
Motivação e Aprendizagem em Programação Orientada a
Objetos: Efeitos do Uso de Material Instrucional Baseado em

Metodologias Ativas
Tallys A. D. Santos1, Fabrı́cio V. A. Guerra1, Flavius L. Gorgônio1

1Laboratório de Inteligência Computacional Aplicada a Negócios (LABICAN)
Departamento de Computação e Tecnologia (DCT)

Universidade Federal do Rio Grande do Norte (UFRN)
Rua Joaquim Gregório, 296 – 59.300-000 – Caicó – RN – Brasil

tallys.santos.017@ufrn.edu.br
{fabricio.guerra, flavius.gorgonio}@ufrn.br

Abstract. This article examines the impact of innovative instructional materi-
als, grounded in constructionist, narrative, and self-regulated learning tech-
niques, on the motivation and performance of university students in Object-
Oriented Programming. The proposed instructional material is organized into
units that progressively develop specific aspects of programming through incre-
mental construction centered on a single application. A case study was con-
ducted with 41 students from a regular third-semester course at a university in
Brazil. After the course, data were collected through a questionnaire covering
various motivational and performance aspects. The results indicated signifi-
cant improvements in students’ self-assessment of their skills as programmers,
in their enjoyment of programming practice, and in intrinsic motivation, re-
flected by increased time dedicated to programming and greater autonomy in
learning. Notably, students who were initially less motivated showed greater
improvement in their perception of their skills as programmers.

Resumo. Este artigo investiga o efeito de um material didático inovador,
baseado em técnicas construcionistas, narrativas e de autorregulação do
aprendizado, na motivação e no desempenho de estudantes universitários em
Programação Orientada a Objetos. O material instrucional proposto é organi-
zado em unidades que vão desenvolvendo progressivamente aspectos especı́ficos
da programação por meio da construção incremental centrada em um mesmo
aplicativo. Um estudo de caso foi conduzido com 41 estudantes de uma dis-
ciplina regular do terceiro semestre em uma universidade brasileira. Após o
curso, foram coletados dados através de um questionário abrangendo diversos
aspectos motivacionais e de desempenho. Os resultados indicaram melhorias
significativas na autoavaliação das habilidades dos estudantes como progra-
madores, no gosto pela prática da programação e na motivação intrı́nseca, re-
fletida pelo aumento no tempo dedicado à programação e maior autonomia no
aprendizado. Notavelmente, estudantes inicialmente menos motivados tiveram
maior evolução na percepção de suas habilidades enquanto programadores.

1. Introdução
Os altos ı́ndices de desistência e reprovação em disciplinas introdutórias de programação
têm sido problemas persistentes nos cursos superiores de computação. Pesquisas recen-

tes têm apontado dificuldades técnicas na aprendizagem de programação como um fa-
tor determinante desses fenômenos, resultando em elevadas taxas de abandono e baixo
desempenho acadêmico de estudantes em diversas universidades [Obaido et al. 2023,
Rabelo et al. 2018]. No contexto da Programação Orientada a Objetos (POO), os pro-
blemas de ensino-aprendizagem persistem ou até se agravam, na medida em que temas
de mais alto nı́vel de abstração entram em cena[Gutiérrez et al. 2022]. Tais dificuldades
têm efeitos negativos amplos, afetando não apenas o percurso acadêmico individual, mas
também causando prejuı́zos institucionais e sociais decorrentes da formação incompleta
ou inadequada de futuros profissionais da área.

Nesse contexto, a motivação dos estudantes desempenha papel crucial na apren-
dizagem eficaz de programação. Estudos têm demonstrado que a percepção de prazer e
utilidade do conteúdo ensinado influencia diretamente o desempenho acadêmico e o inte-
resse dos estudantes em disciplinas de programação [Zataraı́n-Cabada et al. 2018]. Além
disso, a motivação intrı́nseca, caracterizada pela curiosidade natural e pelo desejo genuı́no
de aprender, destaca-se como um dos principais fatores que impulsionam o engajamento
e o sucesso acadêmico dos estudantes de computação [Farooq and Anwar 2024]. Em
contrapartida, a ausência desses elementos motivacionais pode resultar em baixo compro-
metimento dos alunos e, consequentemente, baixo desempenho acadêmico.

