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ABSTRACT 
Computing education is often introduced in K-12 focusing on 
algorithms and programming concepts using block-based 
programming environments, such as App Inventor. Yet, learning 
programming is a complex process and novices struggle with 
several difficulties. Thus, to be effective, instructional units need 
to be designed regarding not only the content but also its 
sequencing taking into consideration difficulties related to the 
concepts and the idiosyncrasies of programming environments. 
Such systematic sequencing can be based on large-scale project 
analyses by regarding the volition, incentive, and opportunity of 
students to apply the relevant program constructs as latent 
psychometric constructs using Item Response Theory to obtain 
quantitative ‘difficulty’ estimates for each concept. Therefore, this 
article presents the results of a large-scale data-driven analysis of 
the demonstrated use in practice of algorithms and programming 
concepts in App Inventor. Based on a dataset of more than 88,000 
App Inventor projects assessed automatically with the 
CodeMaster rubric, we perform an analysis using Item Response 
Theory. The results demonstrate that the easiness of some 
concepts can be explained by their inherent characteristics, but 
also due to the characteristics of App Inventor as a programming 
environment. These results can help teachers, instructional and 
curriculum designers in the sequencing, scaffolding, and 
assessment design of programming education in K-12. 

KEYWORDS 
Algorithms and Programming, App Inventor, Item Response 
Theory, Sequencing. 

1  INTRODUCTION 
The importance of computing nowadays for anyone regardless of 
the area of expertise is widely recognized. Consequently, 
computing education is making its way into K-12 worldwide, 
ranging from online MOOCs, extracurricular activities to courses 
fully integrated into the curriculum [1][2][3]. Several countries 
have developed guidelines and curricula for K-12 computing 
education [4]. Among, those, one of the most prominent models is 
the K-12 Computer Science Framework [5] defining a set of core 
computing concepts and practices to be covered in K-12. The core 
concepts represent major content areas in the field of computer 
science, including computing systems, networks, data and 
analysis, algorithms & programming as well as the impacts of 
computing. Core practices represent behaviors that 
computationally literate students should use to engage with the 
concepts of computing, such as recognizing and defining 
computational problems and creating computational artifacts. The 
standard also defines the sequencing of these concepts and 
practices describing how the students’ conceptual understanding 
and practice of computing should become more sophisticated over 
time and across educational stages in K-12. Other guidelines and 
curricula, such as Computing at School [6] or the Brazilian 
Computer Society Guidelines for Computing Education in K-12 
[7], cover similar basic concepts and practices. 

There are several approaches to teach computing, yet, in 
practice, they typically focus on algorithms and programming 
concepts and related practices as being one of the main knowledge 
areas of computing [1][8][9]. This comprises the competency to 
develop algorithms to solve problems in a language that 
computers can understand including basic programming concepts 
such as control (e.g., loops and conditionals), modularity, 
variables, etc. (Figure 1). 
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Figure 1: Core practices and sub-concepts related to the core 
concept algorithms & programming concepts [5] 

Variables refer to storing and manipulating data from 
computer programs. Control concepts specify the order in which 
instructions are executed within an algorithm or program (e.g., 
using loops and/or conditionals). Modularity involves dividing 
complex tasks into simpler tasks and combining them to create 
something complex. Program development represents the 
software engineering process that is repeated until acceptance 
criteria are met. In addition, several core practices are related to 
algorithms & programming as presented in Figure 1. 

In order to introduce programming in K-12, typically visual 
block-based environments are used. These environments allow to 
choose and drag-and-drop commands providing visual cues to the 
user as to how and where commands may be used reducing the 
cognitive load for novices [10][11]. A prominent example is App 
Inventor (appinventor.mit.edu), an online platform for the 
development of mobile applications for Android devices. It is 
used by a wide range of people of all ages and backgrounds with 
more than 1 million unique monthly active users from 195 
countries who created almost 35 million mobile apps as of 
January 2021. App Inventor projects can be shared via the App 
Inventor Gallery [12] under the creative commons license. App 
Inventor is also widely used to teach computing through the 
development of mobile applications [13] adopting diverse 
instructional strategies, ranging from well-defined interactive 
tutorials to open-ended ill-structured activities in a constructivist 
context following a problem-based learning approach [14]. These 
typically aim at teaching students to create their mobile 
applications to solve real-world issues applying a computational 
action strategy to make computing education more inclusive, 
motivating, and empowering for young learners [15][16]. More 
and more also adaptive learning systems are being adopted [17] 
providing personalized instruction and feedback tailored to the 
needs of individual learners. 

Yet, learning to program is a highly complex process and 
novices struggle with a wide range of difficulties [18][19]. It 
involves diverse cognitive activities and mental representations 
concerning the analysis of requirements, design, program 
understanding, modifying and debugging, as well as the 

construction of conceptual knowledge on basic operations (such 
as loops, conditional statements, etc.) [20]. Learning 
programming can be considered an exploratory process in which 
software artifacts are created through an incremental problem-
solving process using multiple competencies, i.e., computational 
concepts, practices, and perspectives [21][22][23]. 

