
Extracting and Composing a Dataset of Competitive
Counter-Strike Global Offensive Matches

Erick Rocha1, Henrique Maio2, Daniel S. Menasché1, Claudio Miceli2

1Instituto de Computação (UFRJ) RJ – Brazil

2Escola de Engenharia (UFRJ) RJ – Brazil

erickkrocha@gmail.com, henriquemaio@poli.ufrj.br,

sadoc@ic.ufrj.br, miceli@nce.ufrj.br

Abstract. There is a growing necessity for insightful and meaningful analytics
within eSports: be it to entertain spectators as they watch their favorite teams
compete, to automatically identify and catch cheaters or even to gain a com-
petitive edge over an opponent, there is a plethora of potential applications
for analytics within the scene. It follows, then, that there is also a necessity for
well-structured and organized datasets that enable efficient data exploration and
serve as a foundation for visualization and analytic layers. Our work provides
the means by which to construct such a dataset for the Counter-Strike Global
Offensive (CS:GO) game.

1. Introduction

From the ages of ancient civilizations to the current times, the practice of sports
has always been a widespread activity and a source of recreation for the humankind
[El-Harami 2015].

With the development and evolution of technology, the same atmosphere that has
ignited crowds of spectators and inspired people all over the world in sports, has also
become a part of electronic games. By breaking the frontiers and allowing people to
not only spectate, but also compete with other people around the world, competitions
that until around the 2000s were mostly among amateur players, started to attract the
market’s attention. Rapidly following it, a large structure was formed around professional
competitions, which became collectively known as “eSports”.

According to SuperData’s annual report [SuperData 2021], digital games earned
$126.6B in 2020 and many organizations have been investing in the creation of teams
and leagues to explore that potential. One of the games that have for a long time been a
pillar of the eSports world and that greatly influenced its growth is the franchise of the
multiplayer first-person shooter: Counter-Strike (CS).

Released in 1999 as a modification1 of another game called Half-Life, the Counter-
Strike franchise has surpassed and outlived its predecessor, with many versions of the
game being developed and released. Its latest version - called “Counter-Strike: Global
Offensive” (CS:GO) - is the subject of this article. To break the game (in its competitive
scene) down in simple terms:

1Modifications are also known as mods in the gaming jargon.

• Each match is disputed by two teams composed of five players.
• Each match is usually composed of multiple maps that are disputed in a best-of-X

format (with X being the number of maps played, usually ranging from 1 to 5).
• Each map is won by the first team to reach 16 rounds.
• After playing 15 rounds, the two teams switch sides (T-side to CT-side and vice

versa).
• Each round is 1 minute and 55 seconds long, with both teams having specific win

conditions:
– The T-side can win a round by either eliminating every member of the

opposing team or by planting a bomb in a designated zone, which will
detonate after 40 seconds.

– The CT-side can win a round by either eliminating every member of the
opposing team or by defusing the bomb after it has been planted.

On the tail of the incredible growth of the eSports market and of the CS:GO com-
petitive scenario is the ever-growing need for insightful analytic and visualizations. Ac-
quiring data to support these goals is not easy: the readily available data one can find in
most CS:GO websites can only support basic analysis. Furthermore, there are many play-
ers23 in the market that seemingly employ sophisticated data retrieval strategies to obtain
quality data, but the knowledge and tooling used to obtain such data seems to be intellec-
tual property. This ends up leaving a gap with respect to publicly available datasets.

Thus, to enable data exploration and ultimately empower the community to con-
duct meaningful and insightful analysis, this article introduces a workflow that can be
leveraged to retrieve quality CS:GO data.

Outline. The rest of this article is structured as follows. Section 2 presents
the challenges, Section 3 describes the sources of data available and Section 4 proposes
a workflow that can be executed to build the dataset. The dataset itself is described in
Sections 5 and 6. A simple data analysis is described in Section 7 to further motivate
the reader on what can be achieved by leveraging the dataset. Related work is presented
in Section 8, dataset availability in Section 9 and Section 10 concludes.

