
An Open List of Computer Programming Student’s Common

Problems and its Leverage in Teaching Practice

Renato Cortinovis, Pablo Frank Bolton, Ricardo Caceffo
rmcortinovis@gmail.com; pfrank@smith.edu; caceffo@ic.unicamp.br

Independent Researcher; Smith College; Unicamp

ABSTRACT

Educators are frequently baffled by the problems faced and

misconceptions held by their novice programming students. Yet,

understanding these problems clearly is fundamental for an

educator, both to properly evaluate their students as well as to

engage them with suitable pedagogical strategies. This paper

describes the development of a comprehensive – although not final

– open list of problems commonly experienced by novices, focused

on procedural and object-oriented programming, as much language

agnostic and conceptually/strategically oriented as possible. It

explores ways of using the list to improve the evaluation of students

in the teaching practice, with targeted tests and detailed evaluation

rubrics. The associated antipattern cards provide examples on how

to detect a specific problem, indications on its possible origin, and

suggestions for pedagogical strategies to overcome it. The paper

finally hints at a strategy to crowdsource a battery of

standardized/calibrated tests, that can be used both for the

formative and summative evaluation of students, as well as to

objectively compare different educational strategies and

educational systems.

CCS CONCEPTS

• Social and professional topics → Computing education.

KEYWORDS

CS1, Programming Language, List, Problem, Misconception.

1 INTRODUCTION

Educators are frequently baffled by the problems faced and

misconceptions held by their novice programming students. By the

term “misconception”, we mean a programming mistake at a

conceptual level which is systematically repeated, implying a stable

but incorrect understanding, while a programming mistake is an

error in the code that leads to incorrect or unexpected behavior,

because of syntactic, semantic, or logic problems [1]. In this paper

we use the generic term “problem” as a catch-all term, including all

sorts of misconceptions, problems and challenges faced by novice

programmers, such as failing to properly trace an existing program.

Understanding these problems clearly is important to be able to

help students overcome them [2]. First, it is necessary to be able to

diagnose them. Second, knowing their roots is instrumental in

planning pedagogical activities suitable to correct them [1]. For

example, pedagogical activities can be based on making

misconceptions obvious [3], as students can learn from their

mistakes when they understand the faulty mental models causing

the errors [4]. Additionally, knowing precisely the problems faced

by novices can allow for the design of learning activities explicitly

based on their possible errors, as in the Productive Failure

pedagogical strategy [25]. Third, understanding these problems

may allow students to avoid them in the first place, before they

become difficult to eradicate. For example, Holland et al. [5] state

that when learning an Object-Oriented programming language,

novice students should not be exposed to too many exercises where

there is just one object instantiated from each class, to avoid

developing the problem – mentioned by Sanders and Thomas [6] –

of class and object conflation.

It is recognized in the literature that the most meaningful

problems are not related to the specific mechanics of a

programming language. Goldman et al. [7], for example, claim that

students find the greatest difficulties in tracing and problem solving.

Mccauley et al. [4] note that the major problems are related to

understanding the task and basic design and are not specifically

related to the programming language. Hanks [8] suggests that major

challenges are rather design-oriented, due to lack of design

knowledge/problem solving skills. Therefore, the goal is to focus

on problems as language agnostic as possible, and more design

oriented rather than lexically or syntactically oriented.

Thus, this work aims to answer the following research

questions:

• RQ1: What are the main common problems faced by

programming novices in the fundamental areas of

procedural and object-oriented programming,

regardless of the programming language?

• RQ2: How could a list of common problems be used

to enhance teaching and learning?

This paper is organized as follows: Section 2 discusses related

work; Section 3 presents the methodology used to identify the

common problems and derive the proposed list; Section 4 describes

the resulting list of common topics and problems identified. In

Section 5 we discuss the answers to the research questions,

including how the list can be used in the teaching practice. Finally,

Section 6 outlines future activities and Section 7 presents our

conclusions.

The author(s) or third-parties are allowed to reproduce or distribute, in part or in whole,

the material extracted from this work, in textual form, adapted or remixed, as well as the
creation or production based on its content, for non-commercial purposes, since the
proper credit is provided to the original creation, under CC BY-NC 4.0 License.
EduComp’23, Abril 24-29, 2023, Recife, Pernambuco, Brasil (On-line)
© 2023 Copyright held by the owner/author(s). Publication rights licensed to Brazilian
Computing Society (SBC).

108

EduComp’23, Abril 24-29, 2023, Recife, Pernambuco, Brasil (On-line) Cortinovis, Bolton, Caceffo

2 RELATED WORK

The literature was examined starting from recent secondary sources

and tracing back to relevant primary sources with forward and

backward citation search. We also examined papers on Concept

Inventories, again secondary and primary sources, including our

own publications.

Qian and Lehman [1] present a thorough analysis of the

extended literature concerning programming errors,

misconceptions and other problems related to novice programmers.

They start by rigorously clarifying the meaning of terms such as

errors, mistakes, bugs, misconceptions, difficulties, challenges, or

misunderstandings, and adopt a useful classification framework in

terms of syntactic (specific language features), conceptual (“how

programming constructs and principles work and what happens

inside the computer”), and strategic (“how to apply syntactic and

conceptual knowledge of programming to solve novel problems”:

planning, writing, tracing, debugging) knowledge. They claim that

identifying specific students’ problems is a fundamental

competence for computer science teachers, and that the overall goal

should be to investigate the factors that contribute to these problems,

and strategies to address them. They present examples of

problems/difficulties in their final tables, but these are fairly limited

in scope.

