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Abstract. In this paper, we present FeatSet, a compilation of visual features ex-
tracted from open image datasets reported in the literature. FeatSet has a collec-
tion of 11 visual features, consisting of color, texture, and shape representations
of the images acquired from 13 datasets. We organized the available features in
a standard collection, including the available metadata and labels, when avail-
able. We also provide a description of the domain of each dataset included in
our collection, with visual analysis using Multidimensional Scaling (MDS) and
Principal Components Analysis (PCA) methods. FeatSet is recommended for
supervised and non-supervised learning, also widely supporting Content-Based
Image Retrieval (CBIR) applications and complex data indexing using Metric
Access Methods (MAMs).

1. Introduction
Images acquired from different application scenarios have been the focus of numerous
studies in the last decades. Users generate large amounts of images, sharing them over the
internet, mainly due to the widespread use of social networks, blogs, public repositories,
and cooperative research. Mobile cameras, microscopes, Magnetic Resonance Imaging
(MRI) machines, and X-Rays are just a few examples of simple and specialized acqui-
sition equipment capable of generating images in different contexts. Data management
systems usually compare scalar data, such as small strings, numbers, and dates, based on
order and equality operators (i.e., <, ≤, =, ≥, and >). On the other hand, images are
considered complex data that order operators cannot compare, and checking if a pair of
images is equal or different brings too little semantics to the analysis. Accordingly, com-
plex objects are usually compared by their content, using similarity operators such as the
Range and kNN queries for Content-Based Retrieval (CBR).

Feature Extraction Methods (FEMs) generate feature vectors as low-level rep-
resentations of images according to their visual content. The generated features can
describe, among others, the color distribution of an image, the grayscale variation, the
texture patterns, and the objects’ salient edges. Similarity operators compare pairs of
complex objects by employing distance functions to the corresponding feature vectors,
measuring how dissimilar they are. Also, machine learning algorithms employ feature
vectors to train their model in supervised scenarios (for instance, when we have a label



for every image in the dataset) and in exploratory analyses. All of these analyses depend
on extracting the features from the image datasets, which can be laborious due to the
necessity of implementing and/or setting up FEMs, and also time-consuming.

Many works from the literature have employed visual features for image analysis
in different contexts. For instance, in the work [de Sousa Fogaça and Bueno 2020], the
authors mapped color-based features into the multidimensional space to estimate the tra-
jectory of objects by simulating their evolution over time. In [Pereira and Ribeiro 2021],
the authors employed visual features extracted from mammograms for the seman-
tic annotation and classification of images using ontologies. Low-level features have
been widely employed to validate the indexing capabilities of Metric Access Meth-
ods [Zabot et al. 2019b, Moriyama et al. 2021]. Also, in [Maheshwari et al. 2021] the
authors employed various features to identify COVID-19 in images.

Motivated by the potential applicability of image features and the difficulties of
employing FEMs, we propose the FeatSet dataset in this work. FeatSet is a compilation of
widely-used visual features extracted from public image datasets of different application
scenarios. The contributions of FeatSet are two-fold:

• The curation of 13 open image databases, organizing their main information in a
single repository;

• Color, texture, and shape visual features extracted from the images with 11 distinct
FEMs, widely employed in the literature, including those from the MPEG7 Stan-
dard [Manjunath et al. 2002]. The feature vectors are organized into a standard
model and openly available.

We cast the possibilities of use for FeatSet, and show examples of analysis of the available
data.

Previous use of data. A small part of FeatSet has been employed in the previous stud-
ies [Zabot et al. 2019a, Zabot et al. 2019b]. In that works, the authors explored differ-
ent visual features to validate a novel Multi-Metric Access Method, aiming at indexing
complex objects based on images’ visual characteristics and the correlation among the
distance spaces.

In this work, we present an extended and complete version of the data used
in [Zabot et al. 2019a, Zabot et al. 2019b]. FeatSet is a new dataset, composed of di-
verse visual features extracted from various public image datasets of different application
scenarios. It allows analysts to deeper evaluating machine learning approaches, CBIR
strategies, and related techniques.

