef and NinjaCoding. The results presented indicate
that the DeepMF model improves its predictions as the amount of data increases. This
suggests that DeepMF is a robust and reliable method for handling large datasets. Another
pattern is that the Cosine, Pearson, and MSD models do not appear to differ from each
other when dealing with small datasets. However, to validate if these differences are
significant we need to validate through statistical tests.

Dataset Cosine | Pearson | MSD SVD | NMF | DeepMF
CodeChef-30k | 0.4261 | 0.4294 | 0.4413 | 0.4123 | 0.4603 | 0,4348
CodeChef-20k | 0.4242 | 0.4219 | 0.4329 | 0.4122 | 0.4588 | 0,4346
CodeChef-15k | 0.4184 | 0.4166 | 0.4249 | 0.409 | 0.453 | 0,4342
CodeChef-10k | 0.4222 | 0.4187 | 0.4278 | 0.4124 | 0.4591 | 0,4295
CodeChef-5k | 0.4165 | 0.4175 | 0.4175 | 0.4175 | 0.4478 | 0.4399
CodeChef-4k | 0.4173 | 0.4176 | 0.4191 | 0.4179 | 0.4389 | 0.4347
CodeChef-3k | 0.4095 | 0.4103 | 0.4117 | 0.4064 | 0.4275 | 0.4422
CodeChef-2k | 0.4063 | 0.4049 | 0.4067 | 0.4066 | 0.4138 | 0.4342
CodeChef-1k | 0.3938 | 0.3969 | 0.3969 | 0.3944 | 0.4064 | 0.4319
CodeChef-500 | 0.4368 | 0.4368 | 0.4368 | 0.4342 | 0.4450 | 0.4368
CodeChef-400 | 0.4240 | 0.4240 | 0.4240 | 0.4250 | 0.4271 | 0.4641
CodeChef-300 | 0.4380 | 0.4380 | 0.4380 | 0.4353 | 0.4438 | 0.4349
CodeChef-200 | 0.4312 | 0.4312 | 0.4312 | 0.4309 | 0.4392 | 0.4932
CodeChef-100 | 0.4132 | 0.4132 | 0.4132 | 0.4166 | 0.4094 | 0.4917
NinjaCoding | 0.5083 | 0.4827 | 0.4996 | 0.4534 | 0.4892 | 0.4947

Table 5. RMSE results of each dataset and model

According to the Shapiro-Wilks test results in Table 6, the distribution of the Table



Model  p-value
Cosine  0.00053
DeepMF 0.00017
MSD  0.00493
NMF  0.68700
Pearson 0.01150
SVD  0.43300

Table 6. Shapiro-Wilks test of RMSE results

5 data is not balanced. This is particularly evident in the values obtained for C'osine and
DeepM F', which are 0.00053 and 0.00017, respectively, indicating that these two models
have the most significantly non-normal distributions. In contrast, the Shapiro Wilks test
statistic for NM F' is 0.68700, suggesting that its distribution is the closest to normal.
The values obtained for Pearson and SV D are also different, with 0.01150 and 0.43300,
respectively. This indicates that the distribution of these methods is not balanced, and this
is further supported by the visual evidence presented in Figure 1. It clearly shows that the
data points deviate significantly from the straight line, indicating that the distribution of
the data for these methods is also not normal.

Cosine DeepMF

0.48+

0.40+
L

NMF Pearson SVD

RMSE

0.48

0.44+

L)
0.404

2 0 1 22 1 0 1 22 0 1 2

Figure 1. Q-Q plot showing the normal distribution of RMSE results

As the the Shapiro-Wilks test demonstrated that the results were not balanced, we
use a non-parametric test (Friedman test) to know if there are significant differences. The
result of the Friedman test showed that the p-value was equal to 0.000000275, suggesting
that there is extremely strong evidence against the null hypothesis. This indicates that
at least one of the model pairs differs significantly from the rest. To identify the pairs
of models that differ significantly, a post-hoc Wilcoxon test with Bonferroni adjustment
was executed and the results are presented in Table 7. These results show that pairs
DeepM F — SV D, NMF — Pearson,and NMF — SV D are significantly different, in



contrast to other pairs of models.

Models Comparison  p-value p-value-adj significance

Cosine - DeepMF 0.004 0.058 ns
Cosine - MSD 0.059 0.888 ns
Cosine - NMF 0.003 0.05 ns
Cosine - Pearson 0.541 1 ns
Cosine - SVD 0.088 1 ns
DeepMF - MSD 0.012 0.18 ns
DeepMF - NMF 0.639 1 ns
DeepMF - Pearson 0.001 0.021 *
DeepMF - SVD 0.000122 0.002 **
MSD - NMF 0.003 0.039 *
MSD - Pearson 0.014 0.214 ns
MSD - SVD 0.01 0.152 ns
NMF - Pearson 0.000183 0.003 **
NMF - SVD 0.000305 0.005 w3
Pearson - SVD 0.024 0.357 ns

Table 7. Wilcoxon test with Bonferroni adjustment

When evaluating the efficiency of machine and deep learning models, it is im-
portant to consider not only their predictive accuracy but also their execution time. This
becomes particularly relevant when dealing with large datasets or when quick responses
are needed in real-time applications. For this reason, we ran 20 thousand interactions to
measure the time of execution (presented in Figure 2). As the figure shows, the Matrix
factorization models (SVD, NMF, DeepMF) were found to be faster than the K-Nearest
Neighbors models (MSD, Cosine, Pearson). This difference in execution time can be at-
tributed to the fact that NMF, DeepMF and SVD reduce the dimensionality of the data,
making it easier and faster to find patterns and make predictions. In contrast, KNN relies
on the original high-dimensional data, which can be slow to process.

Regarding the execution time of each model according to CPU and Memory, it
does not differ much. Therefore, if we use large, xlarge or 2zlarge for any model, the
time for each is almost the same. SageMaker instance types such as ml.t3.medium and
ml.t3.large do not support 10000 and 30000 interactions, due to their limited memory
of 4GiB and 8GiB. Nevertheless, the 30000 interactions go well on all models with
instances larger than m/l.t3.xlarge, which have memory more than 16GiB.

5. Conclusions and future works

This research offers an architecture powered by cloud computing that supports machine
and deep learning models, to recommend programming problems to the judges online.
As a result, we suggest a cloud-based architecture to choose the best recommended algo-
rithm with large datasets or when quick responses are needed. In addition, we explored
six collaborative filtering-based algorithms for recommender systems and after conduct-
ing statistical tests and evaluating the execution time of these models, we found that the
SVD model was the best-performing one in terms of both statistical significance and ex-
perimental evaluation. One of the limitations we found in this work is related to the
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Figure 2. Time execution in seconds for each model

strategy applied by Toledo and Mota [2014], which limits us to use models based on the
Cosine similarity function, because divisions by zero are not possible. Thereby, we use 1
instead of 0 and 2 for the other cases. Moreover, the user_id class in the interaction matrix
must be transformed to an integer type so that models based on non-negative matrix fac-
torization can be used. Finally, our experimental evaluation shows that more data requires
more CPU and Memory capacity, which can be easily scaled across different Amazon
SageMaker instances so that machine and deep learning models can be executed.

Our future work will be focused on using a content based recommendation approach in
another lambda, to process the data and choose the best algorithm. Also, another di-
rection will be to explore more models and their combination and comparison with the
approaches proposed in this work.
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