
An Item Response Theory Analysis of Algorithms and
Programming Concepts in App Inventor Projects

Nathalia da Cruz Alves
Department of Informatics and Statistics

 Federal University of Santa Catarina
 Florianópolis/Santa Catarina/Brazil

 nathalia.alves@posgrad.ufsc.br

Jean Carlo Rossa Hauck
 Department of Informatics and Statistics

 Federal University of Santa Catarina
Florianópolis/Santa Catarina/Brazil

jean.hauck@ufsc.br

Christiane Gresse von Wangenheim
 Department of Informatics and Statistics

 Federal University of Santa Catarina
Florianópolis/Santa Catarina/Brazil

c.wangenheim@ufsc.br

Adriano Ferreti Borgatto
 Department of Informatics and Statistics

 Federal University of Santa Catarina
Florianópolis/Santa Catarina/Brazil

adriano.borgatto@ufsc.br

ABSTRACT
Computing education is often introduced in K-12 focusing on
algorithms and programming concepts using block-based
programming environments, such as App Inventor. Yet, learning
programming is a complex process and novices struggle with
several difficulties. Thus, to be effective, instructional units need
to be designed regarding not only the content but also its
sequencing taking into consideration difficulties related to the
concepts and the idiosyncrasies of programming environments.
Such systematic sequencing can be based on large-scale project
analyses by regarding the volition, incentive, and opportunity of
students to apply the relevant program constructs as latent
psychometric constructs using Item Response Theory to obtain
quantitative ‘difficulty’ estimates for each concept. Therefore, this
article presents the results of a large-scale data-driven analysis of
the demonstrated use in practice of algorithms and programming
concepts in App Inventor. Based on a dataset of more than 88,000
App Inventor projects assessed automatically with the
CodeMaster rubric, we perform an analysis using Item Response
Theory. The results demonstrate that the easiness of some
concepts can be explained by their inherent characteristics, but
also due to the characteristics of App Inventor as a programming
environment. These results can help teachers, instructional and
curriculum designers in the sequencing, scaffolding, and
assessment design of programming education in K-12.

KEYWORDS
Algorithms and Programming, App Inventor, Item Response
Theory, Sequencing.

1 INTRODUCTION
The importance of computing nowadays for anyone regardless of
the area of expertise is widely recognized. Consequently,
computing education is making its way into K-12 worldwide,
ranging from online MOOCs, extracurricular activities to courses
fully integrated into the curriculum [1][2][3]. Several countries
have developed guidelines and curricula for K-12 computing
education [4]. Among, those, one of the most prominent models is
the K-12 Computer Science Framework [5] defining a set of core
computing concepts and practices to be covered in K-12. The core
concepts represent major content areas in the field of computer
science, including computing systems, networks, data and
analysis, algorithms & programming as well as the impacts of
computing. Core practices represent behaviors that
computationally literate students should use to engage with the
concepts of computing, such as recognizing and defining
computational problems and creating computational artifacts. The
standard also defines the sequencing of these concepts and
practices describing how the students’ conceptual understanding
and practice of computing should become more sophisticated over
time and across educational stages in K-12. Other guidelines and
curricula, such as Computing at School [6] or the Brazilian
Computer Society Guidelines for Computing Education in K-12
[7], cover similar basic concepts and practices.

There are several approaches to teach computing, yet, in
practice, they typically focus on algorithms and programming
concepts and related practices as being one of the main knowledge
areas of computing [1][8][9]. This comprises the competency to
develop algorithms to solve problems in a language that
computers can understand including basic programming concepts
such as control (e.g., loops and conditionals), modularity,
variables, etc. (Figure 1).

The author(s) or third-parties are allowed to reproduce or distribute, in part or in
whole, the material extracted from this work, in textual form, adapted or remixed,
as well as the creation or production based on its content, for non-commercial
purposes, since the proper credit is provided to the original creation, under the CC
BY-NC 4.0 License.
EduComp’21, Abril 27–30, 2021, Jataí, Goiás, Brasil (On-line)
©2021 Copyright held by the owner/author(s). Publication rights licensed to
Brazilian Computing Society (SBC).

01

EduComp’21, Abril 27-30, 2021, Jataí, Goiás, Brasil (On-line) Alves et al.

Figure 1: Core practices and sub-concepts related to the core
concept algorithms & programming concepts [5]

Variables refer to storing and manipulating data from
computer programs. Control concepts specify the order in which
instructions are executed within an algorithm or program (e.g.,
using loops and/or conditionals). Modularity involves dividing
complex tasks into simpler tasks and combining them to create
something complex. Program development represents the
software engineering process that is repeated until acceptance
criteria are met. In addition, several core practices are related to
algorithms & programming as presented in Figure 1.

In order to introduce programming in K-12, typically visual
block-based environments are used. These environments allow to
choose and drag-and-drop commands providing visual cues to the
user as to how and where commands may be used reducing the
cognitive load for novices [10][11]. A prominent example is App
Inventor (appinventor.mit.edu), an online platform for the
development of mobile applications for Android devices. It is
used by a wide range of people of all ages and backgrounds with
more than 1 million unique monthly active users from 195
countries who created almost 35 million mobile apps as of
January 2021. App Inventor projects can be shared via the App
Inventor Gallery [12] under the creative commons license. App
Inventor is also widely used to teach computing through the
development of mobile applications [13] adopting diverse
instructional strategies, ranging from well-defined interactive
tutorials to open-ended ill-structured activities in a constructivist
context following a problem-based learning approach [14]. These
typically aim at teaching students to create their mobile
applications to solve real-world issues applying a computational
action strategy to make computing education more inclusive,
motivating, and empowering for young learners [15][16]. More
and more also adaptive learning systems are being adopted [17]
providing personalized instruction and feedback tailored to the
needs of individual learners.

Yet, learning to program is a highly complex process and
novices struggle with a wide range of difficulties [18][19]. It
involves diverse cognitive activities and mental representations
concerning the analysis of requirements, design, program
understanding, modifying and debugging, as well as the

construction of conceptual knowledge on basic operations (such
as loops, conditional statements, etc.) [20]. Learning
programming can be considered an exploratory process in which
software artifacts are created through an incremental problem-
solving process using multiple competencies, i.e., computational
concepts, practices, and perspectives [21][22][23].

Thus, in order to be effective, instructional units aimed at
teaching programming need to be systematically designed taking
into consideration not only the content to be taught but also the
sequencing of instruction and the idiosyncrasies of programming
environments. As the order and organization of learning activities
affect the way information is processed and retained [24], it is
important to sequence the content in a way it can be most easily
grasped by the student using a particular programming
environment [25] to improve the learners’ understanding and to
help them to achieve the objectives [26]. If inadequately
sequenced, a learner may be overloaded, which can negatively
affect learning, performance, and motivation [27]. How content is
sequenced is determined by the developmental level and current
comprehension of the student, the instructional method, and the
evolutionary structure of the knowledge on the given subject [28].
There are many different ways to sequence content elements [29],
as, for example by adopting a simple to complex sequence
strategy according to the main types of knowledge structure [30].

Thus, finding an optimal learning sequence is difficult,
especially for different programming environments used to teach
algorithms and programming concepts. Therefore, it is important
to investigate the factors that lead to students learning difficulty in
programming. Several studies already examine the learning of
specific concepts when developing apps with App Inventor,
including procedural abstraction concepts [31], events [9],
programmatic sophistication [32], effectiveness [33], or
appropriateness [10] of App Inventor as an educational
environment. Others study the learning progression of students in
computing courses in K-12, e.g., Xie and Abelson [34], who
analyze the relationship between the progression of skill in using
App Inventor functionality and in using computational thinking
concepts as learners create more apps. Other research aiming at
investigating the difficulty of content in computing education
analyzing how students learn to program is mostly related to
higher education [35], other block-based languages, such as
Scratch [36][37][38][39][40][41], LaPlaya [42], and SNAP! based
environments [43], object-oriented programming [44], etc.