Another source of misconceptions is the literature about

Concept Inventories (CI), test-based assessments of concepts,

where the distractors (incorrect choices for a question) are indeed

based on common student misconceptions. The misconceptions for

CS1 by Tew and Guzdial [9] in particular, are interesting because

they are language independent. Yet, they are not easily available to

avoid “saturation”, that is, to avoid becoming known among the

students, as they would lose their reliability. To reduce the problem,

Parker et al. [10] developed a replica validated against the previous

one. There are other CIs on specific topics, for example recursion

by Hamouda et al. [11], data structures by Porter et al. [12] and

algorithm analysis by Farghally et al. [13].

Some authors identified programming misconceptions and

designed language-specific CIs based on them. For example,

Caceffo et al. identified misconceptions for Introductory

Programming Courses (CS1) in C [14] and designed a CI in that

language; Gama et al. [22] identified misconceptions in Python

programming language, and Caceffo et al. [23] identified

misconceptions in the Java language.

Yet, the goal of CIs is to efficiently detect a few meaningful

misconceptions, without covering them exhaustively, hence they

can be a good source of ideas but are usually pretty limited in

coverage. Most importantly, they should not be used for formative

or summative evaluation to avoid saturation. Additionally, they only

tend to target the assessment of students’ conceptual understanding,

but not their problem solving or design skills [7].

There are also attempts to draw comprehensive lists of

mistakes. Sanders and Thomas [6], in particular, provide useful

checklists for grading OO CS1 programs, but they do not cover

procedural programming. Pillay and Jugoo [15], on the contrary,

only consider procedural programming, but in a specific language

(Java). Yet, for example, they do not include recursion. Robins et al.

[16] too, mainly focus on language related problems. Brown and

Altadmri [24] focus on 18 novice Java programming mistakes,

adapted from the 20 mistakes previously identified by Hristova et

al. [18]. These mistakes have been thoroughly analysed exploiting

a large dataset of Java compilation events (Blackbox of BlueJ), yet

being based on compilation errors they are mainly syntax-oriented.

Another issue relevant to this paper, again widely discussed in

the literature, is the taxonomy used to organize the problems. Most

taxonomies are organized around lists of concepts/topics. Goldman

et al. [7], in their effort to develop CIs for introductory computer

courses, produce a list of topics which are both “challenging” –

identified with novice-centric techniques – and “important” –

identified with expert-centric DELPHY-based techniques. Yet their

list is quite general and not focused on programming. Luxton-Reilly

et al. [17] offer a list of concepts focused on programming, derived

from nine literature sources with a rigorous process, which they use

to design assessment tests precisely focused on single concepts

(mastery learning). Table 1 summarizes some of the works

described, showing how this study is situated.

Table 1: Related Work concerning programming errors and

how this study is situated

Paper Type Language

[1]

Programming errors,

misconceptions and other

problems related to novice

programmers.

Language

independent

[9] CS1 misconceptions Language

independent

[10] CI replica validated against

the previous one.

Language

independent

[11] CI on recursion C, Java

[12] CI on data structures Pseudocode

[13] CI on algorithm analysis Java

[14] CI for introductory

programming courses

C

[22] Misconceptions Python

[23] Misconceptions Java

[6] Checklists for grading OO

CS1 programs

Java

109

An Open List of Computer Programming Student’s Common Problems EduComp’23, Abril 24-29, 2023, Recife, Pernambuco, Brasil (On-line)

[15] Problems in procedural

programming

Java

[24] Mainly syntax-oriented

mistakes

Java

This

Work

Design oriented problems

faced by novice

programmers

Language

independent –

procedural and

Object-Oriented

paradigms

3 METHODOLOGY

The methodology adopted in this study has 3 steps, illustrated in

Figure 1. In Step 1, the authors analyzed the literature (see Table 1)

about misconceptions and students’ problems, discussing the data

and findings in the light of their own experience. One of the authors,

for example, had analyzed and graded, over more than two decades,

more than 30.000 students’ solutions to proposed programming

exercises, both on paper and on a computer, and discussed many of

them individually with the students. In this step, the authors

analyzed the misconceptions listed in C [14], Python [22] and Java

[23] languages. These lists were compared, discussed, refined and

merged, via remote asynchronous discussions, aiming to i) identify

the commonalities among them and ii) generalize the

misconceptions, i.e., reduce the language-dependent and syntax

information from them, as far as possible.

In Step 2, the resulting set was considerably extended and

harmonized with other existing lists in the literature, in particular

those produced by Pillay and Jugoo [15], Sanders and Thomas [6],

Robins et al. [16], and Luxton-Reilly et al. [17], especially

concerning design-oriented aspects. In this step, the authors

organized the problems identified in a general list of language

independent topics, again identified from the literature and their

own experience.

Figure 1: The methodology to derive the list.

In Step 3 the resulting list was first checked against actual mistakes

resulting from the correction of programming tests in three courses

with a total of 52 students in Italy. The list was finally assessed by

5 additional computer science instructors, 3 from Italy with more

than 20 years’ experience, and 2 from the USA, and the final version

was produced.