2. Challenges

Collecting data in a large scale fashion can be a problem even if the data is readily avail-
able: there are many avenues of concern within the overall process of collecting, storing
and shaping raw data into valuable information. For instance, how do you optimize and
scale your data fetching routine when the source isn’t well-structured or protects itself
against crawlers? How do you store the data while minimizing infrastructure costs and
maximizing retrieval response time? Will the data require real time aggregation? Should
it be structured with a relational schema or not? There are many more questions looming
over the topic, and answering these questions requires a deeper understanding of one’s
objectives when handling the data.

The collection process for CS:GO data is no different. There are many challenges
in capturing and structuring the data in a useful way. To name a few:

2https://sixteenzero.net/
3https://csgostats.gg/

• Surpassing anti-crawling mechanisms.
• Scaling the data fetching routine.
• Extracting information out of CS:GO “demo” files.
• Linking low and high level data (see Sections 4.5 and 5).
• Managing associated costs.

The breadth and depth of data available in a CS:GO match is astounding, though.
Once the challenges are overturned, it is possible to build a robust dataset that can be
leveraged in many ways, such as to gain insight into aspects of the game that are hidden
from the “naked eye”, to define new models that better evaluate the impact of each player
in a match and to find trends in the game.4

3. Data Sources
To build a truly meaningful CS:GO dataset, we believe one has to leverage aspects from
two different data sources and bridge the gap in between them:

• The first source – containing data henceforth referred to as “high-level data” –
is any website or application that tracks competitive matches and displays their
results. It offers information such as the date window in which championships
took place, the dates in which matches were played, the teams and players that
participated in those matches, their scores and finally, some high-level statistics
that can support shallow analysis.

• The second source – containing data henceforth referred to as “low-level data” –
is an actual “replay” file of a match. These “replay” files – henceforth referred
to as “demo” files, as they are known in the community – are protobuf-serialized
files that contain every important event that occurred within the match. It offers a
plethora of information regarding every player at almost any given moment in the
game, such as their positions, their net worth (i.e. current money plus investment
in current equipment) and their actions (e.g. movements, shots, grenades thrown).

Thus, for the overall success of our endeavor, it was paramount to select a source
that made it possible to capture both high and low-level data. Consider the HLTV CS:GO
portal5: in it, one can not only browse championships and select the results of the matches
played in them, but also download the “demo files” of each match.

4. Workflow
Next, we propose a workflow that can be leveraged to compose a CS:GO dataset capa-
ble of bridging the gap between both high and low-level data planes. It consists of five
different components:

4.1. Crawler

The web crawler is the entry point of the workflow: given the identification number of
a championship, it crawls the HLTV website 1 , scrapes relevant data and stores it in a
manifest file 2 . The information stored in this file is imperative for the construction of
the dataset and is used in different steps of the workflow. It stores high-level information

4Such trends also known as “meta” within the gaming community.
5http://hltv.org

Figure 1. Dataset generation workflow

such as the teams and players participating in the championship, the results of each map
disputed and finally the download URL for each “demo file” - the source of low-level
data.

4.2. Downloader

The downloader is the module responsible for downloading the “demo files” from HLTV.
It retrieves the download URLs from the manifest file 3 and downloads 4 each file to
the configured directory in the local file system 5 .

4.3. Parser

The demo file parser parses the downloaded protobuf-serialized “demo files” and writes
the desired data in a set of CSV files 8 .

4.4. Orchestrator

The orchestrator is the module responsible for orchestrating the transformation of the
“demo files” into the final parquet files, which contain all the low-level data we deem
important for analysis. It does this by iterating over the downloaded “demo files” 6 ,
invoking the parser 7 and finally converting the data from CSV to the parquet columnar
format 9 .