The assumption in many of these studies is that student
progress can be understood through difficulties with specific
programming constructs. Thus, the analysis of code created can
provide insights concerning the ‘difficulty’ of learning certain
concepts. Depending on the activities (well-defined or ill-defined)
the programming ability of a person can be influenced by the
volition, incentive, and opportunity to apply computing concepts
in a programming environment and those factors should be taken
into account.

An alternative is to regard those constructs as latent
psychometric constructs and use Item Response Theory (IRT)
[45] to obtain quantitative ‘difficulty’ estimates for each content
element [45]. IRT refers to a family of mathematical models that

Variables

Control

Modularity

Program development

Algorithms

Algorithms & Programming

Core ConceptCore Practices

P3. Recognizing and Defining
Computational Problems
P4. Developing and Using
Abstractions
P5. Creating Computational
Artifacts
P6. Testing and Refining
Computational Artifacts

Sub-conceptsP2. Collaborating Around
Computing

P1. Fostering an Inclusive
Computing Culture

P7. Communicating About
Computing

C
om

pu
ta

tio
na

l t
hi

nk
in

g

02

An Item Response Theory Analysis of Algorithms and… EduComp’21, Abril 27-30, 2021, Jataí, Goiás, Brasil (On-line)

attempt to explain the relationship between latent traits
(unobservable characteristics or attributes such as volition,
incentive, and opportunity to apply computing concepts, including
loop, conditional concepts, etc. in a programming project) and
their manifestations (i.e., observed outcomes, performance such as
using loop and conditional blocks in App Inventor projects).
Typically applied for testing, IRT establish a link between the
properties of the items on an instrument, individuals responding to
these items, and the underlying trait being measured. IRT assumes
that the latent trait and items of a measure are organized in an
unobservable continuum. Therefore, its main purpose focuses on
establishing the individual’s position on that continuum. IRT is
widely used for large-scale assessments [46], such as PISA
(https://www.oecd.org/pisa/) or TOEFL
(https://www.ets.org/toefl).

Yet, it can also be used to obtain systematic information about
the ‘difficulty’ of concepts and the distribution of the respective
competencies among students. This can be done based on the code
created by the students as an outcome of the learning process,
regarding certain attributes of the code as manifestations of latent
psychometric constructs according to the principles of IRT
[47][48][62]. The occurrence of certain concepts like loops or
conditional statements can be considered as satisfiability on
certain items (e.g., “the existence of loops”). Consequently, the
probability of such satisfiability depending on the item
‘difficulty’, the estimated person abilities, and the volition,
incentive, and opportunity to apply computing concepts, can be
described by certain psychometric models, e.g., the Rasch or
Graded Response Model. For example, Berges and Hubwieser
[47] used IRT for assessing coding abilities by analyzing the
source code created as an outcome of the learning process in the
context of a freshman course at university for text-based object-
oriented programming. Similarly, Kramer et al. [48] used IRT for
assessing students' abilities in text-based object-oriented
programming in an introductory programming course. Both
studies focused on the Java programming language.

Although several studies analyze some aspects of algorithms
and programming using block-based programming environments,
so far, no research focusing directly on the analysis of the
difficulty of concepts, including those approached by the K-12
Computer Science Standard and specifically concerning the
block-based programming environment App Inventor has been
found. Therefore, the objective of this study is to analyze the
‘demonstrated difficulty’ in App Inventor projects. Adopting IRT,
we analyze algorithms & programming items based on the
CodeMaster rubric [49][50] by extracting them automatically
from the code of App Inventor projects. The results provide
information about the ‘demonstrated difficulty’ of the concepts
application and their distribution among the App Inventor
projects. These results of this study can be used by instructional
and curriculum designers in order to guide the sequencing of
programming education in K-12.

2 BACKGROUND

2.1 App Inventor
One of the most prominent block-based programming

environments for computing education is App Inventor that allows
creating mobile applications [12]. It was originally provided by
Google and it is currently run by the Massachusetts Institute of
Technology. The current version 2.0 of App Inventor runs on a
web browser (Figure 2), replacing App Inventor Classic. App
Inventor is used by a wide audience, from K-12 to higher
education, including end-user developers who write programs to
support their primary job or hobbies [51][13].

A mobile app can be created in two stages with App Inventor.
First, using the Designer Editor, user interface components, such
as buttons, labels, etc. are configured (Figure 2). The designer also
allows to specify non-visual components such as sensors, social,
and media components that access mobile device features. The
app's behavior is programmed in a second stage by connecting
visual programming blocks in the Blocks Editor. Each block
corresponds to abstract syntax tree nodes in traditional
programming languages.

Figure 2: App Inventor Designer and Blocks Editor

Blocks can represent standard programming concepts like
loops, procedures, conditionals, etc., or conditions, events, and
actions for a particular component of the app or any component.
App Inventor blocks are divided into two categories: built-in
blocks and component blocks. Built-in blocks are available for use
in any app and refer to overall programming concepts. Component
blocks include events, set and get, call methods, and component
object blocks that are available for specific design components
added to the app (Table 1).

Design
editor

Blocks
editor

03

EduComp’21, Abril 27-30, 2021, Jataí, Goiás, Brasil (On-line) Alves et al.

Table 1: Overview of App Inventor blocks

Type Category Description

B
ui

lt-
in

 b
lo

ck
s

Control Blocks responsible for control commands including
important blocks like loops, conditionals, and screen
actions. Examples: controls_while, controls_if,
controls_closeScreen.

Logic Blocks responsible for logic operations on variables
including relational and Boolean. Examples:
logic_compare, logic_operation.

Math Blocks responsible for creating numbers and perform
basic and advanced math operations. Examples:
math_add, math_cos.

Text Blocks responsible for creating and manipulating original
strings. Examples: text, text_length.

Lists Blocks responsible for creating and manipulating original
lists. Example: lists_create_with, lists_add_items.

Colors Blocks responsible for creating and manipulating colors.
Examples: color_red, color_blue.

Variables Blocks responsible for creating and manipulating original
variables. Examples: global_declaration,
lexical_variable_set.

Procedures Blocks responsible for definition and call of original
procedures. Examples: procedures_defnoreturn,
procedures_callnoreturn.

C
om

po
ne

nt
 b

lo
ck

s Events Blocks responsible for specifying how a component
responds to certain events, such as a button has been
pressed. Example: component_event

Set and Get Blocks responsible for change components' properties.
Example: component_set_get

Call Methods Blocks responsible for call component methods to perform
complex tasks. Example: component_method

Component
object

Blocks responsible for getting the instance component.
Example: component_component_block

The source code files of the App Inventor project can be
exported as AIA files. An AIA file is a compressed file collection
that includes a project properties file, media files that the app
uses, and two files are generated for each screen in the app: a
BKY file and a SCM file. The BKY file wraps an XML structure
including all the blocks of programming used to define the
behavior of the app, and the SCM file wraps a JSON structure that
contains all the used visual components in the app [52]. This AIA
file can be automatically assessed with the algorithms &
programming rubric (Table 2) by the CodeMaster tool.

2.2 CodeMaster rubric
CodeMaster [49][50] is an automated performance-based

assessment rubric and grader. It enables an analysis of the code of
App Inventor programs supported by a free web-based tool
providing feedback to students and teachers in the form of a score
with respect to algorithms & programming and the graphical user
interface design of the apps created. The model has been
developed based on a systematic mapping study [53] following an
instructional design process [54] and the procedure for rubric
definition proposed by Goodrich [55]. The rubric is based on the
K-12 Computer Science Framework [5] as well as other rubrics
and frameworks, including [21][8][56].

Table 2: CodeMaster rubric for assessing algorithms and programming based on the analysis of App Inventor projects

Criterion Performance Level (categories)
0 1 2 3

1. Operators No operator blocks are used. Arithmetic operator blocks are used. Relational operator blocks are used. Boolean operator blocks are used.