4 RESULTS

With respect to the list provided by Pillay and Jugoo [15, Appendix

A], many existing items, such as “Incorrect syntax of equations”,

“Incorrect syntax of Boolean equations, “Syntax errors such as

missing semicolon”, “Method returning a value declared as void”,

or “Syntax errors in the combination of variable and string output”,

were all merged in a single generic “Basic syntax errors”, as in

Hristova et al. [18] or Robins et al. [16], because the focus of our

new list is more on conceptual and strategic knowledge, rather than

syntactic knowledge [1].

As an additional example, “Condition added after else” was

eliminated because it is syntax oriented, while “Redundant use of

an IF statement, instead of an ELSE clause” was introduced because

it is more logic oriented. Some items were merged and generalized,

for example “Incorrect initial value assigned to an accumulator”

and “Use of variables that have not been assigned values only

declared” were merged and generalized in “Missing / incorrect

variable initialization”; “Accumulator initialized in the loop” and

“Calculations that should be performed after the loop are performed

in the loop” were merged and generalized as “Insertion in the loop

body, of code that should be executed only once before or after the

loop”. Other items were just generalized, for example the item

“Separate if-statements used instead of using the OR operator”,

considering that in many cases an AND operator could be required,

has been generalized to “Redundant structured if-statements where

Boolean expressions could simplify the code”. As another example,

“Assigning more than one calculation to a variable” was

generalized as “Overwriting the content of a variable before using

it”.

With respect to the list provided by Sanders and Thomas [6,

Table 2], which deals exclusively with Object Oriented

programming, items such as “Variables with names that are really

values of attributes” had already been taken into account in the non-

OO topic “Simple variables”. The other items were included in the

list, but extended with new ones, such as “Confusion concerning

the identification of suitable parameters for instance versus class

methods”, or “Improper use of current (this / self / Me) object”.

Similarly, other items were taken (sometimes modified) from

the list provided by Robins et al. [16, Appendix]. For example, we

incorporated the items “Wrong basic structural details”, and “Stuck

on program design (solution understood, but can’t turn that

understanding into a program)”. The item “Problems with

exceptions, throw catch” was further detailed in order to take into

account the ability to trace existing code with exceptions, to use

existing exceptions, or to develop customized ones. Others, too

language specific, were generalized – for example the items

“Hierarchies” or “Event driven programming” that mentioned Java

specific mechanisms.

Brown and Altadmri [24] analysed a large dataset of mistakes

identified by a Java compiler, hence strongly syntax-oriented.

Indeed, for example, the most frequent error they identified is non-

matching parenthesis, which is certainly a frequent mistake, yet

scarcely symptomatic of meaningful misconceptions, and

considered as a generic “Syntax Error” in our list. Other mistakes

110

EduComp’23, Abril 24-29, 2023, Recife, Pernambuco, Brasil (On-line) Cortinovis, Bolton, Caceffo

they could identify through compilation errors are potentially more

symptomatic of meaningful misconceptions, such as incorrectly

ignoring a value returned by a method – these are therefore included

in our list.

With respect to the list of misconceptions identified in C [14],

Python [22], and Java [23] languages, the following item was

included without modifications in the “Variables and Expressions”

topic: “Attempt to access local variables from outside scope”.

Similarly, from [14] and [23], the item “Global variables considered

local in current scope” was included without changes in the same

topic. The items “Global variables assumed inaccessible from

within function” [14, 23] and “Iteration variable used in for

statement considered local” [22, 23] were generalized into the

following item: “Failure to understand the scope-rules”.

In turn, the items “Wrong order/precedence of operators in

expressions (including, for example, misuse of parenthesis)”,

“Incorrect order of function parameters”, “Attempt to access

parameter from outside scope” and “Parameters passed as if by

reference”, all of them present in [14, 22, 23], were included

without changes. The item “Parameter value set by external source”

[14, 22, 23] (e.g., when in the first line of a function an input

command overwrites the value of that parameter) was generalized

and redefined to “Overwriting the value of a parameter before using

it.”, thus including other situations in which the problem could

manifest. Then, the item “No self keyword to reference instance

attributes” [22] was generalized to “Improper use of current

(this/self/me) object”. Finally, many items were introduced in the

list ex-novo, for example: “Confusion between sequence versus

nesting of IF-statements”, “Code repeated in both the THEN and

ELSE clauses”, or “Inability to trace the execution of IF statements”.

As mentioned in the methodology section, the list obtained

was used to correct tests from 52 computer science students of three

classes. Every student mistake could be classified with the existing

list, and every item in the list corresponded to at least one actual

mistake in a student test.

The list was finally critically revised by 5 educators, who were

asked whether they could see any opportunity to include additional

items, delete or merge existing items, or modify them. The three

experienced computer science educators from Italy and the two

from the United States who were asked to critically revise the list,

did propose a few additional entries, who were integrated in most

cases as examples of existing ones. One of the educators noticed

that he could associate students’ visages to each listed mistake.

Another one showed appreciation for the list, because he could

easily exploit it as an evaluation rubric for the self-evaluation of his

students.