Paper outline. The remaining sections of this paper are organized as follows. Section 2
describes FeatSet. Section 3 discusses application scenarios and challenges for FeatSet.
Section 4 details the steps to download FeatSet, and describes the data organization and
description of the dataset’s public repository. Finally, Section 5 concludes this work.

2. FeatSet: A Collection of Visual Features from Image Datasets

In this section, we detail the process of acquiring the original images, extracting the vi-
sual features, and composing FeatSet, as Figure 1 illustrates. Firstly (Step i), we looked
for open image datasets of different sizes, with photos acquired from different applica-



tion scenarios. We looked for literature papers proposing or using image data from open
repositories and websites for this task.

Figure 1. Steps carried to compose FeatSet .

2.1. Data Collection and Preprocessing
Table 1 lists the datasets collected, as well as the specific reference, the number of avail-
able images, and a brief description of each. All 13 datasets were manually collected from
their original sources, which are referenced in the corresponding folders in the repository,
with a “read me” file containing the original source, URL, date of collection, license, a
brief description, and the corresponding reference. In particular, the ds-MNIST dataset
provides the images as multidimensional matrices. We converted each file to .png, which
is one of the image formats accepted by the implementation of FEMs employed in this
work. Figure 2 shows examples of images acquired from each dataset.

Figure 2. Examples of images from the public datasets considered.

2.2. Feature Extraction
After curating every dataset, organizing the files and available metadata, we employed
feature extraction methods (FEMs) to obtain the visual features from the acquired images.
Figure 1 (Steps ii and iii) illustrates this task. Each FEM receives as input an image file
and generates a d-dimensional vector, where the features are represented as an array of
floats.

We employed the FEMs listed in Table 2 with the corresponding acronyms, num-
ber of dimensions and types. Notice that every employed FEM generates a specific num-
ber of features (dimensions), and corresponds to a specific type T of visual feature, where
T ∈ {Color, Texture, Shape}. In the case of NCH, we generated six histogram variations,
with 8, 16, 32, 64, 128, and 256 features. As a result, we have 11 distinct FEMs, which
can generate 16 different feature configurations.



Table 1. Datasets composing FeatSet .

Dataset #Images Application Scenario
ds-BoWFire
[Chino et al. 2015]

226 Depicts images ofs fire incidents in emergency sit-
uations, labeled fire and non-fire.

ds-Flickr-Fire
[Bedo et al. 2015]

1,984 Acquired from Flickr, using tags related to fire to
filter the information.

ds-Mammoset
[Oliveira et al. 2017]

3,457 Regions of Interest obtained from mammograms,
with tissue labels such as benign and malignant.

ds-LibraGestures
[Bastos et al. 2015]

4,800 Depicts images of hand gestures representing the
Brazilian Sign Language (Libras).

ds-FlickrFireSmoke
[Cazzolato et al. 2017]

5,556 Acquired from Flickr, using tags related to fire and
smoke to filter the information.

ds-Covid19
[Cohen et al. 2020]

5,933 Chest X-Rays and Computed Tomographies, taken
from patients which are positive or suspected of
COVID-19 or other viral and bacterial pneumo-
nias.

ds-COIL100
[Nene et al. 2020]

7,200 Objects depicted at angles in a 360 rotation, at ev-
ery 5 degrees.

ds-Letters
[Hajder 2020]

15,340 Standard Windows fonts with each letters orga-
nized in classes by typeface.

ds-Cars
[Krause et al. 2013]

16,185 Images of cars from 196 classes, including annota-
tions.

ds-Dogs
[Khosla et al. 2011]

20,580 Images of dogs of 120 breeds from around the
world.

ds-DeepLesion
[Yan et al. 2017]

33,334 Images Slices extracted from Computed Tomogra-
phies.

ds-MNIST
[Lecun et al. 1998]

70,000 Images of 10 handwritten digits (0 to 9).

ds-CompCars
[Yang et al. 2015]

164,344 Depicts images of cars, taken from two scenarios:
web-nature and auto parts.