2. Variables No use of variables. Modification or use of predefined
variables.

Creation and operation with
variables.

-

3. Strings No use of strings. Use of string block to change the text
of design components.

Creation and operation with strings. -

4. Naming Few or no names are changed from
their defaults.

10 to 25% of the names are changed
from their defaults.

26 to 75% of the names are
changed from their defaults.

More than 75% of the names are
changed from their defaults.

5. Lists No lists are used. One single-dimensional list is used. More than one single-dimensional
list is used.

Lists of tuples are used.

6. Data persistence Data are stored only in variables or
UI component properties, and do
not persist when app is closed.

Data is stored in files. Local database is used. Web database is used.

7. Events No type of event handlers is used. One type of event handlers is used. Two or three types of event
handlers are used.

More than three types of event handlers
are used.

8. Loops No use of loops. Simple loops are used. ‘For each’ loops with simple
variables are used.

’For each’ loops with list items are used.

9. Conditional No use of conditionals. Uses ‘if’ structure. Uses one ‘if then else’ structure. Uses more than one ‘if then else’
structure.

10. Synchronization No use of timer for
synchronization.

Use of timer for synchronization. - -

11. Procedural
Abstraction

No use of procedures. One procedure is defined and called. More than one procedure defined. There are procedures for code
organization and re-use.

12. Sensors No use of sensors. One type of sensor is used. Two types of sensors are used. More than two types of sensors are
used.

13. Drawing and
Animation

No use of drawing and animation
components.

Uses canvas component. Uses ball component. Uses image sprite component.

14. Maps No use of city maps. Use of a city map block. Use of city map markers blocks. -
15. Screens Single screen with visual

components, whose state is not
changed programmatically.

Single screen with visual
components, whose state is changed
programmatically.

Three screens with visual
components of which at least one is
programmed to change state.

Four screens with visual components of
which at least two are programmed to
change state.

04

An Item Response Theory Analysis of Algorithms and… EduComp’21, Abril 27-30, 2021, Jataí, Goiás, Brasil (On-line)

The CodeMaster rubric for assessing algorithms and
programming concepts is composed of 15 items. It includes
general algorithms and programming concepts, including
operators, conditionals, loops, etc., as well as, mobile algorithms
and programming concepts, including specific aspects related to
the development of mobile features such as sensors, screens, etc.
For each item performance levels are defined on ordinal scales,
ranging from “item is not (or minimally) present” to advanced
usage of the item. Aiming at the automation of the assessment, the
performance levels are defined for automatically measurable
characteristics based on the code of App Inventor projects.

The CodeMaster rubric can be regarded as reliable
(Cronbach’s alpha α=0.84) [49]. Concerning construct validity,
there also exists an indication of convergent validity based on the
results of a correlation and factor analysis. These results indicate
that the rubric can be used for a valid assessment of algorithm and
programming concepts of App Inventor programs as part of a
comprehensive assessment completed by other assessment
methods, such as observations [49]. The assessment using the
CodeMaster rubric is automated by performing a static code
analysis. The analysis is done by counting the kind and the
number of command blocks used in App Inventor projects with
respect to algorithms and programming concepts as defined in the
rubric.

2.3 Item Response Theory – Graded Response
Model

Item Response Theory (IRT) is a powerful tool in the quantitative
processes of educational assessment as it allows analyzing item
properties using falsifiable models. There are many mathematical
models and to choose the adequate model the number of item
response categories must be taken into account. Typically, for
polytomous items, such as the CodeMaster rubric with three or
more performance levels, the Graded Response Model (GRM)
proposed by Samejima [57] is used. The GRM assumes that an
item's response categories (denoted by k) are ordered among
themselves and are arranged in order from smallest (1) to largest
(𝑚!+ 1), where 𝑚!+ 1 is the number of categories of the i-th item.
Thus, the probability (P) of an individual j with the latent trait θ to
satisfy the k-th category from item i is given by the expression:

𝑃!,##𝜃$% = 𝑃!,#% #𝜃$% − 𝑃!,#%&% #𝜃$%
In order to get the probability 𝑃!,#% #𝜃$% an expression from the

2-parameter logistic model can be used:

𝑃!,#% #𝜃$% =
1

1 + 𝑒'()!(+"',!,$)

Where:
• 𝑖 (item) = 1, 2, …, 𝐼
• 𝑘 (category) = 0, 1, …, 𝑚!
• 𝑗 (individual) = 1, 2, …, 𝑛
• 𝜃$ represents the latent trait of an individual 𝑗
• 𝑃!,#% #𝜃$% is the probability of an individual 𝑗 with the

latent trait 𝜃 to satisfy the k-th category or higher
from item 𝑖

• 𝑎! represents the slope parameter of item 𝑖

• 𝑏!,# is the position parameter of the k-th category
from item 𝑖 , measured on the same scale as the
latent trait (θ)

• D is a scale factor, constant and equal to 1
From the definition as categories are arranged in order from

smallest to largest, the b’s values representing the position
parameter should be:

𝑏!,& ≤ 𝑏!,. ≤ ⋯ ≤ 𝑏!,/!
Samejima [57] also defined that 𝑃!,0% #𝜃$% — the threshold

parameter for the lowest category, equals 1, and 𝑃!,/%&% #𝜃$% — the
probability of answering above the highest category, is zero:

𝑃!,0% #𝜃$% = 1
𝑃!,/%&% #𝜃$% = 0

As a result, the b parameters representing position can be
interpreted as the threshold of passing from a lower to a higher
performance level (Figure 3).

Figure 3: Position parameters (b’s) for items with 4 adjacent
difficulty performance levels (as in the CodeMaster rubric).

The position of items and their categories can be analyzed
using the estimated values of b parameters on the same scale.
Therefore, items that present b parameter values far below the
average are considered “easy” as they result in a high probability
of an average individual to satisfy the item’s category. Similarly,
items that present high b parameters far above average are
considered “difficult”, because of the low probability of an
average individual to satisfy the item’s category.

3 RESEARCH METHODOLOGY
Adopting the Goal Question Metric approach [58], the objective
of this study is defined as to analyze the ‘demonstrated difficulty’
of algorithms & programming concepts of App Inventor projects
based on the CodeMaster rubric [49]. Here the term ‘demonstrated
difficulty’ is defined as the volition, incentive, and opportunity to
apply programming concepts in an App Inventor project shared
via App Inventor Gallery, on which no further background
information on the authors is provided.

Initially, we use data collected in the form of publicly
available and accessible projects from the App Inventor Gallery in
June 2018. As a result, we use a dataset containing the source-
code from 88,864 App Inventor projects. We automatically
assessed these projects using the CodeMaster tool with respect to
algorithms & programming concepts by extracting them from the
source code through static code analysis. Out of the 88,864
projects, 88,812 were successfully assessed with the CodeMaster
tool. 52 projects failed to be analyzed due to technical difficulties.
The collected data were pooled in a single sample to analyze the
difficulty of the items. The dataset was analyzed using the mirt
package from the R programming language [59].

Performance level 0
(category)

Performance level 1
(category)

Performance level 3
(category)

Performance level 2
(category)

bi,2 bi,3 bi,4

05

EduComp’21, Abril 27-30, 2021, Jataí, Goiás, Brasil (On-line) Alves et al.

In order to analyze the item properties, we use the IRT Gradual
Response Model proposed by Samejima [57]. This analysis is
done by estimating the correspondence between an unobserved
latent trait (the volition, incentive, and opportunity to apply
computing concepts), and observable evidence (the assessed App
Inventor projects).

Verifying unidimensionality. In order to use the
unidimensional GRM, it is necessary to assure that the instrument
can be analyzed by a single predominant dimension. Therefore,
we performed a parallel analysis with scree plot and full
information factor analysis beforehand (Figure 4) [49].