Diversas pesquisas têm indicado que o uso de metodologias inovadoras ou no-
vos materiais didáticos pode impactar positivamente a motivação e o aprendizado em
programação. Por exemplo, estratégias que promovem a aprendizagem autorregu-
lada têm mostrado resultados promissores, aumentando significativamente o desem-
penho acadêmico e o engajamento estudantil, em comparação a métodos tradicionais
[Öztürk 2021]. Da mesma forma, a adoção de abordagens como a programação baseada
em ambientes visuais, a exemplo do Scratch, demonstrou melhorias tanto na motivação
quanto no desempenho em exames de programação [Wen et al. 2023].

O presente estudo propôs diretrizes para a elaboração e a utilização de um material
didático, centrado em metodologias ativas de ensino-aprendizagem [Paiva et al. 2016],
para o ensino de programação orientada a objetos, acompanhado por mudanças meto-
dológicas na condução das aulas, visando responder às seguintes questões de pesquisa:

Questão de Pesquisa 1 (QP1): As mudanças propostas afetaram a motivação dos estu-
dantes em relação à programação?

Questão de Pesquisa 2 (QP2): As mudanças propostas afetaram o desempenho dos es-
tudantes em relação à programação?

2. Fundamentação Teórica

Esta seção tem por objetivo deixar explı́citas as diretrizes, as bases cientı́ficas que ori-
entaram a elaboração do material didático proposto1, bem como a formatação das aulas
desenvolvidas no presente estudo.

O material didático foi concebido tendo por base mais fundamental o Cons-
trucionismo [Papert and Harel 1991], enfatizando o aprendizado através da construção
ativa de um mesmo aplicativo de software, que adquire mais e mais funcionalidades,

1https://encurtador.com.br/4404n.

ao longo do tempo, conforme os estudantes avançam no conteúdo. Nesse sentido,
cada segmento do material, denominado receita, combina instruções claras, explicações
teóricas, imagens ilustrativas ou animações e exercı́cios práticos, sempre girando em
torno da construção e evolução do aplicativo em pauta. A ideia é a de que, durante a
implementação das receitas, os discentes aprendam conceitos fundamentais de POO du-
rante a construção incremental do aplicativo. Além disso, todas as receitas envolvem
interfaces gráficas, no intuito de aumentar o engajamento e o desempenho estudantil
[Hosseini et al. 2020, Koren 2024, Hany et al. 2023].

Por fim, o material utiliza técnicas narrativas como diálogos informais e ganchos
“dramáticos” entre as receitas, criando uma continuidade natural e despertando maior in-
teresse e motivação dos estudantes [Mou 2024]. Desta forma, cada receita produz, em
seu desenvolvimento, a solução de um problema, mas o texto é direcionado de forma
que mesmo essa solução encontrada apresente, em si, um defeito claro. Esse defeito será
endereçado da receita seguinte e a ferramenta para sua resolução será algum assunto da
Orientação a Objetos. Tomemos um exemplo para deixar mais claro esse ponto: numa
receita em que se introduz no aplicativo uma tabela passı́vel de ordenação por diver-
sas colunas, percebe-se, na solução encontrada, a repetição de um mesmo algoritmo de
ordenação por diversas vezes, mudando apenas o critério de ordenação entre as repetições.
A solução para esse problema, na receita seguinte, se dará através do uso de polimorfismo,
que constitui, em si, o objeto de estudo da receita. Assim, o assunto polimorfismo não vai
ser utilizado como uma forma genérica e fora de contexto de poder representar “Gato” e
“Cachorro” numa mesma classe, mais abstrata, “Animal”, mas sim como uma ferramenta
para resolver um problema de Engenharia de Software (replicação de código) identificado
num aplicativo em desenvolvimento.