Thus, in order to be effective, instructional units aimed at 
teaching programming need to be systematically designed taking 
into consideration not only the content to be taught but also the 
sequencing of instruction and the idiosyncrasies of programming 
environments. As the order and organization of learning activities 
affect the way information is processed and retained [24], it is 
important to sequence the content in a way it can be most easily 
grasped by the student using a particular programming 
environment [25] to improve the learners’ understanding and to 
help them to achieve the objectives [26]. If inadequately 
sequenced, a learner may be overloaded, which can negatively 
affect learning, performance, and motivation [27]. How content is 
sequenced is determined by the developmental level and current 
comprehension of the student, the instructional method, and the 
evolutionary structure of the knowledge on the given subject [28]. 
There are many different ways to sequence content elements [29], 
as, for example by adopting a simple to complex sequence 
strategy according to the main types of knowledge structure [30]. 

Thus, finding an optimal learning sequence is difficult, 
especially for different programming environments used to teach 
algorithms and programming concepts. Therefore, it is important 
to investigate the factors that lead to students learning difficulty in 
programming. Several studies already examine the learning of 
specific concepts when developing apps with App Inventor, 
including procedural abstraction concepts [31], events [9], 
programmatic sophistication [32], effectiveness [33], or 
appropriateness [10] of App Inventor as an educational 
environment. Others study the learning progression of students in 
computing courses in K-12, e.g., Xie and Abelson [34], who 
analyze the relationship between the progression of skill in using 
App Inventor functionality and in using computational thinking 
concepts as learners create more apps. Other research aiming at 
investigating the difficulty of content in computing education 
analyzing how students learn to program is mostly related to 
higher education [35], other block-based languages, such as 
Scratch [36][37][38][39][40][41], LaPlaya [42], and SNAP! based 
environments [43], object-oriented programming [44], etc. 

The assumption in many of these studies is that student 
progress can be understood through difficulties with specific 
programming constructs. Thus, the analysis of code created can 
provide insights concerning the ‘difficulty’ of learning certain 
concepts. Depending on the activities (well-defined or ill-defined) 
the programming ability of a person can be influenced by the 
volition, incentive, and opportunity to apply computing concepts 
in a programming environment and those factors should be taken 
into account. 

An alternative is to regard those constructs as latent 
psychometric constructs and use Item Response Theory (IRT) 
[45] to obtain quantitative ‘difficulty’ estimates for each content 
element [45]. IRT refers to a family of mathematical models that 
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attempt to explain the relationship between latent traits 
(unobservable characteristics or attributes such as volition, 
incentive, and opportunity to apply computing concepts, including 
loop, conditional concepts, etc. in a programming project) and 
their manifestations (i.e., observed outcomes, performance such as 
using loop and conditional blocks in App Inventor projects). 
Typically applied for testing, IRT establish a link between the 
properties of the items on an instrument, individuals responding to 
these items, and the underlying trait being measured. IRT assumes 
that the latent trait and items of a measure are organized in an 
unobservable continuum. Therefore, its main purpose focuses on 
establishing the individual’s position on that continuum. IRT is 
widely used for large-scale assessments [46], such as PISA 
(https://www.oecd.org/pisa/) or TOEFL 
(https://www.ets.org/toefl). 

Yet, it can also be used to obtain systematic information about 
the ‘difficulty’ of concepts and the distribution of the respective 
competencies among students. This can be done based on the code 
created by the students as an outcome of the learning process, 
regarding certain attributes of the code as manifestations of latent 
psychometric constructs according to the principles of IRT 
[47][48][62]. The occurrence of certain concepts like loops or 
conditional statements can be considered as satisfiability on 
certain items (e.g., “the existence of loops”). Consequently, the 
probability of such satisfiability depending on the item 
‘difficulty’, the estimated person abilities, and the volition, 
incentive, and opportunity to apply computing concepts, can be 
described by certain psychometric models, e.g., the Rasch or 
Graded Response Model. For example, Berges and Hubwieser 
[47] used IRT for assessing coding abilities by analyzing the 
source code created as an outcome of the learning process in the 
context of a freshman course at university for text-based object-
oriented programming. Similarly, Kramer et al. [48] used IRT for 
assessing students' abilities in text-based object-oriented 
programming in an introductory programming course. Both 
studies focused on the Java programming language. 