Figure 4: Parallel analysis [49]

The parallel analysis assumes that every dimension above the
red line can be considered a relevant dimension. Thus, the results
suggest that the instrument may contain 3 dimensions (Figure 4).
However, there is a predominant dimension, indicating that the
instrument can be analyzed by a single predominant dimension
[49]. When performing the full information factor analysis [49],
we also observed that when considering a single dimension, all
factor loadings were greater than 0.3, which indicates that the
items are related to this predominant dimension, except by the
item “Maps” which presented a 0.262 factor loading (please see
[49] for a detailed analysis). Despite the factor loading of this item
being slightly less than 0.3 we decided to keep it in the analysis as
this item may be underrepresented in our dataset [49]. In addition,
we calculated the test variance. For acceptable calibration, the
first dimension should account for at least 20% of the test
variance [60]. We obtained a variance explained by the first-
dimension of 53% characterizing the strong unidimensionality of
the instrument as required by the IRT model used in this study.

4 ANALYSIS
In order to analyze the properties of the items in the CodeMaster
rubric, we use the Gradual Response Model (GRM) [57] to
estimate the slope (a) parameter and position (b’s) parameters for
each item. The metric is established by setting population
parameters to average = 0 and standard deviation = 1. Since the
CodeMaster rubric contains polytomous items, several b
parameters are estimated (b2, b3, and b4) to differentiate the
passage from one score to another. In this regard, b2 represents the

difficulty of achieving score 1 on any item, b3 represents the
difficulty of achieving score 2 on any item, and b4 represents the
difficulty of achieving score 3 on any item. Consequently, items
on a 2-point ordinal scale (without a description for category 3)
also do not present a parameter b4 (e.g., item variables). In IRT, a
and b parameters can theoretically assume any real value between
−∞ and +∞. However, a negative value for a parameter is not
expected. Typically values above 1.0 are considered good, as they
indicate that the item discriminates well learners with different
abilities. In this study, b parameters are the main indicators to be
analyzed, as they indicate the position of the item. For b
parameters, values close to or within the range [-5, 5] are
expected, with negative values indicating that an item is
positioned below average and positive values indicating above
average.

Table 3: Parameters estimated with standard errors (SE)

Item (i) a (SE) b2 (SE) b3 (SE) b4 (SE)
1. Operators 3.08 (0.02) -0.06 (0.01) 0.21 (0.01) 0.47 (0.01)
2. Variables 2.97 (0.02) -0.83 (0.01) -0.01 (0.01) n.a.
3. Strings 1.66 (0.01) -0.57 (0.01) 0.94 (0.01) n.a.
4. Naming 1.68 (0.01) -0.31 (0.01) 0.07 (0.01) 1.89 (0.01)
5. Lists 1.24 (0.01) 1.49 (0.01) 2.00 (0.02) 5.20 (0.07)
6. Data persist. 1.57 (0.02) 1.82 (0.02) 1.90 (0.02) 3.36 (0.04)
7. Events 2.88 (0.02) -1.65 (0.01) -0.90 (0.01) -0.47 (0.01)
8. Loops 1.77 (0.03) 2.14 (0.02) 2.29 (0.02) 2.57 (0.03)
9. Conditional 2.32 (0.02) 0.34 (0.01) 0.80 (0.01) 1.57 (0.01)
10. Synch. 2.81 (0.03) 0.89 (0.01) n.a. n.a.
11. Proced. Abstraction 3.18 (0.03) 0.99 (0.01) 1.08 (0.01) 1.19 (0.01)
12. Sensors 1.53 (0.01) 0.64 (0.01) 2.77 (0.02) 4.39 (0.05)
13. Drawing and Anim. 1.32 (0.01) 0.82 (0.01) 1.25 (0.01) 1.45 (0.01)
14. Maps 0.65 (0.14) 11.36 (2.41) n.a. 12.46 (2.66)
15. Screens 1.19 (0.01) -2.53 (0.02) 0.89 (0.01) 1.10 (0.01)

In general, most items were well estimated, with slope (a)
parameter values above 1 (Table 3). In addition, the values of the
position parameters (b2, b3, and b4) are within the range [-5, 5].
Only the item lists and maps presented parameter b4 values above
5. Standard errors (SE) of each b parameter present similar results
and are in low magnitude, therefore, presenting no estimation
problem, with exception of the item maps, which presents SEs in
an order of magnitude higher than the SEs of all items parameters.
The reason may be that in our dataset map blocks are very rarely
used (about 0,1% of the projects) as they had been added more
recently to the App Inventor environment. Thus, the parameters of
item maps cannot be used for the interpretation of positioning.

Analyzing the results, it can be inferred that the easiest
category to satisfy is the first category of item 15 (screens), as it
presents the smallest b parameter (b2 = -2.53). On the other hand,
obtaining three points for the item lists is more difficult than any
other item as it presents the highest value for a b parameter (b4
= 5.20). And, although item 14 (maps) presents high b parameters,
this item is not considered here as it presents an estimation
problem with SE in an order of magnitude higher than all other
items’ SE.

Based on the estimated b parameters (b2, b3, and b4) presented
in Table 3 the items are placed on a wright map with a (0.1) scale,
i.e., with average = 0 and standard deviation = 1 (Figure 5). The

06

An Item Response Theory Analysis of Algorithms and… EduComp’21, Abril 27-30, 2021, Jataí, Goiás, Brasil (On-line)

scale is an “arbitrary” scale, where the relations of order and
positions between its points are most important and not
necessarily its magnitude. The wright map provides a general
picture by placing the positioning of demonstrated difficulty of
the items on the same measurement scale as the abilities with
respect to algorithms and programming concepts based on
assessed App Inventor projects used as observable evidence. The
left side shows the distribution of the measured ability in App
Inventor projects from the most able ones at the top to the least
able ones at the bottom. The right side shows items distributed
from the most difficult ones at the top to the least difficult ones at
the bottom (Figure 5).

From the placement of items on the scale, we can infer that an
item with a b parameter estimated at 1.5 is 1.5 standard deviations
above the average ability. Thus, such item is more difficult than
all items that are placed below point 1.5 on the scale. In the
context of programming with App Inventor, the easiest items
include item 7 (events) and item 15 (screens) (Figure 5), as these
items have negative b parameters far below zero. These results are
semantically consistent, as App Inventor encourages unlimited use
of events and creating screens that change programmatically as an
essential functionality of useful mobile apps [9].

The most difficult items include lists, data persistence, loops,
and sensors (items 5, 6, 8, and 12 respectively). For example, the
3rd category on lists has the highest demonstrated difficulty
parameter (b4), being the most difficult to achieve among all
items. Item maps parameters are not presented because the values
are out of range of the wright map [-2.5, 5.5] and are not
considered here. Although the loops item is also considered
difficult, it is noteworthy that loop blocks in App Inventor
programs are rarely used, because many iterative processes that

would be expressed with loops in other programming languages
are expressed as an event that performs a single step of the
iteration every time it is triggered [9]. Thus, the demonstrated
difficulty of loops may be poorly represented in the App Inventor
dataset, as more than 94% of apps are assessed with 0 points
regarding loops (see Figure 6). In other visual programming
environments, such as Scratch, the usage of this concept and
consequently the demonstrated difficulty may be different.

Figure 6: Frequency of the performance level score for each
item

According to the estimated b parameters, the Item
Characteristic Curves (ICC) for each item are plotted (Figure 7).
While the theoretical range of a latent trait is from negative
infinity to positive infinitive, for practical considerations the range

0% 20% 40% 60% 80% 100%

Screens (I15)
Maps (I14)

Drawing and anima<on (I13)
Sensors (I12)

Procedural abstrac<on (I11)
Synchroniza<on (I10)

Condi<onal (I09)
Loops (I08)

Events (I07)
Data persistence (I06)

Lists (I05)
Naming (I04)
Strings (I03)

Variables (I02)
Operators (I01)

0 points 1 point 2 points 3 points

Figure 5: Wright map of the algorithms and programming items in App Inventor projects

6.95%
3.55%

7.94%
21.52%

14.75%
20.43%

18.25%
5.45%

1.09%
0.08%

-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

1.
 O

pe
ra

to
rs

2.
 V

ar
ia

bl
es

3.
 S

tr
in

gs
4.