The implementations of FEMs used in this work are from the Arboretum library,
available at the Database and Image Group (GBdI) website1. Most of the Arboretum’s
available FEMs are from the MPEG-7 Standard [Manjunath et al. 2002], proposed by
ISO/IEC JTC1, which aims to define an efficient way to search, filter, and identify mul-
timedia content, defining the expected representations for the images in terms of color,
texture, and shape. In this article, we employ the following MPEG-7 extractors: Color
Layout, Color Structure, Scalable Color, Color Temperature, Edge Histogram, and Tex-
ture Browsing. Briefly, they work as the following:

• Color Layout: Describes the image color distribution considering spatial location
[Kasutani and Yamada 2001]. It splits the image into squared sub-regions and
labels each square with a few nonlinear quantized DCT coefficients of grid-based
average colors.

1The Arboretum library is available at https://gbdi.icmc.usp.br/, under the “Projects” menu.



Table 2. Feature Extraction Methods FEMs employed, the corresponding
acronyms, dimensionality and feature type.

FEM Acronym #Dimensions Type
Color Temperature CT 3 Color
Texture Spectrum TS 8 Texture

Color Layout CL 16 Color
Haralick Hr 24 Texture

Color Structure CS 128 Color
Edge Histogram EH 150 Shape

Local Binary Pattern LBP 177 Texture
Scalable Color SC 256 Color
BIC Histogram BIC 512 Color

Total Color Histogram TCH 768 Color
Normalized Histogram NCH 8, 16, 32, 64, 128, 256 Color

• Scalable Color: A color histogram in the HSV color space, which is encoded
by a Haar transform and is intended to capture the prominent color distribution
[Manjunath et al. 2001].

• Color Structure: Aims to capture both the color content and information about
the spatial arrangement of that color content [Sikora 2001]. It works such a his-
togram that counts how many times a color is present in structures with fixed-size
windows. Each fixed-size window selects equally spaced pixels to represent the
local color structure. The window size and the number of local structures are
parameters of the Color Structure descriptor.

• Edge Histogram: Represents the spatial distribution of five types of edges, Ver-
tical, Horizontal, 45 degree, 135 degree and non-directional, regarding N × N
blocks, where N is an extractor parameter [Park et al. 2000]. Each block is con-
structed by partitioning the original image into squared regions and consists of
local histograms of these edge directions, which may optionally be aggregated
into global or semi-global histograms.

• Texture Browsing: This extractor is obtained from the same parameters used in
the Gabor filters applied to the images [Lee and Chen 2005]. Its vector consists of
12 positions: 2 for regularity, 6 for directionality, and 4 for coarseness.

• Color Temperature: Is based on the hypothesis that there is a correlation between
the illumination properties of the image and its “feeling of temperature”. CT rep-
resents the feature vector as the linearized pixels in the XYZ color space, discard-
ing the luminance of Y channel that is above a given threshold parameter. CT av-
erages the color coordinate in XYZ and converts it to UCS. Finally, CT calculates
the two-color isotemperature lines from the color diagrams [Bedo et al. 2015].

BIC (Border/Interior Pixel Classification) [Stehling et al. 2002], TCH, and Nor-
malized histograms describe the grayscale color distribution of the pixels in the image.
Haralick is texture FEM that computes the image dimensions as variances and moments
based on co-occurrence matrices. Texture Spectrum and LBP describes the local correla-
tion among grayscale values within pixels.