4.1 Resulting Final List

In total, 9 common topics of problems faced by programming

novices were identified in the resulting final list: background

problems, variables and expression, data structures, input and

output, control structures, modularization, object-oriented

fundamentals (classes and objects), object-oriented design, and

problem-solving. Considering all topics, 107 programming

problems were identified, as shown in Table 2:

Table 2: Final list of Topics (N=9) and Programming

Problems (N=107)

Topic Programming Problems

Background

problems

Background Problems (3)

Variables and

expressions

Simple variables and constants (9)

Expressions (3)

Data structures Arrays (6)

Collections other than arrays (2)

Input/Output Main topic (2)

Control structures Conditional Control Structure (11)

Iterative Control Structure (10)

Recursion (5)

Exceptions (3)

Event driven (2)

Modularization Modularization (2)

Function Parameters (10)

Function returned value (3)

OO fundamentals Classes and objects (12)

OO-design Abstraction (11)

Inheritance (2)

Aggregation (1)

Problem Solving Problem Solving (10)

As an example, Figure 2 shows the 10 programming problems

related to the subtopic “Iterative Control Structure”, part of the

topic Control Structures.

111

An Open List of Computer Programming Student’s Common Problems EduComp’23, Abril 24-29, 2023, Recife, Pernambuco, Brasil (On-line)

Figure 2: Programming problems (N=10) related to the

subtopic: Iterative Control Structure

As it can be noticed, unlike other existing lists, there is no emphasis

on syntactical, language-dependent, and low-level aspects. Instead,

the focus is rather on more meaningful [4, 8] conceptual and

strategic knowledge. The complete list is available in the Appendix

A.

5 DISCUSSION - USING THE LIST TO

ENHANCE TEACHING AND LEARNING

Related to RQ1, the final list presents the main common topics and

programming problems faced by programming novices in the

fundamental areas of procedural and object-oriented programming,

regardless of the programming language.

The list is grounded on the extensive literature, on the personal

experience of the authors, on the critical assessment of additional

experienced educators and, even if to a limited extent so far, on

experimental activities with the students. Despite this, the list

cannot be considered final. There is no doubt that the problems

listed are real problems, yet we cannot claim that they are all

perfectly language independent, that they are formulated at the ideal

level of detail, or even just described in the best possible way.

While it is expected, and hoped, that the list will be further refined

and especially extended to other programming paradigms, Qian and

Lehman [1], among others, recommend that such a list be

considered a starting point, but the focus of any effort must

ultimately be on the use of the list to improve pedagogical strategies.

This is exactly the goal of RQ2, which aims to identify how the

list of common problems could be used to enhance teaching and

learning. In the following subsections, indeed, we discuss the

possible uses of the list elements with this goal.

5.1 Grading, developing of target tests, and

evaluation rubrics

The proposed list of problems can be used, directly, to support the

assessment of programming students. First, as a checklist, it can

support educators to better grade students’ work [6]. But the list

can be conveniently used also to develop tests explicitly targeting

one or more problems, as well as the associated detailed

evaluation rubrics.

Figure 3 shows an example of a focused test related to the

“Selection control structure” topic, with the related evaluation

rubric.

Figure 3: Sample test and related evaluation rubric

Following a mastery learning approach as advocated by Luxton-

Reilly et al. [17], the tests can be focused on a specific problem,

such as in Figure 3. Alternatively, depending on the desired level of

complexity, tests can probe several problems together: the

associated evaluation rubric, precisely based on the targeted

problems, supports the evaluators in diagnosing potential students’

weaknesses with precision and objectivity, increasing

discrimination power. Each entry could be scored dichotomously to

further increase objectivity.

Obviously, the list of problems can also be conveniently used

to develop detailed evaluation rubrics for pre-existing tests. And

finally, the list could be used to design Concept Inventory language

independent questions, where each wrong choice is a distractor

mapped to a specific programming problem.

5.2 Suggesting pedagogical strategies: antipattern

cards

The list has been documented (partially, so far) with antipattern

cards [19]. Antipattern cards represent a considerable step beyond

the simple identification of a specific problem: not only they

provide further information about the problem and how to diagnose

it, but they also provide examples and suggestions for pedagogical

interventions, as recommended by Qian and Lehman [1].

Figure 4 shows an example of an antipattern card,

corresponding to the list item “Confusion between IF <COND> and

ON/WHEN <COND>” constructs. This item, as many others

indeed, is by construction strongly related to issues broadly

discussed in the literature. This can be considered an instance of the

parallelism bug discussed by Pea [3], also mentioned in the

antipattern card.

112

EduComp’23, Abril 24-29, 2023, Recife, Pernambuco, Brasil (On-line) Cortinovis, Bolton, Caceffo

Figure 4: Example of antipattern card for an item in the list

This problem arises when novices incorrectly believe that the

condition of an IF statement is continuously evaluated, so that the

body of the THEN clause is executed as soon as the condition

becomes true, independently from the currently executing

instruction. In this case, the origin of the problem identified by Pea

[3], that is the interference with the natural language, has been

enriched with an additional potential origin which was observed in

our experimental activities, that is the possible confusion with the

“ON <event>” construct typical of event-driven languages. In this

last case, the condition of the ON construct is indeed constantly

monitored, in order to trigger the execution of its body as soon as

feasible.

We observed that this problem occurs more frequently when the

students have been introduced first to event-driven languages. The

antipattern synthetically provides a description of the problem,

suggestions about how to detect it, its potential origins, and explicit

suggestions on how to help students overcome it.