 N
am

in
g

5.
 L

ist
s

6.
 D

at
a

pe
rs

ist
.

7.
 E

ve
nt

s
8.

 L
oo

ps
9.

 C
on

di
Lo

na
l

10
. S

yn
c.

11
. P

ro
ce

d.
 A

bs
tr.

12
. S

en
so

rs
13

. D
ra

w.
 &

 A
ni

m
.

14
. M

ap
s

15
. S

cr
ee

ns
b2 b3 b4

DistribuLon of the measured
ability in assessed App Inventor
projects

Items b parameters
far above 1 may be
too difficult

Items b parameters
far below zero may
be too easy

de
m

on
st

ra
te

d
di

ffi
cu

lty

b2 b3 b4

07

EduComp’21, Abril 27-30, 2021, Jataí, Goiás, Brasil (On-line) Alves et al.

of values can be limited from -4 (low) to +4 (high) on the x-axis.
Thus, items with low demonstrated difficulty are placed closer to
low latent trait values and high demonstrated difficulty items are
placed closer to the high latent trait. Therefore, items that have
high b parameters, which indicate high demonstrated difficulty,
such as items 5 (lists), 6 (data persistence), 8 (loops), and 12
(sensors) present the curves dislocated to the right (Figure 7). In
the same way, items with low demonstrated difficulty, such as
items 7 (events) and 15 (screens) present curves dislocated to the
left. Although item 14 (maps) presented the highest difficulty
parameters (Table 3), and the “curve” is hidden above latent trait
4.0, these parameters presented standards errors in a high order of
magnitude (Table 3). Consequently, the ICC for maps cannot be
used for difficulty interpretation purposes.

Items with only three performance levels, such as item 2
(variables), 3 (strings), and 14 (maps) have fewer curves than the
other items (Figure 7). This is because of the impossibility of
satisfying a fourth category as no such performance level has been
defined for these items (see Table 2). This also applies to items
with two performance levels, such as item 10 (synchronization).

The P0 curve refers to the probability of satisfying category
zero (or achieving score 0) for any item given the latent trait in the
x-axis (Figure 7). Similarly, the P1, P2, and P3 curves refer to the
probability of achieving scores 1, 2, and 3 respectively given the
latent trait in the x-axis (Figure 7). Thus, the P0 is close to 1.0 for

low latent trait values, as projects assessed with a “low” latent
trait (the volition, incentive, and opportunity to apply computing
concepts) have a probability close to 100% of achieving score 0.
For example, presenting a latent trait less than -1.0 results in a
bigger probability of achieving score 0 in item 3 (strings) than
score 1. On the other hand, P0 is close to 0 for high latent trait
values, as projects assessed with a “high” latent trait have a
probability close to 0% of achieving score 0. For example,
presenting a latent trait greater than the average (0.0) results in
having a bigger probability in P1 for item 3 (strings), which is
related to achieving score 1, than in P0, which is related to
achieving score 0 for the same item (Figure 7).

Some items' curves are more attached than others, for example,
the curves of item 2 (variables) are more attached than the curves
of item 3 (strings) (Figure 7). This occurs because b parameters of
variables are less distant than b parameters of strings, as the
distance between b2 and b3, i.e., b3 - b2, of the item variables is
0.82, while their distance for the item strings is 1.51 (Table 3).
This means that is easier to progress from “modifying or using
predefined variables” to “creating and operating with variables”,
than progressing from “using string block to change the text of
design component” to “creating and operating with strings”, as
defined in the CodeMaster rubric (Table 2). This is expected as
operating with variables is easier than operating with strings, as
strings can be broken apart to make new strings, or put together

Figure 7: Item Characteristic Curves for each item

1. Operadores

-4
.0

-3

.5
-3

.0

-2
.5

-2

.0

-1
.5

-1

.0

-0
.5

 0
0.

5
1.

0
1.

5
2.

0
2.

5
3.

0
3.

5
4.

0

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Pr
ob

ab
ili

ty

P0 P1 P2 P3
1. Operators

Latent trait

2. Variaveis

-4
.0

-3

.5
-3

.0

-2
.5

-2

.0

-1
.5

-1

.0

-0
.5

 0
0.

5
1.

0
1.

5
2.

0
2.

5
3.

0
3.

5
4.

0

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Latent trait

Pr
ob

ab
ili

ty

P0 P1 P2

2. Variables
3. Strings

-4
.0

-3

.5
-3

.0

-2
.5

-2

.0

-1
.5

-1

.0

-0
.5

 0
0.

5
1.

0
1.

5
2.

0
2.

5
3.

0
3.

5
4.

0

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Latent trait

Pr
ob

ab
ili

ty

P0 P1 P2

3. Strings
4. Nomeação

-4
.0

-3

.5
-3

.0

-2
.5

-2

.0

-1
.5

-1

.0

-0
.5

 0
0.

5
1.

0
1.

5
2.

0
2.

5
3.

0
3.

5
4.

0

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Latent trait

Pr
ob

ab
ili

ty

P0 P1 P2 P3

4. Naming
5. Listas

-4
.0

-3

.5
-3

.0

-2
.5

-2

.0

-1
.5

-1

.0

-0
.5

 0
0.

5
1.

0
1.

5
2.

0
2.

5
3.

0
3.

5
4.

0

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Latent trait

Pr
ob

ab
ili

ty

P0 P1 P2 P3

5. Lists

6. Persistência

-4
.0

-3

.5
-3

.0

-2
.5

-2

.0

-1
.5

-1

.0

-0
.5

 0
0.

5
1.

0
1.

5
2.

0
2.

5
3.

0
3.

5
4.

0

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Latent trait

Pr
ob

ab
ili

ty

P0 P1 P2 P3

6. Data persistence
8. Laços

-4
.0

-3

.5
-3

.0

-2
.5

-2

.0

-1
.5

-1

.0

-0
.5

 0
0.

5
1.

0
1.

5
2.

0
2.

5
3.

0
3.

5
4.

0

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Latent trait

Pr
ob

ab
ili

ty

P0 P1 P2 P3

8. Loops
7. Eventos

-4
.0

-3

.5
-3

.0

-2
.5

-2

.0

-1
.5

-1

.0

-0
.5

 0
0.

5
1.

0
1.

5
2.

0
2.

5
3.

0
3.

5
4.

0

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Latent trait

Pr
ob

ab
ili

ty

P0 P1 P2 P3

7. Events
9. Condicionais

-4
.0

-3

.5
-3

.0

-2
.5

-2

.0

-1
.5

-1

.0

-0
.5

 0
0.

5
1.

0
1.

5
2.

0
2.

5
3.

0
3.

5
4.

0

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Latent trait

Pr
ob

ab
ili

ty

P0 P1 P2 P3

9. CondiDonal
10. Sincronização

-4
.0

-3

.5
-3

.0

-2
.5

-2

.0

-1
.5

-1

.0

-0
.5

 0
0.

5
1.

0
1.

5
2.

0
2.

5
3.

0
3.

5
4.

0

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Latent trait

Pr
ob

ab
ili

ty

P0 P1

10. SynchronizaDon

11. Abstração

-4
.0

-3

.5
-3

.0

-2
.5

-2

.0

-1
.5

-1

.0

-0
.5

 0
0.

5
1.

0
1.

5
2.

0
2.

5
3.

0
3.

5
4.

0

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Latent trait

Pr
ob

ab
ili

ty

P0 P1 P2 P3

11. Procedural AbstracDon
12. Sensores

-4
.0

-3

.5
-3

.0

-2
.5

-2

.0

-1
.5

-1

.0

-0
.5

 0
0.