2.3. Data Description
After curating the public datasets and extracting the visual features, we organized the
FeatSet repository (Step iv of Figure 1). Figure 3 shows the generic FeatSet schema,
which is similar to each one of the 13 datasets. Figure 3(a) is the metadata table, with
the object identifier (OID) for each complex object in the dataset, employed as primary
key (PK), the filename of the image, and the set of classes if any. The image filename is
the same as the original dataset, which allows reproducibility. Table 3 details the existing
set of classes on FeatSet. The datasets ds-BoWFire, ds-Flickr-Fire, ds-LibraGestures,
ds-Letters, ds-Dogs, and ds-MNIST have a single set of classes, represented by column
class in the metadata table. Dataset ds-FlickrFireSmoke has two sets of classes, one
to denote the presence or absence of fire in the image (column class 0), and the other
to determine if the image has or not smoke in it (column class 1). The remaining
datasets do not have classes. Figure 3(b) illustrates the set of FEM tables originated from
Section 2.2. Each FEM table has the OID column as a foreign key (FK) to the respective
metadata table, and every dimension of the feature vector is stored in a column named
feature i, for 0 ≤ i ≤ d, where d is the number of dimensions of the current FEM,
given by Table 2.

Figure 3. Schema for FeatSet .

Table 3. Existing set of labels (classes) in FeatSet .

Dataset Set of Labels (Classes)
ds-BoWFire [Chino et al. 2015] Presence/Abscence of Fire
ds-Flickr-Fire [Bedo et al. 2015] Presence/Abscence of Flame
ds-LibraGestures [Bastos et al. 2015] Gesture translation
ds-FlickrFireSmoke [Cazzolato et al. 2017] Presence of Fire and/or Smoke
ds-Letters [Hajder 2020] Letter’s Font
ds-Dogs [Khosla et al. 2011] Dog’s breed
ds-MNIST [Lecun et al. 1998] A digit from 0 to 9

Both metadata and FEM tables in FeatSet are organized in separated Structured
Query Language (SQL) scripts to create and populate those tables. We decided to main-
tain the separated tables for each dataset within FeatSet because this organization allows
users to select only the scripts from the data they want to work with. We also provide
Comma-Separated Values (CSV) files for every dataset and FEM, allowing users to input
the data into machine learning libraries, managing the features outside the Database Man-
agement System (DBMS), and also concatenate the desired files whenever necessary.

3. Applicability and Challenges for FeatSet
FeatSet opens research opportunities regarding various computer science tasks, such as
evaluating CBIR systems, machine learning methods, data visualization, and information



prediction. As FeatSet constitutes a compilation of public datasets acquired from various
application contexts, the visual features can also be employed in multidisciplinary studies.
In this section, we discuss potential research opportunities.

3.1. Visual Analysis

The Multidimensional Scaling (MDS) method represents the (dis)similarity among ob-
jects onto a projection of the data in a low-dimensional space [Borg and Groenen 2005].
Here, we employed MDS to show the advantage of representing the image datasets us-
ing diverse visual representations. Figure 4 shows the distance space distribution formed
by an image sample from ds-BoWFire, using the different visual features provided by
FeatSet. We observe major differences in the data dispersion from the generated dis-
tance spaces. For instance, CL shows objects dispersed almost homogeneously, while CT
depicts the objects in a “line-shaped” dispersion.

Figure 4. MDS plot depicts the objects’ dispersion within the diverse distance
space distribution of ds-BoWFire, generated with different visual features.

3.2. Principal Components Analysis

Many of the employed FEMs, such as BIC, TCH, and NCH, produce high-dimensional
feature vectors (see Table 2). Also, in many application scenarios, the analyst may opt to
combine features of different visual characteristics to improve the semantics of the image



representation. For example, if we consider ds-Mammoset, microcalcifications can show
different color and texture patterns that, when combined, allow a more profound pattern
recognition. Feature concatenation can improve data representation but has the cost of
increasing the data dimensionality, which can be approached in different manners. One
example is the application of the Principal Component Analysis (PCA) to reduce data
dimensionality.