Já no que diz respeito às aulas, elas foram estruturadas em três etapas distintas,
sempre centradas nas receitas. Inicialmente, o professor realiza uma exposição oral curta,
com duração aproximada de 20 minutos, introduzindo o tema especı́fico da receita e ex-
plicando brevemente o aplicativo a ser construı́do pelos estudantes. Segue-se, então, um
debate interativo no qual os estudantes discutem dúvidas e aspectos práticos relacionados
à explicação inicial, etapa baseada na importância do diálogo construtivo e interativo para
potencializar o aprendizado e a motivação [Tao and Chen 2024, Setiawati 2012]. Essa
etapa se entende enquanto houver interação dos estudantes nas discussões.

Finalizado o debate, segue-se para a implementação prática das receitas e
exercı́cios, momento em que o professor atua de forma mais próxima aos estudantes,
oferecendo orientações personalizadas conforme as demandas individuais surgem, o que
melhora significativamente a proximidade emocional e acadêmica entre professor e aluno,
o que, por sua vez, pode influenciar motivação aprendizado [Christophel 1990]. Depen-
dendo da complexidade do assunto abordado e do desempenho da turma na resolução
das tarefas inerentes à receita, essa etapa pode estender-se por 2 ou 3 aulas. Ao final da
implementação, promove-se outro debate, desta vez focado nas limitações identificadas
nas soluções desenvolvidas, motivando organicamente o conteúdo que será abordado na
receita subsequente. Esse debate funciona como um gancho narrativo (expediente co-
mum em livros, novelas e seriados), gerando expectativa para “o próximo episódio”, que
é justamente a implementação da receita seguinte.

Durante todas as atividades, os estudantes foram encorajados a desenvolver um

aprendizado autorregulado, trabalhando em ritmo próprio e autônomo, no intuito de in-
fluenciar positivamente seu desempenho [Gill and Holton 2006]. O conjunto das receitas
cobriu os principais tópicos clássicos de POO, como classes, encapsulamento, herança e
polimorfismo, e também abordou tópicos contemporâneos essenciais, tais como gerência
de estados, programação assı́ncrona, programação declarativa e funções de alta ordem.

Ao todo, foram produzidas 15 receitas didáticas para desenvolvimento ao longo
das aulas. Além disso, foi proposto um mini-projeto complementar para tratar tópicos
residuais que não se encaixavam organicamente na narrativa principal das receitas e para
dar aos estudantes uma experiência fora do contexto do aplicativo desenvolvido.

3. Metodologia

Foi planejado e executado um estudo de caso com o objetivo de avaliar a solução pro-
posta em um contexto real de ensino e aprendizado. Esse estudo foi realizado na disci-
plina de Programação Orientada a Objetos, ministrada no curso superior de Sistemas de
Informação da UFRN, Campus Caicó. Todos os estudantes participantes possuı́am, no
mı́nimo, um ano de experiência prévia com programação procedural. A disciplina foi
oferecida regularmente, com 38 encontros de 1h40m cada, às segundas e quartas-feiras,
distribuı́dos em cerca de 5 meses, no perı́odo da tarde, respeitando todas as avaliações
institucionais exigidas e toda a ementa e bibliografia regulares da disciplina.

Ao todo, 41 estudantes estavam aptos a participar do estudo. Houve a desistência
de dois deles, sem justificativas formais: um não frequentou nenhuma aula e o outro
desistiu durante o primeiro mês de atividades. As aulas e o material didático utilizado
seguiram rigorosamente as diretrizes descritas na seção anterior.

Ao término da disciplina, os 39 estudantes que permaneceram até o final responde-
ram a um formulário que abordava diversos aspectos relacionados à percepção individual
deles sobre o próprio desempenho em programação e sobre aspectos motivacionais. O
formulário continha duas questões de natureza quantitativa, voltadas à autoavaliação en-
quanto programador e ao gosto pela programação. Em ambas as questões, foram coletadas
métricas referentes aos momentos anterior e posterior à realização da disciplina.