5
1.

0
1.

5
2.

0
2.

5
3.

0
3.

5
4.

0

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Latent trait

Pr
ob

ab
ili

ty

P0 P1 P2 P3

12. Sensors
13. Desenho animação

-4
.0

-3

.5
-3

.0

-2
.5

-2

.0

-1
.5

-1

.0

-0
.5

 0
0.

5
1.

0
1.

5
2.

0
2.

5
3.

0
3.

5
4.

0

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Latent trait

Pr
ob

ab
ili

ty

P0 P1 P2 P3

13. Drawing and AnimaDon
14. Mapas

-4
.0

-3

.5
-3

.0

-2
.5

-2

.0

-1
.5

-1

.0

-0
.5

 0
0.

5
1.

0
1.

5
2.

0
2.

5
3.

0
3.

5
4.

0

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Latent trait

Pr
ob

ab
ili

ty

P0 P1 P3

14. Maps
15. Telas

-4
.0

-3

.5
-3

.0

-2
.5

-2

.0

-1
.5

-1

.0

-0
.5

 0
0.

5
1.

0
1.

5
2.

0
2.

5
3.

0
3.

5
4.

0

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Latent trait

Pr
ob

ab
ili

ty

P0 P1 P2 P3

15. Screens

P0 P1 P2 P0 P1 P2 P0 P1 P2 P3

P0 P1 P2 P3 P0 P1 P2 P3 P0 P1 P2 P3 P0 P1 P2 P3 P0 P1

P0 P1 P2 P3 P0 P1 P2 P3 P0 P1 P2 P3 P0 P1 P2 P3P0 P1 P3

P0 P1 P2 P3

Pr
ob

ab
ili

ty

08

An Item Response Theory Analysis of Algorithms and… EduComp’21, Abril 27-30, 2021, Jataí, Goiás, Brasil (On-line)

and make longer strings [61]. Similarly, this can also be observed
regarding item 1 (operators) and 11 (sensors).

5 DISCUSSION
The results of the analysis provide an insight into the degree of
demonstrated difficulty concerning algorithms and programming
in the context of the development of apps with App Inventor
(Table 4).

Table 4: Summarized results

 Demonstrated difficulty level
Item (i) Low Medium High
1. Operators X
2. Variables X
3. Strings X
4. Naming X
5. Lists X
6. Data persistence X
7. Events X
8. Loops X
9. Conditional X
10. Synchronization X
11. Procedural Abstraction X
12. Sensors X
13. Drawing and Animation X
14. Maps (excluded)
15. Screens X

Variables, strings, naming, events, and screens (items 2, 3, 4,
7, and 15 respectively) are the easiest concepts when
programming with App Inventor, as all probabilities curves are
dislocated to the left (Figure 7). Items with medium demonstrated
difficulty include operators, conditional, synchronization,
procedural abstraction, and drawing and animation (item 1, 9,
10, 11, and 13 respectively) as the probability curves are close to
the average (0.0) latent trait. The most difficult items are lists,
data persistence, loops, and sensors (item 5, 6, 8, and 12
respectively) as the probability curves are dislocated to the right
(Figure 7). This also confirms results presented by Xie and
Abelson [34] indicating, for example, that apps that require data
persistence (e.g., databases) represent more advanced artifacts.
Some of the items with estimated high difficulty may be
influenced by its infrequent use in App Inventor projects, e.g.,
loops rather than indicating the difficulty of understanding loops
in general, and may be different when using other visual
programming environments.

These results can be used as a systematic basis supported by
data for the sequencing of computing instruction in K-12 by
teaching the development of apps with App Inventor. For
instance, a manual organization by computer science teachers may
achieve a similar result. However, this work does not support the
findings based on opinion but data. Based on the results of the
scale placement (Figure 5) and the detailed demonstrated
difficulty ICC (Figure 7), teaching algorithms and programming
concepts with App Inventor should thus start with the creation of
screens and events as well as the usage of strings, and variables
and naming. Then on the next stage, the instructional design could

cover operators and conditionals as well as synchronization and
procedural abstraction, while only more advanced students should
be presented with problems requiring lists, data persistence, and
sensors, allowing them to follow a smooth pathway as they
progress toward mastery of the skills with scaffolding support.

5.1 Threats to validity
Our study is subject to several threats to validity which have been
handled in order to be minimized. One risk is related to grouping
data as App Inventor projects come from various contexts in the
worldwide App Inventor community, and no additional
information about the creator history is available in the App
Inventor Gallery. Another factor that may influence the usage of
commands may be the tutorials and instructional units typically
used as well as a considerable number of very simple App
Inventor projects at the App Inventor Gallery. However, as
typically App Inventor is used by novices and/or in the context of
computing education in K-12, we consider this acceptable
considering the large-scale sample. Another threat regarding the
possibility of generalizing the results is related to the sample size
and projects from only one repository. Yet, this risk is minimized
by using a significant number of apps (over 88,000) from the
repository for App Inventor project used by contributors from
around the world.

Another risk is that the analysis based on the created code does
not only assess whether a learner is able to achieve a certain item
of the rubric, but also whether the learner is willing to do so.
Therefore, we also restrict the interpretation of the “difficulty” of
items in this study to the “demonstrated difficulty” defined as the
volition, incentive, and opportunity to apply programming
concepts in an App Inventor project shared via App Inventor
Gallery. For measurement we used the CodeMaster rubric that
was systematically defined and validated using Classical Test
Theory with results reported in Alves et al. [49], indicating the
reliability and validity of the rubric for the assessment of
algorithm and programming concepts of App Inventor projects.
Automating the assessment of the App Inventor projects with the
CodeMaster tool further reduced the risks of reliability issues
which may have caused through manual assessment. In order to
mitigate threats concerning the research methodology, we adopted
the GQM approach for measurement [58] and selected appropriate
statistical techniques for the analysis [45], performing also
necessary tests with respect to the characteristics of the dataset to
assure their adequacy.

6 CONCLUSION
In this article we presented the results of an analysis of the
demonstrated difficulty of general mobile algorithms and
programming concepts based on App Inventor projects.
Considering the difficulty of items, we identified that events and
variables are the easiest items when programming with App
Inventor, while the most difficult items are loops, data persistence,
and lists. Comparing these results to analyses based on other
block-based languages, we can observe based on data that the

09

EduComp’21, Abril 27-30, 2021, Jataí, Goiás, Brasil (On-line) Alves et al.

difficulty of achieving performance levels of certain items may
depend on the specific programming language, and, thus the
programming environment to be adopted has to be explicitly
considered in the instructional design of computing education.
The results of this analysis can be used to systematically discuss
and improve the sequencing of instructional units for teaching
algorithms and programming with App Inventor by adopting
scaffolding techniques.

ACKNOWLEDGMENTS
We would like to thank all researchers from the MIT App
Inventor team, who provided support for the access to the App
Inventor Gallery. The authors would also like to thank the
anonymous referees for their valuable comments and helpful
suggestions. This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior - Brasil
(CAPES) - Finance Code 001 and by the Conselho Nacional de
Desenvolvimento Científico e Tecnológico - Brasil (CNPq) -
Grant No.: 302149/2016-3.