Although several studies analyze some aspects of algorithms 
and programming using block-based programming environments, 
so far, no research focusing directly on the analysis of the 
difficulty of concepts, including those approached by the K-12 
Computer Science Standard and specifically concerning the 
block-based programming environment App Inventor has been 
found. Therefore, the objective of this study is to analyze the 
‘demonstrated difficulty’ in App Inventor projects. Adopting IRT, 
we analyze algorithms & programming items based on the 
CodeMaster rubric [49][50] by extracting them automatically 
from the code of App Inventor projects. The results provide 
information about the ‘demonstrated difficulty’ of the concepts 
application and their distribution among the App Inventor 
projects. These results of this study can be used by instructional 
and curriculum designers in order to guide the sequencing of 
programming education in K-12. 

2  BACKGROUND 

2.1 App Inventor 
One of the most prominent block-based programming 

environments for computing education is App Inventor that allows 
creating mobile applications [12]. It was originally provided by 
Google and it is currently run by the Massachusetts Institute of 
Technology. The current version 2.0 of App Inventor runs on a 
web browser (Figure 2), replacing App Inventor Classic. App 
Inventor is used by a wide audience, from K-12 to higher 
education, including end-user developers who write programs to 
support their primary job or hobbies [51][13]. 

A mobile app can be created in two stages with App Inventor. 
First, using the Designer Editor, user interface components, such 
as buttons, labels, etc. are configured (Figure 2). The designer also 
allows to specify non-visual components such as sensors, social, 
and media components that access mobile device features. The 
app's behavior is programmed in a second stage by connecting 
visual programming blocks in the Blocks Editor. Each block 
corresponds to abstract syntax tree nodes in traditional 
programming languages. 

 

Figure 2: App Inventor Designer and Blocks Editor 

Blocks can represent standard programming concepts like 
loops, procedures, conditionals, etc., or conditions, events, and 
actions for a particular component of the app or any component. 
App Inventor blocks are divided into two categories: built-in 
blocks and component blocks. Built-in blocks are available for use 
in any app and refer to overall programming concepts. Component 
blocks include events, set and get, call methods, and component 
object blocks that are available for specific design components 
added to the app (Table 1). 

 

Design 
editor

Blocks 
editor
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Table 1: Overview of App Inventor blocks 

Type Category Description 

B
ui

lt-
in

 b
lo

ck
s 

Control Blocks responsible for control commands including 
important blocks like loops, conditionals, and screen 
actions. Examples: controls_while, controls_if, 
controls_closeScreen. 

Logic Blocks responsible for logic operations on variables 
including relational and Boolean. Examples: 
logic_compare, logic_operation. 

Math Blocks responsible for creating numbers and perform 
basic and advanced math operations. Examples: 
math_add, math_cos. 

Text Blocks responsible for creating and manipulating original 
strings. Examples: text, text_length. 

Lists Blocks responsible for creating and manipulating original 
lists. Example: lists_create_with, lists_add_items. 

Colors Blocks responsible for creating and manipulating colors. 
Examples: color_red, color_blue. 

Variables Blocks responsible for creating and manipulating original 
variables. Examples: global_declaration, 
lexical_variable_set. 

Procedures Blocks responsible for definition and call of original 
procedures. Examples: procedures_defnoreturn, 
procedures_callnoreturn. 

C
om

po
ne

nt
 b

lo
ck

s Events Blocks responsible for specifying how a component 
responds to certain events, such as a button has been 
pressed. Example: component_event 

Set and Get Blocks responsible for change components' properties. 
Example: component_set_get 

Call Methods Blocks responsible for call component methods to perform 
complex tasks. Example: component_method 

Component 
object 

Blocks responsible for getting the instance component. 
Example: component_component_block 

The source code files of the App Inventor project can be 
exported as AIA files. An AIA file is a compressed file collection 
that includes a project properties file, media files that the app 
uses, and two files are generated for each screen in the app: a 
BKY file and a SCM file. The BKY file wraps an XML structure 
including all the blocks of programming used to define the 
behavior of the app, and the SCM file wraps a JSON structure that 
contains all the used visual components in the app [52]. This AIA 
file can be automatically assessed with the algorithms & 
programming rubric (Table 2) by the CodeMaster tool. 

2.2 CodeMaster rubric 
CodeMaster [49][50] is an automated performance-based 

assessment rubric and grader. It enables an analysis of the code of 
App Inventor programs supported by a free web-based tool 
providing feedback to students and teachers in the form of a score 
with respect to algorithms & programming and the graphical user 
interface design of the apps created. The model has been 
developed based on a systematic mapping study [53] following an 
instructional design process [54] and the procedure for rubric 
definition proposed by Goodrich [55]. The rubric is based on the 
K-12 Computer Science Framework [5] as well as other rubrics 
and frameworks, including [21][8][56]. 

 

Table 2: CodeMaster rubric for assessing algorithms and programming based on the analysis of App Inventor projects 

Criterion  Performance Level (categories)  
0 1 2 3 

1. Operators No operator blocks are used. Arithmetic operator blocks are used. Relational operator blocks are used. Boolean operator blocks are used. 