Além disso, o formulário continha 9 itens qualitativos que abordavam aspectos
motivacionais. Esses itens do formulário foram propositivos, solicitando que os estudan-
tes se posicionassem em relação a afirmações especı́ficas. As respostas foram coletadas
por meio de uma escala Likert de cinco opções, sendo uma neutra, duas positivas de dife-
rentes intensidades (“concordo” e “concordo fortemente”) e duas negativas também com
variação de intensidade (“discordo” e “discordo fortemente”). Os enunciados de cada um
dos itens qualitativos do formulário são debatidos na seção seguinte, na medida em que
reportamos os resultados do trabalho.

4. Resultados

A partir dos dados coletados no estudo de caso, foram testadas diversas hipóteses, no
intuito de responder às questões de pesquisa através de análises estatı́sticas que lancem
projeções inferenciais para além dos participantes do estudo. Nesse sentido, organizamos
as descrições dos dados coletados, as hipóteses e os testes estatı́sticos de acordo com cada
questão de pesquisa.

4.1. QP1 – As mudanças propostas afetaram a motivação dos estudantes em relação
à programação?

Inicialmente, analisaremos uma questão numérica, respondida pelos estudantes, quantifi-
cando, numa escala de 1 a 5, seu gosto pela programação. Foram coletadas as métricas
sobre o gosto por programação antes e depois do estudo de caso e foi testada a hipótese
nula de que a média dos valores antes e depois seriam iguais.

Gosto por Programação (antes vs. depois): Não havendo normalidade em ambos os
conjuntos de métricas, aplicou-se o teste Wilcoxon Signed-Rank (pareado). A hipótese
alternativa é a de que a média das métricas representando o gosto pela programação após
o estudo de caso foi maior do que a média antes. Os valores resultantes são descritos a
seguir:

W = 18,5; p = 5,76× 10−4; r = 0,7221 (grande).

Conclui-se, portanto, que o gosto por programação aumentou significativamente,
com tamanho de efeito grande (vide o tamanho de efeito r), o que já é um indı́cio forte de
que a motivação, como um todo, aumentou. Aprofundaremos as análises para entender
melhor algumas perspectivas dessa motivação com os itens qualitativos.

Itens qualitativos de motivação: Ao todo, 9 itens qualitativos foram respondidos pelos
estudantes. Para avaliar a confiabilidade e a consistência interna desses itens, foi utilizado
o coeficiente Cronbach’s α, que indica o quanto os itens de um questionário estão corre-
lacionados entre si e se, juntos, eles realmente medem o mesmo conceito ou construto. O
alfa de Cronbach é definido como:

α =
N · c̄

v̄ + (N − 1) · c̄

onde, N representa o número de itens do questionário, c̄ representa a covariância média
entre os itens e v̄ é a variância média dos itens. Para o questionário avaliado, obteve-se:

α = 0,74.

Esse valor indica consistência interna aceitável (maior que 0, 7) para os itens qualitativos,
viabilizando as análises que se seguem.

Os itens de 1 a 9 contaram com respostas qualitativas sobre aspectos motiva-
cionais. Para proceder com as análises, as respostas foram codificadas da seguinte
forma: 1 = “discordo fortemente”; 2 = “discordo”; 3 = “neutro”; 4 = “concordo”; 5 =
“concordo fortemente”.

Foram calculadas as médias das respostas em cada item e o respectivo intervalo de
confiança, com o objetivo de estimar a dispersão das médias amostrais. A Tabela 1 apre-
senta, para cada item, sua descrição, a média de suas respostas x̄ e o respectivo intervalo
de confiança de 95% (x̄± t0,975 · SEM).