5.3 Additional potential Use Cases for the list

There are many other potential use cases for the list, including the

following ones for which some episodic positive feedback has been

obtained:

• The list was used quite creatively by one of the teachers

who was asked to evaluate it. He assigned his students a

task of a couple of hours about inheritance. Then he

randomly and anonymously picked up a few of their

submissions and publicly discussed some of their errors,

pointing them to the corresponding error items in the list.

He then handed over the list to the students, asking them

to mark with a cross the errors on the list that they

committed. Finally, he checked if they could correctly

identify their own mistakes, with the objective to quickly

singling out the students who had even failed to recognize

their errors. The teacher expressed appreciation for the

list, which allowed him to quickly identify the students

with weak metacognitive skills, thus requiring special

attention to support their progress.

• The list can be used as self-support material, to help

students focussing their attention on potential pitfalls, and

enhance their metacognition capabilities. We have

observed, for example, that a few students who were

provided the list could considerably reduce the number of

errors that they previously unknowingly introduced while

coding.

• The list could finally be used to support the set up of

automatic correction systems, focusing on potential

pitfalls. Besides, these systems could later be used to

automatically collect data, at scale, useful for further

evaluation and improvement of the list itself.

5.4 Threats to Validity

The main threat to validity of this research is that, as explained in

the methodology section, an important input in the design process

was the personal experience of the researchers. Therefore, if other

researchers would replicate this study, even considering the same

related work as source base, the list generated would be possibly

partially different from the list presented (Table 2 and Appendix A)

in this research, because their personal and background experiences

would be different. In particular, while there are no doubts that the

errors reported in the list are indeed actual possible errors, they

could be formulated in a different way, especially at different levels

of abstraction (that is, more or less detailed).

Nevertheless, the list is strongly based on the existing literature,

subsuming other existing lists, it was evaluated through the

correction of the activities of 52 students, and assessed by five

additional experienced educators. As already mentioned, the list is

open to further improvements and extensions, as foreseen in future

activities.

Another threat to validity is that, despite the explanations in

Section 4, the list presented in this research does not show an exact

tracking, for each item, of how it was generated and exactly which

literature elements (if any) that item was based on/derived from.

Some of this information, however, is available in the Antipattern

Cards, as exemplified in Figure 4.

Finally, the paper suggests several strategies to make use of the

list to improve pedagogical activities. While the experience of the

authors and first anecdotal evidence support the validity of these

proposals, additional larger scale empirical studies with educators

and students are certainly required, and already being carried out,

although still at an early stage.

113

An Open List of Computer Programming Student’s Common Problems EduComp’23, Abril 24-29, 2023, Recife, Pernambuco, Brasil (On-line)

6 ROAD TO THE FUTURE

6.1 Self-sustainability of the open list of common

problems

The list in the Appendix draws on a lot of literature and experience,

yet it cannot be considered casted in stone. To encourage its possible

improvement, extension, and specialization, as well as its practical

use in teaching, it is going to be published as an Open Educational

Resource, with a CC BY-SA-NC 3.0 license in the OER Commons

and Merlot repositories. We ourselves are planning other activities

that make use of the proposed list while possibly further improving

it, and we will be monitoring possible derivatives and be happy to

integrate feedback from other practitioners and researchers.

Hopefully, this will make it possible to improve the list and keep it

alive with a self-sustainable process.

6.2 Item banking: battery of crowdsourced,

standardized, calibrated tests

So far, we have made abundant use of open-answer tests in our

activities, but we would like to make more extensive use of

precisely targeted Multiple-Choice Tests (MCT) because they are

more objective, easier to score, and easily automated, hence more

easily integrated in teaching practice, and at scale.

Therefore, as a future activity, we plan to develop and openly

publish an initial seed set of MCT tests, along the lines of the

Canterbury Question Bank [6], but experimentally validated and

calibrated. The validity of the tests would be assured by grounding

them on the list of problems, through expert consensus and

experimentation. The use of targeted tests and detailed evaluation

rubrics as previously discussed, would make students’ evaluation

more straightforward and objective, increasing – in particular –

inter-rater reliability [17]. The tests’ reliability would be further

supported by the experimental analysis of test results with the Item

Response Theory (IRT) [20] – initially the Rash model because it is

more suitable for smaller samples.

The use of IRT makes it possible to estimate the difficulty of

each test on a common scale: this would allow us to incrementally

integrate additional tests, aligning (“equating”) them on the same

difficulty scale. The possibility to incrementally integrate further

tests to the initially provided seed tests, would open up the

possibility to crowdsource additional tests, aiming to obtain an

extensible crowdsourced open battery of standardized, calibrated

tests (“item banking”). This would be facilitated by publishing the

initial seed tests together with the methodology to develop and

calibrate additional ones.

6.3 Personalized evaluation and reliable

comparisons

A plus of the strategy just outlined, is that these calibrated tests

would be also suitable to be delivered, at scale, with computerized

adaptive evaluation systems [21]. These systems would

automatically select, from the test battery, those tests that more

precisely match the level of ability of the tested students, thus

increasing the accuracy of their personalized evaluation on a

common scale.

 Additionally, the availability of a battery of

standardized/calibrated tests would make it possible to reliably

compare different pedagogical strategies or educational systems,

one of the goals of CIs. Yet in this case, unlike in the case of CIs, a

large test battery would not suffer from the problem of saturation.