2. Variables No use of variables. Modification or use of predefined 
variables. 

Creation and operation with 
variables. 

- 

3. Strings No use of strings. Use of string block to change the text 
of design components. 

Creation and operation with strings. - 

4. Naming Few or no names are changed from 
their defaults. 

10 to 25% of the names are changed 
from their defaults. 

26 to 75% of the names are 
changed from their defaults. 

More than 75% of the names are 
changed from their defaults. 

5. Lists No lists are used. One single-dimensional list is used. More than one single-dimensional 
list is used. 

Lists of tuples are used. 

6. Data persistence Data are stored only in variables or 
UI component properties, and do 
not persist when app is closed. 

Data is stored in files. Local database is used. Web database is used. 

7. Events No type of event handlers is used. One type of event handlers is used. Two or three types of event 
handlers are used. 

More than three types of event handlers 
are used. 

8. Loops No use of loops. Simple loops are used. ‘For each’ loops with simple 
variables are used. 

’For each’ loops with list items are used. 

9. Conditional No use of conditionals. Uses ‘if’ structure. Uses one ‘if then else’ structure. Uses more than one ‘if then else’ 
structure. 

10. Synchronization No use of timer for 
synchronization. 

Use of timer for synchronization. - - 

11. Procedural 
Abstraction 

No use of procedures. One procedure is defined and called. More than one procedure defined. There are procedures for code 
organization and re-use. 

12. Sensors No use of sensors. One type of sensor is used. Two types of sensors are used. More than two types of sensors are 
used. 

13. Drawing and 
Animation 

No use of drawing and animation 
components. 

Uses canvas component. Uses ball component. Uses image sprite component. 

14. Maps No use of city maps. Use of a city map block. Use of city map markers blocks. - 
15. Screens Single screen with visual 

components, whose state is not 
changed programmatically. 

Single screen with visual 
components, whose state is changed 
programmatically. 

Three screens with visual 
components of which at least one is 
programmed to change state. 

Four screens with visual components of 
which at least two are programmed to 
change state. 
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The CodeMaster rubric for assessing algorithms and 
programming concepts is composed of 15 items. It includes 
general algorithms and programming concepts, including 
operators, conditionals, loops, etc., as well as, mobile algorithms 
and programming concepts, including specific aspects related to 
the development of mobile features such as sensors, screens, etc. 
For each item performance levels are defined on ordinal scales, 
ranging from “item is not (or minimally) present” to advanced 
usage of the item. Aiming at the automation of the assessment, the 
performance levels are defined for automatically measurable 
characteristics based on the code of App Inventor projects. 

The CodeMaster rubric can be regarded as reliable 
(Cronbach’s alpha α=0.84) [49]. Concerning construct validity, 
there also exists an indication of convergent validity based on the 
results of a correlation and factor analysis. These results indicate 
that the rubric can be used for a valid assessment of algorithm and 
programming concepts of App Inventor programs as part of a 
comprehensive assessment completed by other assessment 
methods, such as observations [49]. The assessment using the 
CodeMaster rubric is automated by performing a static code 
analysis. The analysis is done by counting the kind and the 
number of command blocks used in App Inventor projects with 
respect to algorithms and programming concepts as defined in the 
rubric. 

2.3  Item Response Theory – Graded Response 
Model  

Item Response Theory (IRT) is a powerful tool in the quantitative 
processes of educational assessment as it allows analyzing item 
properties using falsifiable models. There are many mathematical 
models and to choose the adequate model the number of item 
response categories must be taken into account. Typically, for 
polytomous items, such as the CodeMaster rubric with three or 
more performance levels, the Graded Response Model (GRM) 
proposed by Samejima [57] is used. The GRM assumes that an 
item's response categories (denoted by k) are ordered among 
themselves and are arranged in order from smallest (1) to largest 
(𝑚!+ 1), where 𝑚!+ 1 is the number of categories of the i-th item. 
Thus, the probability (P) of an individual j with the latent trait θ to 
satisfy the k-th category from item i is given by the expression: 

𝑃!,##𝜃$% = 𝑃!,#% #𝜃$% − 𝑃!,#%&% #𝜃$% 
In order to get the probability 𝑃!,#% #𝜃$% an expression from the 

2-parameter logistic model can be used: 

𝑃!,#% #𝜃$% =
1

1 + 𝑒'()!(+"',!,$)
 

Where: 
• 𝑖 (item) = 1, 2, …, 𝐼 
• 𝑘 (category) = 0, 1, …, 𝑚! 
• 𝑗 (individual) = 1, 2, …, 𝑛 
• 𝜃$ represents the latent trait of an individual 𝑗 
• 𝑃!,#% #𝜃$% is the probability of an individual 𝑗 with the 

latent trait 𝜃 to satisfy the k-th category or higher 
from item 𝑖 

• 𝑎! represents the slope parameter of item 𝑖 

• 𝑏!,#  is the position parameter of the k-th category 
from item 𝑖 , measured on the same scale as the 
latent trait (θ) 