REFERENCES
[1] S. Grover and R. Pea. 2013. Computational thinking in K–1: A review of the

state of the field. Educational Researcher, 42, 1, 38–43.
DOI:https://doi.org/10.3102/0013189X12463051

[2] P. Hubwieser, M. N. Giannakos, M. Berges, T. Brinda, I. Diethelm, J.
Magenheim, Y. Pal, J. Jackova, and E. Jasute. 2015. A Global Snapshot of
Computer Science Education in K-12 Schools. In Proceedings of the ITiCSE on
Working Group Reports. Association for Computing Machinery, New York,
NY, USA, 65–83. DOI:https://doi.org/10.1145/2858796.2858799

[3] S. Y. Lye and J. H. L. Koh. 2014. Review on teaching and learning of
computational thinking through programming: What is next for K-12?
Computers in Human Behavior, 41, C, 51–61.
DOI:https://doi.org/10.1016/j.chb.2014.09.012

[4] M. Webb, N. Davis, and T. Bell. 2017. Computer science in K-12 school
curricula of the 2lst century: Why, what and when?. Education and Information
Technolologies, 22, 445–468. DOI:https://doi.org/10.1007/s10639-016-9493-x

[5] CSTA. 2016. K-12 Computer Science Framework. Retrieved September 2,
2020 from https://k12cs.org/

[6] CAS. 2015. Computing at School. Retrieved September 1, 2020, from
https://www.computingatschool.org.uk/

[7] SBC. 2018. Brazilian Computer Society Guidelines for Computing Education in
K-12. Retrieved September 3, 2020, from
https://www.sbc.org.br/educacao/diretoria-de-educacao-basica

[8] S. Grover, S. Basu, and P. Schank. 2018. What We Can Learn About Student
Learning From Open-Ended Programming Projects in Middle School Computer
Science. In Proceedings of the 49th ACM Technical Symposium on Computer
Science Education. Association for Computing Machinery, NY, USA, 999-
1004. DOI:https://doi.org/10.1145/3159450.3159522

[9] F. Turbak, M. Sherman, F. Martin, D. Wolber, and S. C. Pokress. 2014. Events
First Programming in App Inventor. Journal of Computing Sciences in
Colleges, 29, 6, 81-89.

[10] S. Papadakis, M. Kalogiannakis, V. Orfanakis, and N. Zaranis. 2017. The
appropriateness of Scratch and App Inventor as educational environments for
teaching introductory programming in primary and secondary education.
International Journal of Web-Based Learning and Teaching Technologies, 12,
4, 58-77. DOI:https://doi.org/10.4018/IJWLTT.2017100106

[11] D. Weintrop. 2019. Block-based Programming in Computer Science Education.
Communications of the ACM, 62, 8, 22-25. DOI:
http://doi.org/10.1145/3341221

[12] MIT. 2020. MIT App Inventor. About us. Retrieved September 1, 2020 from
http://appinventor.mit.edu/explore/about-us.html

[13] D. Wolber, H. Abelson, and M. Friedman. 2014. Democratizing Computing
with App Inventor. GetMobile: Mobile Computing and Communications. 18, 4,
53–58. DOI:https://doi.org/10.1145/2721914.2721935

[14] E.W. Patton, M. Tissenbaum, and F. Harunani. 2019. MIT App Inventor:
Objectives, Design, and Development. In Kong SC., Abelson H. (eds),
Computational Thinking Education, Springer. DOI:https://doi.org/10.1007/978-
981-13-6528-7_3

[15] S. B. Fee and A. M. Holland-Minkley. 2010. Teaching computer science
through problems, not solutions. Computer Science Education, 20, 2, 129-144.
DOI:https://doi.org/10.1080/08993408.2010.486271

[16] M. Tissenbaum, J. Sheldon, and H. Abelson. 2019. From Computational
Thinking to Computational Action. Communications of the ACM, 62, 3, 34-36.
DOI:https://doi.org/10.1145/3265747

[17] H. Khosravi, S. Sadiq, and D. Gasevic. 2020. Development and Adoption of an
Adaptive Learning System. In Proceedings of the 51st ACM Technical
Symposium on Computer Science Education, Association for Computing
Machinery, New York, NY, USA, 58–64.
DOI:https://doi.org/10.1145/3328778.3366900

[18] J. Bennedsen and M. E. Caspersen. 2007. Failure Rates in Introductory
Programming, ACM SIGCSE Bulletin, 39, 2, 32-36.
DOI:https://doi.org/10.1145/1272848.1272879

[19] J. Bennedsen and M. E. Caspersen. 2019. Failure rates in introductory
programming: 12 years later. ACM Inroads 10, 2, 30–36.
DOI:https://doi.org/10.1145/3324888

[20] J. Rogalski and R. Samurçay. 1990. Acquisition of programming knowledge
and skills. In J.M.Hoc, T.R.G. Green, R. Samurçay, & D.J. Gillmore (eds.),
Psychology of programming, Academic Press.
DOI:https://doi.org/10.1016/B978-0-12-350772-3.50015-X

[21] K. Brennan and M. Resnick. 2012. New frameworks for studying and assessing
the development of computational thinking. In Proceedings of the Annual
Meeting of the American Educational Research Association, Vancouver,
Canada.

[22] R. D. Pea and D. M. Kurland. 1984. On the cognitive effects of learning
computer programming. New Ideas in Psychology, 2, 2, 137–168.
DOI:https://doi.org/10.1016/0732-118X(84)90018-7

[23] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond, K.
Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, and Y. Kafai.
2009. Scratch: programming for all. Communications of the ACM 52, 11, 60–
67. DOI:https://doi.org/10.1145/1592761.1592779

[24] J. van Patten, C. I. Chao, and C. M. Reigeluth. 1986. A review of strategies for
sequencing and synthesizing instruction. Review of Educational Research, 56,
4, 437-471. DOI:https://doi.org/10.3102/00346543056004437

[25] J. S. Bruner. 1966. Toward a theory of instruction. Harvard University Press.
[26] G. R. Morrison, S. M. Ross, and J. E. Kemp. 2010. Designing Effective

Instruction, 6th ed. John Wiley & Sons.
[27] J. Sweller, J. J. G. van Merrienboer, and F. G. W. C. Paas, 1998. Cognitive

Architecture and Instructional Design. Educational Psychology Review, 10,
251–296. DOI:https://doi.org/10.1023/A:1022193728205

[28] C. Dede. 1986. A review and synthesis of recent research in intelligent
computer-assisted instruction. International Journal on Man-Machine Studies,
24, 329-353. DOI:https://doi.org/10.1016/S0020-7373(86)80050-5

[29] O. Vainas, Y. Ben-David, R. Gilad-Bachrach, M. Ronen, O. Bar-Ilan, R. Shillo,
G. Lukin, D. Sitton, D. 2019. Staying in The Zone: Sequencing Content in
Classrooms Based on The Zone of Proximal Development. In Proceedings of
the 12th International Conference on Educational Data Mining, Montreal,
Canada, 659 – 662.

[30] C. M. Reigeluth. 1999. The Elaboration theory: Guidance for scope and
sequence decision. In C. Reigeluth (ed.) Instructional-Design Theories and
Models (vol.II), Erlbaum Associates.

[31] I. Li, F. Turbak, and E. Mustafaraj. 2017. Calls of the Wild:Exploring
Procedural Abstraction in App Inventor. In Proceedings of the IEEE Blocks and
Beyond Workshop. Raleigh, NC, USA, 79-86.
DOI:http://doi.org/10.1109/BLOCKS.2017.8120417

[32] B. Xie, I. Shabir, and H. Abelson. 2015. Measuring the programmatic
sophistication of app inventor projects grouped by functionality. Retrieved
September 2, 2020 from http://web.mit.edu/bxie/www/thesis.pdf

[33] Y. Park and Y. Shin. 2019. Comparing the Effectiveness of Scratch and App
Inventor with Regard to Learning Computational Thinking Concepts.
Electronics, 8, 1269. DOI:http://doi.org/10.3390/electronics8111269

[34] B. Xie and H. Abelson. 2016. Skill progression in MIT app inventor. In
Proceedings of the IEEE Symposium on Visual Languages and Human-Centric
Computing, Cambridge, GB, 213-217.
DOI:http://doi.org/10.1109/VLHCC.2016.7739687.