7 CONCLUSIONS

This paper has described the development of a comprehensive –

although not final – open list of problems commonly experienced

by novice programmers, as language agnostic and conceptually and

strategically oriented as possible. It has exemplified the use of the

proposed list to improve the evaluation of students in the teaching

practice, with targeted tests and detailed evaluation rubrics. Items

in the proposed list have been documented with antipattern cards,

which not only provide examples on how to detect the specific

problem, but also provide indications on its possible origin, and

suggestions for pedagogical strategies to overcome it.

The paper finally outlines a strategy to crowdsource a battery

of standardized/calibrated tests, that can be used both for the

formative and summative evaluation of students, as well as to

objectively compare different educational strategies and

educational systems.

8 ACKNOWLEDGEMENTS

We would like to express our gratitude to the educators who gave

us their expert advice on the proposed list, to Dr. Paul Mulholland

for the stimulating discussions with one of us, and to the anonymous

reviewers for their useful input.

REFERENCES

[1] Qian, Y., & Lehman, J. (2017). Students’ misconceptions and other difficulties

in introductory programming: A literature review. ACM Transactions on

Computing Education (TOCE), 18(1), 1-24.

[2] Kaczmarczyk, L. C., Petrick, E. R., East, J. P., & Herman, G. L. (2010, March).

Identifying student misconceptions of programming. In Proceedings of the 41st

ACM technical symposium on Computer science education (pp. 107-111).

[3] Pea, R. D. (1986). Language-independent conceptual bugs in novice

programming. Journal of Educational Computing Research, 21, 25-36.

[4] Mccauley, R., Fitzgerald, S., Lewandowski, G., Murphy, L., Simon, B., Thomas,

L., & Zander, C., (2008). Debugging: A review of the literature from an

educational perspective. Computer Science Education. 18.

10.1080/08993400802114581.

[5] Holland, S., Griffiths, R., & Woodman, M. (1997, March). Avoiding object

misconceptions. In Proceedings of the twenty-eighth SIGCSE technical

symposium on Computer science education (pp. 131-134).

[6] Sanders, K., & Thomas, L. (2007). Checklists for grading object-oriented CS1

programs: concepts and misconceptions. ACM SIGCSE Bulletin, 39(3), 166-170.

[7] Goldman, K., Gross, P., Heeren, C., Herman, G. L., Kaczmarczyk, L., Loui, M.

C., & Zilles, C. (2010). Setting the scope of concept inventories for introductory

computing subjects. ACM Transactions on Computing Education (TOCE), 10(2),

1-29.

[8] Hanks, B. (2007). Problems encountered by novice pair programmers. In S.

Fincher, M. Guzdial & R. Anderson (Eds.), Proceedings of the 3rd international

computing education research workshop (pp. 159–164). New York: ACM Press.

[9] Tew, A. E., & Guzdial, M. (2011, March). The FCS1: a language independent

assessment of CS1 knowledge. In Proceedings of the 42nd ACM technical

symposium on Computer science education (pp. 111-116).

[10] Parker, M. C., Guzdial, M., & Engleman, S. (2016, August). Replication,

validation, and use of a language independent CS1 knowledge assessment. In

Proceedings of the 2016 ACM conference on international computing education

research (pp. 93-101).

[11] Hamouda, S., Edwards, S. H., Elmongui, H. G., Ernst, J. V., & Shaffer, C. A.

(2017). A basic recursion concept inventory. Computer Science Education, 27(2),

121-148.

114

EduComp’23, Abril 24-29, 2023, Recife, Pernambuco, Brasil (On-line) Cortinovis, Bolton, Caceffo

[12] Porter, L., Zingaro, D., Liao, S. N., Taylor, C., Webb, K. C., Lee, C., & Clancy,

M. (2019, July). BDSI: A validated concept inventory for basic data structures.

In Proceedings of the 2019 ACM Conference on International Computing

Education Research (pp. 111-119).

[13] Farghally, M. F., Koh, K. H., Ernst, J. V., & Shaffer, C. A. (2017, March).

Towards a concept inventory for algorithm analysis topics. In Proceedings of the

2017 ACM SIGCSE Technical Symposium on Computer Science Education (pp.

207-212).

[14] Caceffo, R., Wolfman, S., & Booth, K. (2016). Developing a Computer Science

Concept Inventory for Introductory Programming. In Proceedings of the 47th

ACM Technical Symposium on Computing Science Education (SIGCSE '16).

ACM, New York, NY, USA, 364-369.

DOI=http://dx.doi.org/10.1145/2839509.2844559

[15] Pillay, N., & Jugoo, V. R. (2006). An analysis of the errors made by novice

programmers in a first course in procedural programming in Java. In Proceedings

of the 36th SACLA Conference (pp. 84-93).

[16] Robins, A., Haden, P., & Garner, S. (2006). Problem distributions in a CS1

course. In Proceedings of the 8th Australasian computing education conference

(pp. 165-173). Hobart: Australasian Computer Society.

[17] Luxton-Reilly, A., Becker, B. A., Cao, Y., McDermott, R., Mirolo, C., Mühling,

A., ... & Whalley, J. (2018, January). Developing assessments to determine

mastery of programming fundamentals. In Proceedings of the 2017 ITiCSE

Conference on Working Group Reports (pp. 47-69).