• D is a scale factor, constant and equal to 1 
From the definition as categories are arranged in order from 

smallest to largest, the b’s values representing the position 
parameter should be: 

𝑏!,& ≤ 𝑏!,. ≤ ⋯ ≤ 𝑏!,/! 
Samejima [57] also defined that 𝑃!,0% #𝜃$%  — the threshold 

parameter for the lowest category, equals 1, and 𝑃!,/%&% #𝜃$% — the 
probability of answering above the highest category, is zero: 

𝑃!,0% #𝜃$% = 1 
𝑃!,/%&% #𝜃$% = 0 

As a result, the b parameters representing position can be 
interpreted as the threshold of passing from a lower to a higher 
performance level (Figure 3). 

 

Figure 3: Position parameters (b’s) for items with 4 adjacent 
difficulty performance levels (as in the CodeMaster rubric). 

The position of items and their categories can be analyzed 
using the estimated values of b parameters on the same scale. 
Therefore, items that present b parameter values far below the 
average are considered “easy” as they result in a high probability 
of an average individual to satisfy the item’s category. Similarly, 
items that present high b parameters far above average are 
considered “difficult”, because of the low probability of an 
average individual to satisfy the item’s category. 

3  RESEARCH METHODOLOGY  
Adopting the Goal Question Metric approach [58], the objective 
of this study is defined as to analyze the ‘demonstrated difficulty’ 
of algorithms & programming concepts of App Inventor projects 
based on the CodeMaster rubric [49]. Here the term ‘demonstrated 
difficulty’ is defined as the volition, incentive, and opportunity to 
apply programming concepts in an App Inventor project shared 
via App Inventor Gallery, on which no further background 
information on the authors is provided. 

Initially, we use data collected in the form of publicly 
available and accessible projects from the App Inventor Gallery in 
June 2018. As a result, we use a dataset containing the source-
code from 88,864 App Inventor projects. We automatically 
assessed these projects using the CodeMaster tool with respect to 
algorithms & programming concepts by extracting them from the 
source code through static code analysis. Out of the 88,864 
projects, 88,812 were successfully assessed with the CodeMaster 
tool. 52 projects failed to be analyzed due to technical difficulties. 
The collected data were pooled in a single sample to analyze the 
difficulty of the items. The dataset was analyzed using the mirt 
package from the R programming language [59]. 

Performance level 0
(category)

Performance level 1
(category)

Performance level 3
(category)

Performance level 2
(category)

bi,2 bi,3 bi,4
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In order to analyze the item properties, we use the IRT Gradual 
Response Model proposed by Samejima [57]. This analysis is 
done by estimating the correspondence between an unobserved 
latent trait (the volition, incentive, and opportunity to apply 
computing concepts), and observable evidence (the assessed App 
Inventor projects). 

Verifying unidimensionality. In order to use the 
unidimensional GRM, it is necessary to assure that the instrument 
can be analyzed by a single predominant dimension. Therefore, 
we performed a parallel analysis with scree plot and full 
information factor analysis beforehand (Figure 4) [49]. 

 

Figure 4: Parallel analysis [49] 

The parallel analysis assumes that every dimension above the 
red line can be considered a relevant dimension. Thus, the results 
suggest that the instrument may contain 3 dimensions (Figure 4). 
However, there is a predominant dimension, indicating that the 
instrument can be analyzed by a single predominant dimension 
[49]. When performing the full information factor analysis [49], 
we also observed that when considering a single dimension, all 
factor loadings were greater than 0.3, which indicates that the 
items are related to this predominant dimension, except by the 
item “Maps” which presented a 0.262 factor loading (please see 
[49] for a detailed analysis). Despite the factor loading of this item 
being slightly less than 0.3 we decided to keep it in the analysis as 
this item may be underrepresented in our dataset [49]. In addition, 
we calculated the test variance. For acceptable calibration, the 
first dimension should account for at least 20% of the test 
variance [60]. We obtained a variance explained by the first-
dimension of 53% characterizing the strong unidimensionality of 
the instrument as required by the IRT model used in this study. 

