
A Practical Digital Image Processing Course with morph.py

Francisco de Assis Zampirolli, João Marcelo Borovina Josko, Fernando Teubl, Celso Setsuo
Kurashima

{fzampirolli,marcelo.josko,fernando.teubl,celso.kurashima}@ufabc.edu.br
Federal University of ABC (UFABC)

Av. dos Estados, 5001 – Santo André – 09210-580 – SP – Brazil

ABSTRACT
Teaching Digital Imaging Processing (DIP) is challenging, primarily
because of its mathematical and algorithms complexities. Despite
the recent growth in the field, comprehensive resources are lacking
to support DIP education. To address this gap, this paper intro-
duces a practical course utilizing a Python library named morph.py
designed for beginners and accessible on Google Colab. This inter-
active course employs illustrative examples and hands-on exercises
to facilitate the learning of fundamental DIP concepts and opera-
tors. It begins with basic concepts (e.g., image representation) and
progresses to more advanced topics, including image transforma-
tions and feature extraction. We conducted an exploratory case
study in one group (𝑁 = 15) and gathered their perception through
a voluntary survey. Our quantitative analysis strongly supports
our teaching method’s effectiveness based on the morph.py library,
which addresses the difficulties of teaching DIP to beginners.

KEYWORDS
Computing Education, Digital Image Processing, Colab.

1 INTRODUCTION
Digital Imaging Processing – DIP – is a computer science and
engineering discipline dedicated to analyzing, manipulating, and
interpreting digital images. This field has experienced substantial
growth in recent years, driven by the expanding accessibility of dig-
ital images and the rising demand for image analysis across diverse
domains (e.g., medical imaging, remote sensing, and autonomous
vehicles) [4].

However, learning DIP can be challenging for beginners. It re-
quires them to understand several theoretical concepts and develop
practical skills. Hence, isolating lectures and reading materials may
not be the most effective teaching and learning approach for sub-
jects such as DIP. Interactive and practical methods can better en-
gage students and support learning, according to studies by [17, 24].

Literature provides a few toolboxes to support DIP learning.
Most toolboxes are based on a virtual notebook environment and
provide a comprehensive set of functions for image analysis [17, 22].
However, some works are outdated, such as the mmorph toolbox
that was used in Dougherty and Lotufo’s book [3]. Additionally,

Fica permitido ao(s) autor(es) ou a terceiros a reprodução ou distribuição, em parte ou
no todo, domaterial extraído dessa obra, de forma verbatim, adaptada ou remixada, bem
como a criação ou produção a partir do conteúdo dessa obra, para fins não comerciais,
desde que sejam atribuídos os devidos créditos à criação original, sob os termos da
licença CC BY-NC 4.0.
EduComp’24, Abril 22-27, 2024, São Paulo, Brasil (On-line)
© 2024 Copyright mantido pelo(s) autor(es). Direitos de publicação licenciados à
Sociedade Brasileira de Computação (SBC).

none of them provide constructive feedback to students [24] or
address morphological operators [17].

Furthermore, there are numerous studies aimed at teaching DIP
using commercial libraries [24], characterized by complex syntax
[23], unavailable environments [7], or outdated languages with lim-
ited DIP capabilities, such as Java [19, 20]. Additionally, no literature
was found addressing the automated assessment of programming
exercises in the context of DIP.

This paper presents an interactive DIP course utilizing a toolbox
named morph.py developed especially in response to the identified
gap. The course employs a hands-on approach, teaching theoret-
ical concepts through practical examples and exercises, fostering
the development of practical skills and problem-solving abilities
in students. This course also counts on an automatic correction
environment that provides feedback for each student’s submitted
DIP exercises. The introductory lessons of this course focus on
fundamental concepts (e.g., image representation and sampling). In
contrast, advanced ones include computer vision applications such
as feature extraction and object detection.

We conducted a voluntary survey to gather students’ (𝑁 = 15)
perceptions of our DIP course approach. Our quantitative analysis
revealed that the interactive format of the course contributed to
students’ learning of DIP concepts. Results indicate that this practi-
cal teaching approach is beneficial in addressing the challenges of
teaching complex technical topics to beginners.

This work is organized as follows: In Section 2, we provide back-
ground information on DIP and review relevant previous studies.
Our pedagogical approach is described in Section 3. The imple-
mentation of morph.py is presented in Section 4. In Section 5, we
detail the usage of the morph.py library in exams. In Section 6, we
present the results and engage in corresponding discussions. Lastly,
we conclude this work in Section 7.