[18] Hristova, M., Misra, A., Rutter, M., & Mercuri, R. (2003). Identifying and

correcting Java programming errors for introductory computer science students.

Inroads, 35(1), 153-156.

[19] Koenig, A. (March-April 1995). “Patterns and Antipatterns". Journal of Object-

Oriented Programming, 8 (1), 46-48.

[20] Yu, C. H. (2013) A simple guide to the item response theory (IRT) and Rasch

modeling. Retrieved from www. creative-wisdom. com/computer/sas/ IRT.pdf.

[21] Choi, Y., & McClenen, C. (2020). Development of adaptive formative

assessment system using computerized adaptive testing and dynamic bayesian

networks. Applied Sciences, 10(22), 8196.

[22] Gama, G., Caceffo, R., Souza, R., Benatti, R., Aparecida, T., Garcia, I., &

Azevedo, R. (2018). An Antipattern Documentation about Misconceptions

related to an Introductory Programming Course in Python. In Technical Report

18-19, Institute of Computing, University of Campinas, SP, Brasil. 106 pages.

November, 2018.

[23] Caceffo, R., Frank-Bolton, P., Souza, R., & Azevedo, R. (2019). Identifying and

Validating Java Misconceptions Toward a CS1 Concept Inventory. In Innovation

and Technology in Computer Science Education (ITiCSE ’19), July 15-17, 2019,

Aberdeen, Scotland UK. ACM, New York, NY, USA.

[24] Brown, N., & Altadmri, A. (2017). Novice Java Programming Mistakes: Large-

Scale Data vs. Educator Beliefs. ACM Transactions on Computing Education.

[25] Izu, C., Ng, D., & Weerasinghe, A. (2022). Mastery Learning and Productive

Failure: Examining Constructivist Approaches to teach CS1. In Proceedings of

the 33rd Annual Workshop of the Psychology of Programming Interest Group

(PPIG), Milton Keynes, United Kingdom.

115

An Open List of Computer Programming Student’s Common Problems EduComp’23, Abril 24-29, 2023, Recife, Pernambuco, Brasil (On-line)

APPENDIX A – LIST OF COMMON

PROBLEMS

A.1 – Background Problems

• Background Problems

o Basic syntax errors.

o Wrong basic structural details (e.g., data

outside classes, code outside methods…).

o Difficulties in using or setting-up the

development environment.

 A.2 – Variables and Expressions

• Simple variables (and constants)

o Meaningless or misleading variable names,

reflecting lack of clarity about their purpose

(including using the same variable with

different roles).

o Difficulty to differentiate among name, value,

and address of a variable (for example,

variables with names that are actually their

possible values.)

o Missing or unnecessary variable declaration

(when applicable).

o Incorrect definition of variable type (when

applicable).

o Missing/incorrect/unnecessary variable

initialization.

o Overwriting the content of a variable before

using it.

o Attempt to change the value of a constant.

o Failure to understand scope-rules.

▪ Attempt to access local variables

from outside their scope (for

example attempting to access local

variables belonging to functions in

the call stack or declaring variables

inside a block and trying to access

them from outside the block.

▪ Global variables considered as local

in the current scope.

▪ Failure to grasp that global variables

are accessible from within a method.

▪ Unhealthy use of global variables.

o Failure to understand variables’ lifetime

(thinking, for example, that a standard local

variable in a subprogram keeps its value

between different calls).

• Expressions

o Type mismatch in expressions.

o Wrong order / precedence of operators in

expressions (including, for example, misuse of

parenthesis).

o Misuse of logical operators in expressions.

A.3 – Data structures

• Arrays

o Failure to recognize the opportunity to use

arrays.

o Confusing cell index and cell content.

o Confusing the single cell and the whole array.

o Considering the array as a simple

(single/primitive value) variable (e.g. in

assignments, copy, or comparisons).

o Failure to identify the opportunity to use

parallel and/or multi-dimensional arrays.

o Incorrect use of indexes (including in parallel

and multi-dimensional arrays).

o Incorrect array declaration (frequently its

dimension).

• Collections other than arrays

o Inability to select and justify the most

appropriate data structure in a given context

(for example a stack versus a list).

o Inability to justify the most suitable

implementation of a data structure for a given

context (e.g. static versus dynamic, single

versus double linked).

A.4 – Input/Output

• Main Topic

o Inability to identify the input or the output of a

program.

o Inability to use the input/output mechanisms

available in the target language (for example,

confusing file open/read/write versus file

redirection).

A.5 – Control Structures

• Conditional control structures

o Inability to properly indent code with IF

statements.

o Inability to manually trace the execution of IF

statements.

o Failure to recognize the opportunity to use

selection statements (e.g. IF, or Switch).

o Confusion between IF <COND> and

ON/WHEN <COND> (parallelism bug)

o Redundant use of an IF statement, instead of an

ELSE clause.

o Code repeated both in the THEN and ELSE

clauses.

o Redundant structured if-statements where

boolean expression could simplify the code.

o Confusion between sequencing versus nesting

of IF-statements.

116

EduComp’23, Abril 24-29, 2023, Recife, Pernambuco, Brasil (On-line) Cortinovis, Bolton, Caceffo

o Multiple IF statements fail to cover all the

necessary cases.

o Redundant use of conditions in structured IF-

statements.

o Unreachable statement.