4  ANALYSIS 
In order to analyze the properties of the items in the CodeMaster 
rubric, we use the Gradual Response Model (GRM) [57] to 
estimate the slope (a) parameter and position (b’s) parameters for 
each item. The metric is established by setting population 
parameters to average = 0 and standard deviation = 1. Since the 
CodeMaster rubric contains polytomous items, several b 
parameters are estimated (b2, b3, and b4) to differentiate the 
passage from one score to another. In this regard, b2 represents the 

difficulty of achieving score 1 on any item, b3 represents the 
difficulty of achieving score 2 on any item, and b4 represents the 
difficulty of achieving score 3 on any item. Consequently, items 
on a 2-point ordinal scale (without a description for category 3) 
also do not present a parameter b4 (e.g., item variables). In IRT, a 
and b parameters can theoretically assume any real value between 
−∞ and +∞. However, a negative value for a parameter is not 
expected. Typically values above 1.0 are considered good, as they 
indicate that the item discriminates well learners with different 
abilities. In this study, b parameters are the main indicators to be 
analyzed, as they indicate the position of the item. For b 
parameters, values close to or within the range [-5, 5] are 
expected, with negative values indicating that an item is 
positioned below average and positive values indicating above 
average. 

Table 3: Parameters estimated with standard errors (SE)  

Item (i) a (SE) b2 (SE) b3 (SE) b4 (SE) 
1. Operators 3.08 (0.02) -0.06 (0.01) 0.21 (0.01) 0.47 (0.01) 
2. Variables 2.97 (0.02) -0.83 (0.01) -0.01 (0.01) n.a. 
3. Strings 1.66 (0.01) -0.57 (0.01) 0.94 (0.01) n.a. 
4. Naming 1.68 (0.01) -0.31 (0.01) 0.07 (0.01) 1.89 (0.01) 
5. Lists 1.24 (0.01) 1.49 (0.01) 2.00 (0.02) 5.20 (0.07) 
6. Data persist. 1.57 (0.02) 1.82 (0.02) 1.90 (0.02) 3.36 (0.04) 
7. Events 2.88 (0.02) -1.65 (0.01) -0.90 (0.01) -0.47 (0.01) 
8. Loops 1.77 (0.03) 2.14 (0.02) 2.29 (0.02) 2.57 (0.03) 
9. Conditional 2.32 (0.02) 0.34 (0.01) 0.80 (0.01) 1.57 (0.01) 
10. Synch. 2.81 (0.03) 0.89 (0.01) n.a. n.a. 
11. Proced. Abstraction 3.18 (0.03) 0.99 (0.01) 1.08 (0.01) 1.19 (0.01) 
12. Sensors 1.53 (0.01) 0.64 (0.01) 2.77 (0.02) 4.39 (0.05) 
13. Drawing and Anim. 1.32 (0.01) 0.82 (0.01) 1.25 (0.01) 1.45 (0.01) 
14. Maps 0.65 (0.14) 11.36 (2.41) n.a. 12.46 (2.66) 
15. Screens 1.19 (0.01) -2.53 (0.02) 0.89 (0.01) 1.10 (0.01) 
 

In general, most items were well estimated, with slope (a) 
parameter values above 1 (Table 3). In addition, the values of the 
position parameters (b2, b3, and b4) are within the range [-5, 5]. 
Only the item lists and maps presented parameter b4 values above 
5. Standard errors (SE) of each b parameter present similar results 
and are in low magnitude, therefore, presenting no estimation 
problem, with exception of the item maps, which presents SEs in 
an order of magnitude higher than the SEs of all items parameters. 
The reason may be that in our dataset map blocks are very rarely 
used (about 0,1% of the projects) as they had been added more 
recently to the App Inventor environment. Thus, the parameters of 
item maps cannot be used for the interpretation of positioning. 

Analyzing the results, it can be inferred that the easiest 
category to satisfy is the first category of item 15 (screens), as it 
presents the smallest b parameter (b2 = -2.53). On the other hand, 
obtaining three points for the item lists is more difficult than any 
other item as it presents the highest value for a b parameter     (b4 
= 5.20). And, although item 14 (maps) presents high b parameters, 
this item is not considered here as it presents an estimation 
problem with SE in an order of magnitude higher than all other 
items’ SE. 

Based on the estimated b parameters (b2, b3, and b4) presented 
in Table 3 the items are placed on a wright map with a (0.1) scale, 
i.e., with average = 0 and standard deviation = 1 (Figure 5). The 
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scale is an “arbitrary” scale, where the relations of order and 
positions between its points are most important and not 
necessarily its magnitude. The wright map provides a general 
picture by placing the positioning of demonstrated difficulty of 
the items on the same measurement scale as the abilities with 
respect to algorithms and programming concepts based on 
assessed App Inventor projects used as observable evidence. The 
left side shows the distribution of the measured ability in App 
Inventor projects from the most able ones at the top to the least 
able ones at the bottom. The right side shows items distributed 
from the most difficult ones at the top to the least difficult ones at 
the bottom (Figure 5). 

From the placement of items on the scale, we can infer that an 
item with a b parameter estimated at 1.5 is 1.5 standard deviations 
above the average ability. Thus, such item is more difficult than 
all items that are placed below point 1.5 on the scale. In the 
context of programming with App Inventor, the easiest items 
include item 7 (events) and item 15 (screens) (Figure 5), as these 
items have negative b parameters far below zero. These results are 
semantically consistent, as App Inventor encourages unlimited use 
of events and creating screens that change programmatically as an 
essential functionality of useful mobile apps [9]. 