Figure 2. Dataset Hierarchical Structure

4.5. Indexer

The indexer is the last module of the workflow: it is responsible for bridging the gap
between the high and low-level data planes. It does this by indexing the location of each
disputed map data - already structured as a set of parquet files - in the local file system
10 , wrapping it around high-level data read from the manifest file and finally exposing

this information through a “queryable” interface: a SQLite database 11 .

5. Dataset Structure
The dataset was designed to be consumed locally while minimizing the resources required
to store and process it. The main drivers behind the design were to allow cost-effective
data exploration and to facilitate integration with well established data-science libraries
(e.g. Pandas). It is structured as a set of files on the local file system and is composed of
a SQLite database and a set of parquet files.

5.1. SQLite File

As outlined in the previous section, the SQLite database is the link between high and
low-level entities: through it one can perform queries using high-level information - such
as a player or a map name - and retrieve the location of relevant parquet files containing
the low-level in-game data that enables in-depth analysis.

5.2. Parquet Files

The parquet files contain low-level data, such as the events that occurred within the game
and the positions of each player at virtually every moment of the game. As Figure 2
shows, these files are laid out in a directory hierarchy consisting of:

1. A directory for each event (championship);
2. A directory for each match played within each event;
3. A directory for each map played within each match;
4. The parquet files.

6. Dataset
Next, we describe the obtained dataset and dive into the contents of what we have been
referring to as low-level data. We restrict our description, focusing on a proof-of-concept
of what can be achieved by leveraging the workflow described in Section 4. Lastly, we
cover the resources required to make use of this proof-of-concept dataset.

Our dataset contains all matches played in the “ESL Pro League Season 13” 6

championship, where 73 distinct matches were disputed throughout the competition, re-
sulting in a total of 173 maps played. Each disputed map has its in-game information
partitioned in a set of five different parquet files, further described in the next subsections.

6.1. bomb lifecycle.parquet
A “bomb lifecycle” file contains events related to the C4 explosive - a mechanism in the
game that can ultimately be used to claim a round. If the bomb is defused or isn’t planted
at all in a round’s allotted time, the counter-terrorists win. If the C4 explosive explodes,
the terrorists win. Table 1 shows a sample of the file contents.

Table 1. Bomb lifecycle
tick round event userId

6877 0 bomb dropped 10
7260 0 bomb pickup 23
16903 0 bomb planted 23
22152 1 bomb exploded 23
22792 1 bomb pickup 21

6.2. player death.parquet
A “player death” file contains the events of every death that occurred throughout a partic-
ular game, along with some information to contextualize each death, such as whether the
player was blinded by a flash-grenade, which weapon was used, whether the bullet was a
“headshot”, etc. Table 2 shows a sample of the file contents.

Table 2. Player death
tick round userId attacker assister assistedFlash weapon headshot penetrated

5497 0 13 10 23 False glock False 0
6216 0 21 18 0 False usp silencer True 0
6877 0 10 19 0 False usp silencer True 0
7087 0 19 23 0 False glock True 0
7503 0 9 18 0 False usp silencer True 0

6.3. tick.parquet
A “tick” file contains basic player information at virtually every moment of the game,
such as their position on the map and their current health points7. Table 3 shows a sample
of the file contents.

6https://www.hltv.org/events/5553/esl-pro-league-season-13
7Each player begins each round with 100 health points and their death means those points were reduced

to 0

Table 3. Ticks

tick round userId steamId userName health pitch yaw speed x y z placeName

4350 0 9 xxx blameF 100 4.48 106.81 0.0 1296.0 -256.0 -167.96 TSpawn
4350 0 10 xxx jks 100 11.14 108.93 0.0 1216.0 -16.0 -163.96 TSpawn
4350 0 11 xxx RUSH 100 11.66 317.64 0.0 1216.0 -211.0 -163.96 TSpawn
4350 0 12 xxx tiziaN 100 9.87 87.79 0.0 -1656.0 -1800.0 -266.92 CTSpawn
4350 0 13 xxx tabseN 100 6.55 89.04 0.0 -1552.0 -1808.0 -266.29 CTSpawn

6.4. utility lifecycle.parquet

A “utility lifecycle” file contains information regarding the utility grenades used through-
out the match. The coordinates in this file represent where the grenade landed and ex-
ploded or expired. Table 4 shows a sample of the file contents.