Figure 5 shows the proportion of explained variances according to the principal
components generated by PCA. In the examples, we selected four datasets from FeatSet,
and explored three single feature representations (a, b, and c) and the combination of LBP
with CL (d). To improve the visualization, we plotted a maximum of 30 principal compo-
nents. The dashed horizontal lines represent curve elbows, visually observed in the plots.
The curve elbow can be used as a heuristic to select the number of principal components
to employ in data analysis, selecting the position where the curve stops decreasing and
flattens out. Using this criterion, in (a) we could use 7 or 10 principal components, in (b)
6 or 13, in (c) 7, and in (d) 8 principal components. One can also consider the dimensions
which sum is at least a threshold, for example, 70% of the entire variance. In this case, in
plot (a) we would select the first 18 principal components, in (b) the first 8, in (c) the first
6, and in (d) the first 5 principal components. Regardless of the employed heuristic, the
selected visual features can be used to further analyze the complex objects by employing
CBIR or machine learning methods. Although PCA was used here as a dimensionality
reduction technique when concatenating feature vectors, it is also an example of how fea-
ture analysis layers can be stacked to develop deep learning models for image feature
engineering.

The dashed horizontal lines indicates the visual curve elbows.

Figure 5. The scree plots show the proportion of explainable variances according
to the principal components generated by PCA.



3.3. Challenges and Opportunities of Analysis
FeatSet comprises small and large datasets (ranging from 226 to 164,344 objects), and
FEMs of low and high dimensionality (from 3 to 768 dimensions). The variation in size
and dimensionality can support the validation of techniques focused on content-based
retrieval and diversity, complex data indexing with metric access methods, and similar
methods. Similarity-based comparisons of complex objects can also support the identifi-
cation of near-duplicate images through feature-matching.

The dataset organization allows straightforwardly employing machine learning
methods since they already are in the input format of many existing analysis libraries,
such as Scikit Learn2 for Python. Users can perform classification and clustering meth-
ods, compute correlations among the different data representations, perform object recog-
nition, among others. FeatSet’s schema also allows users to work with the visual features
inside the Database Management System (DBMS) by loading the available database files
provided in the Git repository.

FeatSet can be further extended by extracting new visual features with other FEMs
reported in the literature. Finally, users can include new image datasets into FeatSet,
extracting their features using the FEMs reported in this work, which are openly available
at the Arboretum library.

4. Public Repository and Citation Request
FeatSet is publicly available for research use under the Creative Commons li-
cense. All data and additional information are organized in the Git repository
https://github.com/mtcazzolato/featset/ . The repository is organized as follows:

• FeatSet/
– README.md: Read me file with FeatSet description, citation instructions

for every part of the dataset, and other information.
– SQL-Scripts-Link: Link to download the SQL scripts used to load the data.
– CSV-File-Link: Link to download the CSV files with the data.
– python-scripts/: Folder with the two python scripts that generate the plots

depicted in Figure 4 and Figure 5.
– schema.png: The database schema.

Each one of the 13 datasets presented in Table 1 follows the schema illustrated
on Figure 3, where its metadata is stored in an SQL file with the dataset name (e.g.,
ds-CompCars.sql), and every FEM is inside of a file with the same name plus its
respective acronym as a suffix (e.g., ds-CompCars CL.sql for Color Layout). All
SQL scripts start with the CREATE TABLE statement, followed by the INSERT INTO
statements to populate those tables.

Furthermore, FeatSet’s repository also provides a Comma-Separated Values
(CSV) file alternative for every single table from the 13 datasets. FeatSet is available
for researchers and data scientists, and, in case of publication or any work derived from
any of the datasets from FeatSet, we ask to acknowledge the image dataset owners and us
by citing both the image dataset reference and this paper, following the instructions of the
provided README.md file.

2The Scikit Learn Python library: https://scikit-learn.org/stable/



5. Conclusion
In this work, we proposed the FeatSet dataset, a compilation of visual features extracted
from public image datasets of different application scenarios. FeatSet is composed of
13 datasets and has 11 visual features representing the images. We provided examples
of how the feature vectors can be explored for different tasks. Also, the public datasets
inside FeatSet are from diverse application domains, which can help analysts evaluate
their techniques’ semantics in a wide range of examples. FeatSet is organized in a public
repository and is available in SQL scripts to load the database in a DBMS and in CSV
files to be used directly in existing data analysis libraries.
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