The most difficult items include lists, data persistence, loops, 
and sensors (items 5, 6, 8, and 12 respectively). For example, the 
3rd category on lists has the highest demonstrated difficulty 
parameter (b4), being the most difficult to achieve among all 
items. Item maps parameters are not presented because the values 
are out of range of the wright map [-2.5, 5.5] and are not 
considered here. Although the loops item is also considered 
difficult, it is noteworthy that loop blocks in App Inventor 
programs are rarely used, because many iterative processes that 

would be expressed with loops in other programming languages 
are expressed as an event that performs a single step of the 
iteration every time it is triggered [9]. Thus, the demonstrated 
difficulty of loops may be poorly represented in the App Inventor 
dataset, as more than 94% of apps are assessed with 0 points 
regarding loops (see Figure 6). In other visual programming 
environments, such as Scratch, the usage of this concept and 
consequently the demonstrated difficulty may be different. 

 

Figure 6: Frequency of the performance level score for each 
item  

According to the estimated b parameters, the Item 
Characteristic Curves (ICC) for each item are plotted (Figure 7). 
While the theoretical range of a latent trait is from negative 
infinity to positive infinitive, for practical considerations the range 
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Figure 5: Wright map of the algorithms and programming items in App Inventor projects 
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of values can be limited from -4 (low) to +4 (high) on the x-axis. 
Thus, items with low demonstrated difficulty are placed closer to 
low latent trait values and high demonstrated difficulty items are 
placed closer to the high latent trait. Therefore, items that have 
high b parameters, which indicate high demonstrated difficulty, 
such as items 5 (lists), 6 (data persistence), 8 (loops), and 12 
(sensors) present the curves dislocated to the right (Figure 7). In 
the same way, items with low demonstrated difficulty, such as 
items 7 (events) and 15 (screens) present curves dislocated to the 
left. Although item 14 (maps) presented the highest difficulty 
parameters (Table 3), and the “curve” is hidden above latent trait 
4.0, these parameters presented standards errors in a high order of 
magnitude (Table 3). Consequently, the ICC for maps cannot be 
used for difficulty interpretation purposes. 

Items with only three performance levels, such as item 2 
(variables), 3 (strings), and 14 (maps) have fewer curves than the 
other items (Figure 7). This is because of the impossibility of 
satisfying a fourth category as no such performance level has been 
defined for these items (see Table 2). This also applies to items 
with two performance levels, such as item 10 (synchronization). 

The P0 curve refers to the probability of satisfying category 
zero (or achieving score 0) for any item given the latent trait in the 
x-axis (Figure 7). Similarly, the P1, P2, and P3 curves refer to the 
probability of achieving scores 1, 2, and 3 respectively given the 
latent trait in the x-axis (Figure 7). Thus, the P0 is close to 1.0 for 

low latent trait values, as projects assessed with a “low” latent 
trait (the volition, incentive, and opportunity to apply computing 
concepts) have a probability close to 100% of achieving score 0. 
For example, presenting a latent trait less than -1.0 results in a 
bigger probability of achieving score 0 in item 3 (strings) than 
score 1. On the other hand, P0 is close to 0 for high latent trait 
values, as projects assessed with a “high” latent trait have a 
probability close to 0% of achieving score 0. For example, 
presenting a latent trait greater than the average (0.0) results in 
having a bigger probability in P1 for item 3 (strings), which is 
related to achieving score 1, than in P0, which is related to 
achieving score 0 for the same item (Figure 7). 

Some items' curves are more attached than others, for example, 
the curves of item 2 (variables) are more attached than the curves 
of item 3 (strings) (Figure 7). This occurs because b parameters of 
variables are less distant than b parameters of strings, as the 
distance between b2 and b3, i.e., b3 - b2, of the item variables is 
0.82, while their distance for the item strings is 1.51 (Table 3). 
This means that is easier to progress from “modifying or using 
predefined variables” to “creating and operating with variables”, 
than progressing from “using string block to change the text of 
design component” to “creating and operating with strings”, as 
defined in the CodeMaster rubric (Table 2). This is expected as 
operating with variables is easier than operating with strings, as 
strings can be broken apart to make new strings, or put together 

 

Figure 7: Item Characteristic Curves for each item 
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and make longer strings [61]. Similarly, this can also be observed 
regarding item 1 (operators) and 11 (sensors). 

5  DISCUSSION 
The results of the analysis provide an insight into the degree of 
demonstrated difficulty concerning algorithms and programming 
in the context of the development of apps with App Inventor 
(Table 4).  