Table 4. Utility lifecycle
tick round event userId x y z

4622 0 smokegrenade thrown 11.0 1422.96 -367.96 -165.65
5307 0 flashbang thrown 11.0 1180.12 -964.68 -261.65
5529 0 flashbang detonate 11.0 -88.27 -1686.01 200.85
5842 0 smokegrenade detonate 11.0 -640.25 -1582.35 -165.96
8153 0 smokegrenade expired 11.0 -640.25 -1582.35 -165.96

6.5. weapon fire.parquet

A “weapon fire” file contains context information regarding every weapon that was fired
throughout the match: the actions of throwing a grenade, firing a weapon or using a knife
are all classified as a “weapon fired” event. Table 5 shows a sample of the file contents.

Table 5. Weapon fires dataset
tick round userId weapon

4622 0 11 weapon smokegrenade
4722 0 12 weapon knife survival bowie
4796 0 12 weapon knife survival bowie
4879 0 13 weapon knife tactical
5127 0 13 weapon knife tactical

6.6. Required Resources

Our workflow leverages the Apache Parquet format8 as a means to decrease system re-
sources when storing and consuming the dataset. The columnar nature of this format
allows us to:

1. Apply column-specific compression and encoding schemes, drastically reducing
the required disk size to hold the dataset;

8https://parquet.apache.org/documentation/latest/

2. Read only the desired columns when consuming the dataset, again drastically re-
ducing the amount of memory required to hold the dataset in memory.

A quick comparison between the dataset in CSV format and the currently em-
ployed optimized parquet format shows the drastic difference in disk size required to
store the dataset in the hard drive (see Table 6).

Table 6. CSV vs Parquet
Unit CSV Apache Parquet

(GB) 83.2 9.86

7. Analyzing the Dataset

The standard way of using the dataset is to first query the index database to locate the
parquet files of interest and then proceed to load the data into memory, selecting only the
necessary columns to support the analysis. This workflow is very malleable, in the sense
that both the SQLite database and the parquet files can be read using a wide range of
libraries across several programming languages.

There are many ways one can go about using this dataset in order to gain insight
into the game. To illustrate that point, Figure 3 shows a simple visualization: a contour
line graph of flash-grenade explosions on every “Inferno” map – this is one of the maps
in the game – played throughout the championship contained in this dataset.

Figure 3. Contour lines of flash-grenade explosions on the Inferno map.

7.1. Further Exploration
Next, we raise some interesting topics for further analytical exploration. We refer to
scenarios of interest and to research questions that can be elaborated or resolved from the
availability of our dataset.

• What is the behavior of user’s mobility?
From the user’s movement data, it would be possible to analyze how the best
players in the teams move and how this affects their results. This information can
be used by these same players to find their flaws and fix it or by opponents to
overcome those players. We envision that the vast literature on human mobility
may be contrasted against player’s mobility, and that generative mobility models
can be used for practicing purposes.

• What are the most adopted game strategies?
Based on the dataset, it would be possible to categorize the different strategies
used by the teams and how the teams coordinate their actions during the match.
We envision that both supervised and unsupervised machine learning tools may
be used for clustering and classification purposes.

• What are the best strategies to win a match?
Based on the strategies, it would be possible to infer and compare which were used
in the championship and find out which were the most victorious or most efficient
against the best teams. We envision that using reinforcement learning, one may
also use our dataset for training purposes, to shed insight into novel strategies.