A Figura 1 exibe essas médias junto aos respectivos intervalos de confiança, com
a linha tracejada em x = 3, marcando o ponto neutro. Podemos perceber que todas as
projeções inferenciais têm seu limite inferior acima do valor de neutralidade (3), que está
em destaque. O item com menos aprovação diz respeito ao formato textual, mas ainda
assim está acima do valor de neutralidade. Ademais, 3 itens se destacam com valores do

Tabela 1. Avaliação dos itens qualitativos das questões 1 a 9
Item x̄ IC 95%
1 Meu tempo programando aumentou com a disciplina de POO 3,7949 [3,5696 – 4,0202]
2 Achei mais motivante estudar programação nesse formato 4,1026 [3,7802 – 4,4249]
3 Seria interessante testar as mudanças em disciplinas anteriores de programação 3,8974 [3,5927 – 4,2022]
4 O formato textual do material utilizado é melhor do que vı́deo-aulas 3,5897 [3,1776 – 4,0019]
5 O formato das aulas foi mais interessante para meu aprendizado 4,3846 [4,0815 – 4,6878]
6 Meu papel mais ativo nas aulas auxiliou no meu aprendizado 4,1026 [3,8796 – 4,3257]
7 Eu me senti confortável em seguir o conteúdo no meu próprio ritmo 4,5385 [4,3439 – 4,7330]
8 O formato da disciplina ajuda a quem perder aula ou estiver com dificuldade 4,6154 [4,4241 – 4,8067]
9 Durante a disciplina, melhorei minha habilidade de auto-aprendizado 4,1282 [3,8796 – 4,3769]

limite inferior acima do valor de aprovação (4), que são os Itens 6, 7 e 8. Esses inter-
valos de confiança indicam que, caso a proposta seja testada com uma outra amostra de
estudantes com as mesmas caracterı́sticas, em 95% dos casos a média estará acima da neu-
tralidade para todos os itens avaliados. Esses resultados qualitativos, aliados ao tamanho
de efeito grande observado na questão quantitativa de motivação, nos permitem respon-
der afirmativamente à questão QP1: As mudanças propostas afetaram positivamente a
motivação dos estudantes em relação à programação.

Figura 1. Médias ± IC 95% para os Itens 1–9 (Escala Likert).

Podemos perceber que todas as projeções inferenciais têm seu limite inferior
acima do valor de neutralidade (3), que está em destaque na Figura 1. O item com me-
nos aprovação diz respeito ao formato textual, mas ainda assim está acima do valor de
neutralidade. Ademais, 3 itens se destacam com valores do limite inferior acima do valor
de aprovação (4), que são os Itens 5, 7 e 8. Esses intervalos de confiança indicam que,
caso a proposta seja testada com uma outra amostra de estudantes com as mesmas ca-
racterı́sticas, em 95% dos casos a média estará acima da neutralidade para todos os itens
avaliados. Esses resultados qualitativos, aliados ao tamanho de efeito grande observado
na questão quantitativa de motivação, nos permitem responder afirmativamente à questão
QP1: As mudanças propostas afetaram positivamente a motivação dos estudantes em
relação à programação.

4.2. QP2 – As mudanças propostas afetaram o desempenho dos estudantes em
relação à programação?

Os estudantes responderam a outra questão numérica, quantificando, numa escala de 1
a 10 sua autoavaliação de desempenho enquanto programadores. Foram coletadas as

métricas sobre a autoavaliação que eles tinham de si antes e depois de participarem do
estudo de caso e foi testada a hipótese nula de que as médias dos valores antes e depois
seriam iguais.

Nota Autoavaliativa de Programação (antes vs. depois de participar do estudo): Não
havendo normalidade em ambos os conjuntos de métricas, aplicou-se o teste Wilcoxon
Signed-Rank (pareado). A hipótese alternativa é a de que a média das métricas represen-
tando o desempenho de programação após o estudo de caso foi maior do que a média
antes. Os valores resultantes são descritos a seguir:

W = 5,5; p = 2,03× 10−7; r = 0,8575 (muito grande).