2 BACKGROUND
A digital image in two dimensions (2D) can be represented by a
function 𝑓 (𝑥,𝑦) defined over a finite subset of the Cartesian plane
(𝑥,𝑦), where the codomain is the interval [0, 𝑘]. When 𝑘 = 1, 𝑓
represents a binary image. For 𝑘 = 255, it corresponds to a grayscale
image. If 𝑓 assumes three values within this interval, it can be
defined as a color image in RGB (Red, Green, and Blue) format [4].

DIP is a field of computer science and engineering that deals with
the analysis, manipulation, and interpretation of digital images, as
seen in the preview. Python has gained popularity as a language
for DIP due to its user-friendly nature, expansive community, and
access to powerful libraries like OpenCV (opencv.org), Pillow (pil-
low.readthedocs.io), Skimage (scikit-image.org), and TensorFlow
(tensorflow.org). These libraries offer a wide variety of methods

304 

http://opencv.org
http://pillow.readthedocs.io
http://pillow.readthedocs.io
http://scikit-image.org
http://www.tensorflow.org
http://www.tensorflow.org


EduComp’24, Abril 22-27, 2024, São Paulo, Brasil (On-line) Zampirolli et al.

for DIP applications, including those based on Mathematical Mor-
phology (MM). Operators like dilation, erosion, opening, closing,
and others are handy for image enhancement, segmentation, and
feature extraction tasks.

MMach is a DIP library designed for MM and was developed by
Prof. Dr. Junior Barrera [1]. MMach had contributions from several
researchers, including students at different academic levels, and
different versionswere generated as Khoros versions changed [7]. In
the mid-1990s, Prof. Dr. Roberto de Alencar Lotufo joined the team
to make MMach platform-independent [11]. The most recent version
of MMach, known as mmorph, was developed using AdessoWiki [13].
It is structured in XML and includes automatic code generation for
C, Matlab, and Python languages and automatic documentation
generation in TXT, HTML, and LATEX formats. Although mmorph
has been used in several publications, the latest version is no longer
available online. One excellent example of its usage can be found
in Dougherty and Lotufo’s book [3].

This paper proposes using morph.py, an open-source Python
library that provides methods for DIP. The library is available on
github.com/fzampirolli/morph, and allows for community contri-
butions. morph.py has an easy-to-use interface and offers a wide
range of morphological operators on images, successfully utilized
in various applications in DIP courses, including image segmenta-
tion, edge detection, and object recognition. The library also offers
different implementations of the same operator, allowing students
to compare them with those available in libraries like OpenCV and
Skimage. The goal of morph.py is not only to encapsulate functions
from other libraries (such as OpenCV), but also to provide a more
simplified interface, allowing for a better focus on the addressed
content. Additionally, it aims to standardize the behavior of op-
erations, enabling the development of questions with predictable
answers, which is crucial in activities involving automated evalua-
tions.

Related Works
This section provides an overview of scientific papers and currently
available toolboxes for teaching DIP topics. Silva et al. [22] devel-
oped a toolbox for teaching DIP courses using Python and Adesso
[12]. This toolbox was used in one of the earliest Python-based
DIP courses (dca.fee.unicamp.br/ia636) at UNICAMP, consisting
of 83 DIP methods with code and documentation. However, the
toolbox has not been updated. A newer version of the ia636 course
is now available at github.com/MICLab-Unicamp/ia636, but it only
includes 78 Python-based DIP methods without documentation.
Prof. Lotufo’s github.com/robertoalotufo/ia898 toolbox is a more
comprehensive version of the ia636 course, including five lessons
and dozens of documented methods with Jupyter Notebooks. How-
ever, this toolbox provides no morphological operators nor support
for addition of new operators. Prof. Lotufo has developed another
toolbox for DIP courses at github.com/robertoalotufo/ia870p3. This
toolbox includes a comprehensive documentation of the mmorph
toolbox, with methods now implemented in Python and serves as
supplementary material to the book by Dougherty and Lotufo [3].
These toolboxes inspired the development of morph.py, a more
recent toolbox that includes morphological operators and allows
contributions from the community.

Rowe et al. [17] present a DIP teaching method using Jupyter
Notebook, showing increased student comfort with Python and
exposure to polar data. Yaniv et al. [25] introduce the SimpleITK
toolkit for reproducible research and image analysis workflows
through Jupyter Notebook. Although their work focuses on pro-
viding a toolkit for image analysis, our approach is different as we
introduce a library specifically designed to support the teaching of
DIP, including the construction of new operators. Yahya et al. [24]
propose using Matlab to teach DIP, utilizing visual, interactive, and
experimental methods.