Table 4: Summarized results  

 Demonstrated difficulty level 
Item (i) Low Medium High 
1. Operators  X  
2. Variables X   
3. Strings X   
4. Naming X   
5. Lists   X 
6. Data persistence   X 
7. Events X   
8. Loops   X 
9. Conditional  X  
10. Synchronization  X  
11. Procedural Abstraction  X  
12. Sensors   X 
13. Drawing and Animation  X  
14. Maps (excluded)    
15. Screens X   
 

Variables, strings, naming, events, and screens (items 2, 3, 4, 
7, and 15 respectively) are the easiest concepts when 
programming with App Inventor, as all probabilities curves are 
dislocated to the left (Figure 7). Items with medium demonstrated 
difficulty include operators, conditional, synchronization, 
procedural abstraction, and drawing and animation (item 1, 9, 
10, 11, and 13 respectively) as the probability curves are close to 
the average (0.0) latent trait. The most difficult items are lists, 
data persistence, loops, and sensors (item 5, 6, 8, and 12 
respectively) as the probability curves are dislocated to the right 
(Figure 7). This also confirms results presented by Xie and 
Abelson [34] indicating, for example, that apps that require data 
persistence (e.g., databases) represent more advanced artifacts. 
Some of the items with estimated high difficulty may be 
influenced by its infrequent use in App Inventor projects, e.g., 
loops rather than indicating the difficulty of understanding loops 
in general, and may be different when using other visual 
programming environments. 

These results can be used as a systematic basis supported by 
data for the sequencing of computing instruction in K-12 by 
teaching the development of apps with App Inventor. For 
instance, a manual organization by computer science teachers may 
achieve a similar result. However, this work does not support the 
findings based on opinion but data. Based on the results of the 
scale placement (Figure 5) and the detailed demonstrated 
difficulty ICC (Figure 7), teaching algorithms and programming 
concepts with App Inventor should thus start with the creation of 
screens and events as well as the usage of strings, and variables 
and naming. Then on the next stage, the instructional design could 

cover operators and conditionals as well as synchronization and 
procedural abstraction, while only more advanced students should 
be presented with problems requiring lists, data persistence, and 
sensors, allowing them to follow a smooth pathway as they 
progress toward mastery of the skills with scaffolding support. 

5.1  Threats to validity  
Our study is subject to several threats to validity which have been 
handled in order to be minimized. One risk is related to grouping 
data as App Inventor projects come from various contexts in the 
worldwide App Inventor community, and no additional 
information about the creator history is available in the App 
Inventor Gallery. Another factor that may influence the usage of 
commands may be the tutorials and instructional units typically 
used as well as a considerable number of very simple App 
Inventor projects at the App Inventor Gallery. However, as 
typically App Inventor is used by novices and/or in the context of 
computing education in K-12, we consider this acceptable 
considering the large-scale sample. Another threat regarding the 
possibility of generalizing the results is related to the sample size 
and projects from only one repository. Yet, this risk is minimized 
by using a significant number of apps (over 88,000) from the 
repository for App Inventor project used by contributors from 
around the world. 

Another risk is that the analysis based on the created code does 
not only assess whether a learner is able to achieve a certain item 
of the rubric, but also whether the learner is willing to do so. 
Therefore, we also restrict the interpretation of the “difficulty” of 
items in this study to the “demonstrated difficulty” defined as the 
volition, incentive, and opportunity to apply programming 
concepts in an App Inventor project shared via App Inventor 
Gallery. For measurement we used the CodeMaster rubric that 
was systematically defined and validated using Classical Test 
Theory with results reported in Alves et al. [49], indicating the 
reliability and validity of the rubric for the assessment of 
algorithm and programming concepts of App Inventor projects. 
Automating the assessment of the App Inventor projects with the 
CodeMaster tool further reduced the risks of reliability issues 
which may have caused through manual assessment. In order to 
mitigate threats concerning the research methodology, we adopted 
the GQM approach for measurement [58] and selected appropriate 
statistical techniques for the analysis [45], performing also 
necessary tests with respect to the characteristics of the dataset to 
assure their adequacy. 

6  CONCLUSION  
In this article we presented the results of an analysis of the 
demonstrated difficulty of general mobile algorithms and 
programming concepts based on App Inventor projects. 
Considering the difficulty of items, we identified that events and 
variables are the easiest items when programming with App 
Inventor, while the most difficult items are loops, data persistence, 
and lists. Comparing these results to analyses based on other 
block-based languages, we can observe based on data that the 
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difficulty of achieving performance levels of certain items may 
depend on the specific programming language, and, thus the 
programming environment to be adopted has to be explicitly 
considered in the instructional design of computing education. 
The results of this analysis can be used to systematically discuss 
and improve the sequencing of instructional units for teaching 
algorithms and programming with App Inventor by adopting 
scaffolding techniques. 
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