Isso demonstra um aumento significativo e de magnitude grande (vide o tamanho de efeito
r) na autoavaliação do estudante em relação ao desenvolvimento de suas habilidades em
programação. Muito mais que isso, o teste indica que se a proposta for aplicada a amos-
tras com as mesmas caracterı́sticas, esse aumento também será verificado. Assim, res-
pondemos também a questão QP2: As mudanças propostas afetaram positivamente o
desempenho dos estudantes em relação à programação, e em magnitude grande.

4.3. Agrupamento por Atitude Prévia

Em face dos resultados positivos, e em especial do Item 8, que diz respeito ao formato da
proposta ajudar estudantes com dificuldade, ter obtido a maior aprovação geral entre todos
os itens qualitativos, uma análise post-hoc foi realizada. O intuito é o de avaliar se o estudo
beneficiou igualmente estudantes com diferentes atitudes prévias em relação ao gosto pela
programação. Os resultados correntes já nos dão um efeito geral de que os estudantes
evoluı́ram na sua própria autoavaliação de desempenho como programadores. Queremos,
agora, verificar se os estudantes que já gostavam de programar (os que responderam 4
ou 5 para a questão de gosto por programação (antes) evoluı́ram nas mesmas proporções
que os demais (os que responderam 1, 2 ou 3).

Diferença em nota de programação (∆ = depois – antes)

• Média de ∆ no grupo que já gostava de programar = 1,571.
• Média de ∆ no grupo complementar = 2,500 .
• Teste de Mann–Whitney (não pareado):

U = 108; p = 0,0193.

Portanto, a partir do valor-p significativo (p < 0,05), é possı́vel concluir que o
grupo complementar, o dos estudantes que, antes de iniciar o estudo, não apresentavam
uma atitude de afetividade em relação à programação, teve aumento ainda maior em sua
nota autoavaliativa de programação, indicando que a intervenção foi particularmente efi-
caz para estudantes com essas caracterı́sticas.

5. Discussão

Os resultados relacionados ao aprimoramento da motivação e desempenho na aprendiza-
gem de programação têm mostrado uma variedade considerável de desfechos, refletindo
a complexidade do processo educacional e as particularidades metodológicas envolvidas.

Alguns estudos não obtiveram resultados significativos com abordagens inova-
doras ou alternativas de ensino. Por exemplo, a utilização de badges digitais como
forma de aumentar a motivação intrı́nseca dos estudantes não apresentou resultados efe-
tivos em contextos especı́ficos de programação introdutória [Facey-Shaw et al. 2019].
Da mesma forma, revisões sobre o uso de técnicas colaborativas, como a programação
em pares, apontam que falhas no design instrucional podem comprometer o desenvolvi-
mento de habilidades e a motivação, resultando em efeitos inexpressivos ou até negativos
[Hawlitschek et al. 2022]. Esses resultados mistos indicam que a eficácia de abordagens
pedagógicas alternativas é sensı́vel ao contexto e à qualidade do projeto instrucional.

Por outro lado, diversos estudos demonstram efeitos positivos consideráveis em
relação à motivação e desempenho acadêmico quando abordagens cuidadosamente pla-
nejadas são implementadas. Estudos utilizando a instrução incremental em habilidades
básicas de programação têm apresentado melhorias significativas na conclusão das ativi-
dades práticas, redução de erros frequentes e melhor compreensão dos conceitos envolvi-
dos [Xie et al. 2019].

Resultados semelhantes foram observados em pesquisas envolvendo ambientes
visuais e métodos baseados em blocos de programação. Embora o efeito sobre ha-
bilidades diretas de programação e pensamento computacional tenha sido moderado,
tais métodos produziram grandes melhorias nas habilidades de resolução de problemas
[Chiu and Tsuei 2020]. Além disso, abordagens instrucionais baseadas em linguagens
visuais, como o Scratch, quando complementadas por sistemas de recomendação adap-
tativos, elevaram substancialmente as taxas de aprovação em comparação aos métodos
tradicionais [Cárdenas-Cobo et al. 2020].