The Matlab Image Processing Toolbox is a popular tool used in
scientific and industrial applications for image analysis. It offers
a wide range of functions and algorithms for image-processing
tasks [14]. However, its proprietary nature can be a disadvantage,
as it may limit access for users without licenses and pose financial
challenges for those with limited budgets. In contrast, the Python
environment, with its open community and collaborative nature,
allows for constant improvements and innovations.

Among our review of related literature, only [8, 17] and our
study included student feedback on teaching DIP. Additionally, we
replicated some of the demonstrations from the ia870p3 course
using morph.py in Colab and presented different implementations
of the same operator. Notably, our pedagogical approach only re-
quires the morph.py file, which can be easily inserted into a VPL
(Virtual Programming lab for Moodle) activity for automatic code
correction [16].

It is also possible to teach DIP using problem-solving approaches.
In [8], an experiment was described in a class of 37 students to solve
eleven DIP problems using group work in the Python language.
This group work approach is questionable because the paper did
not detail whether all students were able to absorb the DIP skills
and competencies effectively.

Table 1 summarizes the similarities and differences between the
toolboxes discussed in this section.

3 METHOD
This section presents the context of the DIP course (Section 3.1)
and our pedagogical intervention (Section 3.2), focusing in how
we used the morph.py library as a motivational factor. Finally, we
discuss the development environments (Section 3.3).

3.1 Our Context
DIP is an elective course available to students in multiple programs
at our university, such as the Bachelor of Science in Computer Sci-
ence and various Engineering. The course lasts for 12 weeks, with
four hours of class per week. The professor delivers synchronous
laboratory classes to students through the projector screen, pre-
senting Colabs containing concepts, examples, and exercises within
the Moodle Learning Management System. In 2023, we offered
the course to 25 students from February to May. We also provide
recorded classes created during the Covid-19 pandemic.

3.2 Pedagogical Intervention
The course covers a comprehensive range of topics in DIP, with the
first six weeks focused on equipping students with the necessary
skills to develop DIP operators such as thresholds, histograms, con-
volution, erosion, dilation, filters, watershed, labeled, and distance

305 

https://github.com/fzampirolli/morph
http://www.dca.fee.unicamp.br/ia636
http://github.com/MICLab-Unicamp/ia636
http://github.com/robertoalotufo/ia898
http://github.com/robertoalotufo/ia870p3


A Practical DIP Course with morph.py EduComp’24, Abril 22-27, 2024, São Paulo, Brasil (On-line)

Table 1: Comparing toolboxes/papers for teaching DIP

Toolbox/
Paper

Teaching
Tool Focus Morphological

Operators
Student
Feedback

Silva, 2003 [22] Python Toolbox No No
ia898 by Lotufo, 2017 [9] Jupyter Toolbox No No

ia870p3 by Lotufo, 2019 [10] Jupyter Toolbox Yes No
Yaniv, 2018 [25] Jupyter Toolbox No No
Rowe, 2018 [17] Jupyter Polar image No Yes
Yahya, 2019 [24] Matlab Interactive visual No No
López, 2016 [8] Python Problem-solving No Yes

Our Proposed Toolbox Jupyter/Colab†/PC Compare operators Yes Yes
† Use of special conditions for execution in the Colab environment.

transforms, following the textbook by Gonzalez and Woods [4]. In
week seven, students will take Exam 1, and the remaining weeks
(eight to ten) will focus on applying these DIP operators to solve
real-world computer vision problems. To summarize, the first part
of the course aims to provide students with the skills needed to
develop DIP operators. In contrast, the second part builds upon this
foundation by applying these operators to solve various computer
vision problems. Week eleven is reserved for review, and the course
concludes with a final exam in week twelve.

The evaluation strategy for this course consists of four individ-
ualized and parameterized assignments (15% of the final grade),
which focus on the last topic covered in class. These assignments
are provided to students before each class and are automatically
evaluated using the integration ofMCTest, Moodle, and VPL [26, 27].
In addition to these assignments, Exam 1 (30% of the final grade)
consists of similar exercises. For the final individual project (15%
of the final grade), students must develop a Colab to solve a DIP
problem. The final exam (40% of the final grade) is similar to the
project. Both the first and final exams must be completed within
the two-hour class period.