[35] C. Piech, M. Sahami, D. Koller, S. Cooper, and P. Blikstein. 2012. Modeling
how students learn to program. In Proceedings of the 43rd ACM Technical
Symposium on Computer Science Education. Association for Computing
Machinery, New York, NY, USA, 153–160.
DOI:https://doi.org/10.1145/2157136.2157182

[36] S. Grover and S. Basu. 2017. Measuring student learning in introductory block-
based programming: Examining misconceptions of loops, variables, and
Boolean Logic. In Proceedings of the ACM SIGCSE Technical Symposium on
Computer Science Education, Association for Computing Machinery. New
York, NY, USA, 267–272. DOI:https://doi.org/10.1145/3017680.3017723

[37] J. Moreno-León, G. Robles, and M. Román-González. 2020. Towards data-
driven learning paths to develop computational thinking with Scratch. IEEE

10

An Item Response Theory Analysis of Algorithms and… EduComp’21, Abril 27-30, 2021, Jataí, Goiás, Brasil (On-line)

Transactions on Emerging Topics in Computing, 8, 1, 193-205.
DOI:https://doi.org/10.1109/TETC.2017.2734818.

[38] K. M. Rich, C. T. Strickland, T. A. Binkowski, T. A. Moran and D. Franklin.
2017. K-8 learning trajectories derived from research literature: Sequence,
repetition, conditionals. In Proceedings of the ACM Conference on
International Computing Education Research, Association for Computing
Machinery, New York, NY, USA, 182-190.
DOI:https://doi.org/10.1145/3105726.3106166

[39] K. M. Rich, C. T. Strickland, T. A. Binkowski and D. Franklin. 2018.
Decomposition: A K-8 computational thinking learning trajectory. In
Proceedings of the 2018 ACM Conference on International Computing
Education Research, Association for Computing Machinery, New York, NY,
USA, 124-132. DOI:https://doi.org/10.1145/3230977.3230979

[40] K. M. Rich, C. T. Strickland, T. A. Binkowski and D. Franklin. 2019. A K-8
debugging learning trajectory derived from research literature. In Proceedings
of the 50th ACM Technical Symposium on Computer Science Education,
Association for Computing Machinery, New York, NY, USA, 745-751.
DOI:https://doi.org/10.1145/3287324.3287396

[41] K. Seiter and B. Foreman. 2013. Modeling the learning progressions of
computational thinking of primary grade students. In Proceedings of the 9th
Annual International ACM Conference on International Computing Education
Research, Association for Computing Machinery, New York, NY, USA, 59–66.
DOI: https://doi.org/10.1145/2493394.2493403

[42] D. Franklin, G. Skifstad, R. Rolock, I. Mehrotra, V. Ding, A. Hansen, D.
Weintrop, and D. Harlow. 2017. Using Upper-Elementary Student Performance
to Understand Conceptual Sequencing in a Blocks-based Curriculum. In
Proceedings of the ACM SIGCSE Technical Symposium on Computer Science
Education. Association for Computing Machinery, New York, NY, USA, 231–
236. DOI:https://doi.org/10.1145/3017680.3017760

[43] N. Lytle, V. Cateté, D. Boulden, Y. Dong, J. Houchins, A. Milliken, A. Isvik,
D. Bounajim, E. Wiebe, and T. Barnes. 2019. Use, Modify, Create: Comparing
Computational Thinking Lesson Progressions for STEM Classes. In
Proceedings of the ACM Conference on Innovation and Technology in
Computer Science Education. Association for Computing Machinery, New
York, NY, USA, 395–401. DOI:https://doi.org/10.1145/3304221.3319786

[44] J. Krugel et al. 2020. Automated Measurement of Competencies and Generation
of Feedback in Object-Oriented Programming Courses. In Proceedings of the
IEEE Global Engineering Education Conference (EDUCON), Porto, Portugal,
329-338. DOI:https://doi.org/10.1109/EDUCON45650.2020.9125323.

[45] R. J. De Ayala. 2009. The theory and practice of item response theory. Guilford
Press.

[46] J. E. Carlson and M. van Davier. 2017. Item Response Theory. In Advancing
Human Assessment, eds. Bennet & van Davier, Springer.

[47] M. Berges and P. Hubwieser. 2015. Evaluation of Source Code with Item
Response Theory. In Proceedings of the 2015 ACM Conference on Innovation
and Technology in Computer Science Education, Association for Computing
Machinery, New York, NY, USA, 51–56.
DOI:https://doi.org/10.1145/2729094.2742619

[48] M. Kramer, D. A. Tobinski, and T. Brinda. 2016. On the way to a test
instrument for object-oriented programming competencies. In Proceedings of
the 16th Koli Calling International Conference on Computing Education
Research. Association for Computing Machinery, New York, NY, USA, 145–
149. DOI:https://doi.org/10.1145/2999541.2999544

[49] N. da C. Alves, C. Gresse von Wangenheim, J. C. R. Hauck and A. F. Borgatto.
2020. A large-scale evaluation of a rubric for the automatic assessment of
algorithms and programming concepts. In Proceedings of the 51st ACM
Technical Symposium on Computer Science Education. Association for
Computing Machinery, New York, NY, USA, 556–562.
DOI:https://doi.org/10.1145/3328778.3366840

[50] C. Gresse von Wangenheim, J. C. R. Hauck, M. F. Demetrio, R. Pelle, N. da C.
Alves, H. Barbosa, L. F. Azevedo. 2018. CodeMaster – Automatic Assessment
and Grading of App Inventor and Snap! Programs. Informatics in Education,
17, 1, 117-150. DOI:https://doi.org/ 10.15388/infedu.2018.08

[51] J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett, M. Erwig, C.
Scaffidi, J. Lawrance, H. Lieberman, B. Myers, M. B. Rosson, G. Rothermel,
M. Shaw, and S. Wiedenbeck. 2011. The state of the art in end-user software
engineering. ACM Computing Surveys, 43, 3, Article 21.
DOI:https://doi.org/10.1145/1922649.1922658

[52] E. Mustafaraj, F. Turbak, and M. Svanberg. 2017. Identifying Original Projects
in App Inventor. In Proceedings of the 30th International Florida Artificial
Intelligence Research Society Conference, Marco Island, FL, USA. 567-572.

[53] N. da C. Alves, C. Gresse von Wangenheim, and J. C. R. Hauck. 2019.
Approaches to assess computational thinking competences based on code
analysis in K-12 education: A systematic mapping study. Informatics in
Education, 18, 1, 17-39. DOI: https://doi.org/ 10.15388/infedu.2019.02

[54] R. M. Branch. 2010. Instructional Design: The ADDIE Approach. Springer.
[55] H. Goodrich. 1996. Understanding Rubrics. Educational Leadership, 54, 4, 14–

18.

[56] M. Sherman and F. Martin. 2015. The assessment of mobile computational
thinking. Journal of Computing Sciences in Colleges, 30, 6, 53–59.

[57] F. A. Samejima. 1969. Estimation of latent ability using a response pattern of
graded scores. Psychometric Monograph, 34, 4, 2-17.

[58] V. R. Basili, G. Caldiera, and H. D. Rombach. 1994. The goal question metric
approach. In Encyclopedia of Software Engineering, John Wiley & Sons.

[59] R. P. Chalmers. 2012. Mirt: A multidimensional item response theory package
for the R Environment. Journal of Statistical Software, 48, 6, 1–29.

[60] M. D. Reckase. 1979. Unifactor latent trait models applied to multifactor tests:
Results and implications. Journal of educational statistics, Sage Publications
CA: Thousand Oaks, 4, 3, 207–230.

[61] LEGO. 2018. Lego Education Documentation. Retrieved September 2, 2020
from: https://makecode.mindstorms.com/types/string

[62] J. S. Santos, W. L. Andrade, J. Brunet, and M. R. Araujo Melo. 2020. A
Systematic Literature Review of Methodology of Learning Evaluation Based on
Item Response Theory in the Context of Programming Teaching. In
Proceedings of the IEEE Frontiers in Education Conference (FIE), Uppsala,
Sweden, 1-9. DOI:http://doi.org/10.1109/FIE44824.2020.9274068.

11