Os resultados obtidos no presente estudo alinham-se com as evidências po-
sitivas apontadas na literatura recente. Especificamente, a melhoria observada na
autoavaliação dos estudantes quanto às habilidades de programação e o gosto pela prática
da programação refletem um aumento notável na motivação intrı́nseca, fenômeno consis-
tente com resultados encontrados por outros pesquisadores que utilizaram metodologias
instrucionais adaptativas e visuais. Destaca-se, também, o impacto positivo observado
na percepção dos estudantes sobre sua capacidade de aprender de forma autônoma, refle-
tindo uma melhoria significativa em aspectos motivacionais relacionados à autonomia no
processo de aprendizado.

Um achado particularmente relevante deste estudo refere-se à melhoria mais acen-
tuada na autoavaliação das habilidades de programação entre estudantes que inicialmente
não possuı́am uma atitude positiva em relação à programação. Esse resultado sugere que
estratégias pedagógicas que priorizam aspectos visuais, práticos e incrementais podem
ser especialmente eficazes para engajar e motivar estudantes menos predispostos ou que
experimentaram dificuldades anteriores no aprendizado da programação.

Embora os resultados do estudo atual sejam bastante promissores, é importante
salientar que as conclusões devem ser interpretadas com cautela devido às limitações
intrı́nsecas ao desenho do estudo de caso adotado. A validação dessas descobertas exi-
girá estudos futuros conduzidos com amostras maiores, em contextos variados e, prefe-
rencialmente, por meio de experimentos randomizados. Ainda assim, considerando as
limitações metodológicas, as projeções inferenciais derivadas dos resultados observados

e as comparações com a literatura existente sugerem que o formato do material instru-
cional proposto possui grande potencial para influenciar positivamente a motivação e o
desempenho de estudantes de programação.

6. Considerações Finais
Este trabalho apresentou diretrizes de produção de material didático para ensino de POO
baseadas em diversos fundamentos cientı́ficos, em especial em metodologias ativas. Um
material foi produzido com base nas diretrizes e testado num estudo de caso com es-
tudantes universitários. Os resultados apontaram melhorias significativas associadas à
utilização do material, tanto na percepção dos estudantes em relação ao próprio desem-
penho enquanto programadores, quanto em questões motivacionais importantes como o
gosto pela prática da programação e o tempo dedicado à sua prática.

Há limitações, como não poderia deixar de ser. Mais estudos são necessários tanto
para validar os resultados correntes quanto para tentar aprimorá-los. Nesse quesito, em
particular, o fato de estudantes que não tinham uma atitude prévia positiva em relação
à programação terem evoluı́do melhor na percepção de seu próprio desempenho como
programadores abre uma possibilidade interessante de novos estudos voltados a observar
com mais atenção o comportamento desse grupo especı́fico.

Por fim, mesmo ponderando todas as limitações, acreditamos que as diretri-
zes estão bem fundamentadas e abrem espaço para sua utilização em novos materiais
didáticos, tanto no âmbito docente quanto para embasar outros trabalhos de pesquisa.
Ademais, o ensino de programação continua sendo um desafio para estudantes e profes-
sores, e o material especı́fico utilizado em nosso estudo de caso está disponı́vel online
para uso livre e irrestrito de todos os que se dispuserem a enfrentar esse problema.

Referências
Chiu, J.-I. and Tsuei, M. (2020). Meta-analysis of children’s learning outcomes in block-

based programming courses. In Proceedings of the 28th International Conference on
Computers in Education, pages 259–266.

Christophel, D. M. (1990). The relationships among teacher immediacy behaviors, stu-
dent motivation, and learning. Communication Education, 39:323–340.

Cárdenas-Cobo, J., Puris, A., Novoa-Hernández, P., Galindo, J. A., and Benavides, D.
(2020). Recommender systems and scratch: An integrated approach for enhancing
computer programming learning. IEEE Trans. Learn. Technol., 13(2):387–403.