• Iterative control structure

o Inability to properly indent code with iteration

statements.

o Inability to trace the execution of loop control

structures.

o Failure to recognize the need for a loop (for

example, to control potential repeated mistakes

in the input of a value or using IF statements

rather than loops).

o Failure to select the most appropriate loop

control structure in each context (for, while-do,

do-while).

o Improper handling of loop counter.

o Counter variable changed in for-loop.

o Incorrect conditions for conditional loops (for

example incorrect start/termination condition,

leading to off-by-one errors).

o Incorrect update of condition in conditional

loops.

o Insertion in loop body, of code that should be

executed only once before or after the loop.

o Confusion between sequencing versus nesting

of iterative statements.

• Recursion

o Inability to manually trace the execution of a

recursive method.

o Failure to conceive a recursive solution,

insisting on an iterative one.

o Lack of recursive method invocation.

o Incorrect computation of the return value of a

recursive method.

o No termination at base case (because base case

not specified, or because never reached).

• Exceptions

o Inability to trace the execution of code with

Exceptions.

o Inability to use (throw or catch) existing

Exceptions (confusing, for example, code that

should throw an exception, and code that

should catch it).

o Inability to develop custom Exceptions.

• Event driven

o Inability to trace the execution of code with

event-driven software.

o Inability to conceive reactive event-driven

programs, insisting on pro-active software

programming style.

A.6 – Modularization

• Modularization

o Inability to trace the execution of code with

subprograms.

o Inability to restructure, simplifying it, complex

monolithic code.

▪ Inability to identify meaningful

blocks of codes suitable to be

abstracted as subprograms (for

example by writing the same code

multiple times).

▪ Inability to structure the

subprograms in layers of

homogeneous levels of abstraction.

• Function parameters

o Missing/incorrect declaration of formal

parameters (when applicable).

o Logic error in providing actual parameters in

function invocation (including, for example,

missing actual parameters).

o Incorrect order of actual parameters in function

invocation.

o Incompatible types between formal and actual

parameters.

o Overwriting the value of a parameter before

using it.

o Assigning a parameter to a redundant variable

inside the function.

o Actual parameters not used in the function's

body.

o Confusion between parameter and same-name

variables.

o Parameters considered accessible outside their

scope.

o Confusion between passing by value versus

passing by reference.

• Function returned value

o No value returned by a function that should

return one (for example, the function visualizes

a value rather than returning it).

o Value returned by a function incorrectly

ignored in the invoking context.

o Type mismatch between returned value and its

use in the caller.

A.7 – OO fundamentals

• Classes and Objects

o Confusion among declaration, instantiation,

and use of an object.

o Use of object attributes or methods before

instantiating the object.

117

An Open List of Computer Programming Student’s Common Problems EduComp’23, Abril 24-29, 2023, Recife, Pernambuco, Brasil (On-line)

o Re-declaration of an object (Object name

preceded by its class name after previous

declaration).

o Handling objects as simple variables.

o Unnecessary instantiation of objects.

o Using method parameters when object

attributes should be used, and vice versa.

o Confusing class, and instance variables.

o Confusing instance, and local variables (for

example, re-declaring attributes as local

variables in constructors, leading to failed

initialization).

o Confusing class, and instance methods.

o Instance / class conflation (classes identical

except minor variations, classes never

instantiated more than once,

superclass/subclass used instead of

class/instance)

o Improper use of current (this / self / Me) object.

o Conflation between an object and its member

variables.

A.8 – OO Design

• Abstraction

o Inability to identify classes modeling objects in

the domain.

o Inability to identify the attributes representing

the state of an object.

o Inability to identify the methods representing

the behavior of an object (that is, determining

which methods should be in the public

interface).

o Inability to define the appropriate signature of

methods.

o Classes defined but not used.

o Confusion concerning the identification of

suitable parameters for instance versus class

methods.

o Inconsistent naming of equivalent

methods/variables in different classes

(problems with encapsulation).

o Inability to identify suitable constructors.

o Inability to make use of polymorphic methods.

o Duplicated method signatures in different

classes not defined as interfaces (Java

specific).

o Inability to organize the overall structure of a

program, in terms of interacting objects.

• Inheritance

o Failure to use inheritance to model hierarchical

domains.

o Confusion between inheritance and

aggregation.

o Inability to use the inheritance technical

mechanisms of the target language.

• Aggregation

o Code in single class instead of composite class

and parts.

A.9 – Problem Solving

• Problem Solving

o Not knowing how to get started or organize a

solution to a problem.

o Difficulties in understanding the problem

(including, for example, inability or reluctance

to simulate the problem by hand).

o Difficulties in reformulating the problem.

o Inability to identify input and output (repeated

entry).

o Inability to identify proper test patterns.

o Inability to verify whether the solution

provided complies with the assigned task.

o Stuck on program design (solution understood

but can’t turn that understanding into a

program).

o Inability to break the proposed problem into

smaller subproblems.

o Inability to redefine the proposed problem to

make it more like other problems whose

solution is already known.

o Inability to simplify the proposed problem to

start synthesizing the nucleus of a first solution.

o Inability to generate multiple tentative

solutions.

o Inability to critically analyze the alternative

tentative solutions.

118