• How to identify behavior resulting from cheating?
Despite the great effort of championships and game developers to prevent cheat-
ing, a structured database allows anyone to carry out their search for different
patterns in the behavior of a player, which could indicate some use of illegal soft-
ware or abuse of some hitherto unknown bug to have advantage in the match.
We envision that statistical analysis of our dataset, together with algorithms for
change point detection and outlier analysis, may shed insight into unexpected user
behavior.

8. Related work
Some of the first papers involving crawling and analysis of gaming data focused on
Second Life [Varvello and Voelker 2010, Varvello et al. 2008]. Among works focusing
on Counter Strike, the two more closely related to ours are [Xenopoulos et al. 2020]
and [Bednárek et al. 2017]. In [Xenopoulos et al. 2020] the authors provide an open
source platform to collect data from CS:GO. Their platform is complementary but dif-
ferent from ours. In particular, it does not bridge high-level and low-level data (see
Section 3). In addition, the datasets produced by [Xenopoulos et al. 2020] are still not
publicly available.

In [Bednárek et al. 2017] the authors analyze data from HLTV. Their goal is to
assess and predict player performance. We envision that our work can be instrumental to
reproduce and expand previous efforts such as those reported in [Bednárek et al. 2017].

9. Dataset and code availability
Our dataset is available at https://tinyurl.com/csgodataset
The modules comprising our crawling infrastructure are available as follows:

Crawler: https://github.com/ErickRDev/csgo-demo-crawler
Downloader: https://github.com/ErickRDev/csgo-demo-downloader
Orchestrator: https://github.com/ErickRDev/csgo-demo-parser-orchestrator
Parser: https://github.com/ErickRDev/csgo-demo-parser
Indexer: https://github.com/ErickRDev/csgo-dataset-indexer

10. Conclusion and future work
The increasing popularity of eSports has raised an interest in analyzing and visualizing
relevant data within the domain. When it comes to CS:GO, there are websites with readily
available high-level data that, when coupled with low-level data extracted from “demo
files”, provide the necessary input to build a robust dataset that can ultimately be leveraged
to satisfy the needs of the community.

In this paper we presented such a proof-of-concept dataset along with the means
by which to collect and expand on the data. Our method crawls the relevant high-level
data from the HLTV website, parses the protobuf-encoded “demo files” to extract low-
level data and employs a simple, yet effective strategy to bridge the gap between them.

The presented workflow represents a huge opportunity to explore CS:GO data and
can be used to investigate several scenarios and aspects of the game, to create analytic
reports and visualizations about the matches, players and championships.

As future work related to the generation of the dataset, we envision a number of
opportunities to improve the proposed pipeline and to foster a plug-and-play analysis of
the collected data. In particular, we envision additional automation of the whole pipeline,
from data collection to data storage, without manual intervention.

References
Bednárek, D., Zavoral, F., and Yaghob, J. (2017). Data preprocessing of esport game

records - counter-strike: Global offensive. In In Proceedings of the 6th International
Conference on Data Science, Technology and Applications - DATA, 269-276, 2017 ,
Madrid, Spain.

El-Harami, J. (2015). Entertainment and recreation in the classical world—tourism prod-
ucts. In Journal of Management and Sustainability; Vol. 5, No. 1; 2015.

SuperData (2021). 2020 year in review digital games and interactive media. Technical
report, SuperData, a Nielsen company.

Varvello, M., Picconi, F., Diot, C., and Biersack, E. (2008). Is there life in second life?
In Proceedings of the 2008 ACM CoNEXT Conference, pages 1–12.

Varvello, M. and Voelker, G. M. (2010). Second life: a social network of humans and
bots. In Proceedings of the 20th international workshop on network and operating
systems support for digital audio and video, pages 9–14.

Xenopoulos, P., Doraiswamy, H., and Silva, C. (2020). Valuing player actions in counter-
strike: Global offensive. In In Proceedings of the 2020 IEEE International Conference
on Big Data.