Facey-Shaw, L., Specht, M., van Rosmalen, P., and Bartley-Bryan, J. (2019). Do bad-
ges affect intrinsic motivation in introductory programming students? Simulation &
Gaming, 51:33 – 54.

Farooq, U. and Anwar, S. (2024). Students motivation to learn programming: A systema-
tic review. 2024 IEEE Front. Educ. Conf. (FIE), pages 1–9.

Gill, G. and Holton, C. F. (2006). A self-paced introductory programming course. J. of
Information Technology Education: Research, 5(1):95–105.

Gutiérrez, L. E., Guerrero, C. A., and López-Ospina, H. A. (2022). Ranking of problems
and solutions in the teaching and learning of object-oriented programming. Education
and Information Technologies, 27:7205 – 7239.

Hany, A., Ramadan, E., Akl, A., and Atia, A. (2023). The effect of using tangible user
interfaces compared to traditional learning for teaching programming in higher educa-
tion: An experimental study. Intell. Methods Syst. Appl. (IMSA), pages 514–519.

Hawlitschek, A., Berndt, S., and Schulz, S. (2022). Empirical research on pair program-
ming in higher education: a literature review. Comp. Sci. Education, 33:400 – 428.

Hosseini, R., Akhuseyinoglu, K., Brusilovsky, P., Malmi, L., Pollari-Malmi, K., Schunn,
C., and Sirkiä, T. (2020). Improving engagement in program construction examples
for learning python programming. Int. J. Artif. Intell. Educ., 30:299 – 336.

Koren, M. (2024). Graphical user interfaces as a method to encourage beginners in le-
arning programming. 2024 47th MIPRO ICT and Electronics Convention (MIPRO),
pages 1439–1444.

Mou, T.-Y. (2024). The practice of visual storytelling in stem: Influence of creative
thinking training on design students’ creative self-efficacy and motivation. Thinking
Skills and Creativity.

Obaido, G., Agbo, F. J., Alvarado, C., and Oyelere, S. (2023). Analysis of attrition studies
within the computer sciences. IEEE Access, 11:53736–53748.

Paiva, M. R. F., Parente, J. R. F., Brandão, I. R., and Queiroz, A. H. B. (2016). Metodolo-
gias ativas de ensino-aprendizagem: revisão integrativa. SANARE-Revista de Polı́ticas
Públicas, 15(2).

Papert, S. and Harel, I. (1991). Situating constructionism. Constructionism, 36(2):1–11.

Rabelo, A., Maia, L., and Parreiras, F. S. (2018). Performance analysis of computer
science students in programming learning. Anais do WEI’2018.

Setiawati, L. (2012). A descriptive study on the teacher talk at eyl classroom. Indonesian
Journal of Applied Linguistics, 1(2):141–152.

Tao, Y. and Chen, G. (2024). The relationship between teacher talk and students’ acade-
mic achievement: A meta-analysis. Educational Research Review.

Wen, F.-H., Wu, T., and Hsu, W. (2023). Toward improving student motivation and per-
formance in introductory programming learning by scratch: The role of achievement
emotions. Science Progress, 106.

Xie, B., Loksa, D., Nelson, G. L., Davidson, M. J., Dong, D., Kwik, H., Tan, A. H., Hwa,
L., Li, M., and Ko, A. J. (2019). A theory of instruction for introductory programming
skills. Computer Science Education, 29:205 – 253.

Zataraı́n-Cabada, R., Estrada, M. L. B., Rı́os-Félix, J. M., and Alor-Hernández, G. (2018).
A virtual environment for learning computer coding using gamification and emotion
recognition. Interact. Learn. Environ., 28:1048 – 1063.

Öztürk, M. (2021). The effect of self-regulated programming learning on undergradu-
ate students’ academic performance and motivation. Interact. Technol. Smart Educ.,
19:319–337.