3.3 Development Environments
Figure 1 provides an overview of the pedagogical intervention em-
ployed in the DIP course, utilizing the morph.py library, which
encompasses 71 methods, including operations (such as minimum,
maximum, and negation) and operators (such as erosions and dila-
tions). While the ia870p3 course (refer to Section 2) covered some
algorithms from the mmorph toolbox, neither that course nor our
course covered the entire range of functionalities the toolbox of-
fers. The course material consisted of six conceptual notebooks
covered during the initial six weeks. Additionally, there were eight
documents focusing on morphological operators. These resources
were utilized until Exam 1, marking a significant milestone in the
course progression. After Exam 1, the course incorporated a set of 27
notebook demonstrations that showcased the practical application
of computer vision in real-world scenarios, adapted from mmorph.
These notebook documentations are available in ipynb format and
can be accessed using literate programming tools such as Colab
or Jupyter [6]. While the morph.py library can also be utilized in
a computer console, its primary application is in Programming
Exercises (PE). These exercises include automatic correction and
are submitted by students in VPL activities on Moodle [26, 27].

The automatic assessment process for this course comprises four
customized tasks that assess the most recent topic discussed in class
during the first four weeks. These tasks are distributed to students
before each class and are automatically evaluated using a combina-
tion of MCTest, Moodle, and VPL as reported by Zampirolli et al.
[26, 27]. Exam 1 also follows the same process. All methods imple-
mented in morph.py are available in the VPL activity runtime files.
The student must correctly call these methods or make adaptations
to ensure the test case is executed correctly. For example, we can
create a new morphological erosion question where the origin of a
structuring function 𝑏 must have one more argument of the method.
Note that this simple change has no solution in traditional libraries
nor in morph.py. So, the students must develop their solution. For
each student, it is also possible to draw a different origin for the
structuring function 𝑏, thus making plagiarism more difficult. Dur-
ing Exam 1, the SEB (Safe Exam Browser – safeexambrowser.org)
feature is used, where the student cannot access the internet to try
to find ready-made solutions. In the initial lists, even the student
who consulted chatbots at the time did not return a correct solution
to this question.

4 LEARNING AND DEVELOPING DIP
THROUGH morph.py

We utilize morph.py to gradually introduce the fundamental con-
cepts of DIP programming one by one, allowing students to under-
stand how these concepts combine to create a complete DIP appli-
cation for ten weeks without feeling overwhelmed. The specific
details of this process will be explained in this section, emphasizing
the importance of including codes for various methods to improve
the reproducibility of this pedagogical approach.

4.1 Initial Part
In week 1, we introduce the initial structure of the morph.py library,
as illustrated in Figure 2. This command will install the latest ver-
sion of the Matplotlib (matplotlib.org), OpenCV (opencv.org), and
Skimage (scikit-image.org) libraries if they are not already installed.

To use this method in Colab, simply download the morph.py, run
the cell with the code from morph import * and mm.install(),
as illustrated in Figure 3.

306 

https://github.com/robertoalotufo/ia898
https://github.com/robertoalotufo/ia870p3
https://safeexambrowser.org/news_en.html
https://matplotlib.org/
http://opencv.org
http://scikit-image.org


EduComp’24, Abril 22-27, 2024, São Paulo, Brasil (On-line) Zampirolli et al.

Figure 1: Overview of the pedagogical intervention used.

1 import matplotlib.pyplot as plt, numpy as np, cv2, requests, sys, subprocess
2 from PIL import Image; from skimage import io
3 class mm(object): """ A helper class for image processing tasks. """
4 count_Images, IN_COLAB = 0, 'google.colab' in sys.modules # INICIALIZATION
5 def install(packages=['matplotlib','scikit-image','opencv-python']):
6 """ This function will install the packages
7 Input: <packages> list of packages.
8 Example:
9 mm.install(['matplotlib', 'scikit-image'])
10 """
11 for p in packages:
12 subprocess.check_call([sys.executable, "-m", "pip", "install", p])

Figure 2: Initial part of the morph.py containing the method
for package installation.

1 # download morph.py from GitHub
2 # !wget https://raw.githubusercontent.com/fzampirolli/morph/main/morph.py
3
4 from morph import *
5 mm.install()

Figure 3: Code for downloading morph.py from GitHub.

4.2 Image Reading
Figure 4 shows a method for reading images in different ways.
If a Google Drive ID is provided, starting with 'id=' (line 15),
or a URL starting with 'http' (line 17), the image will be read
from there. Otherwise, the image will be read from the folder
where the code cell is executed (line 20). To use this method, e.g.,
img = mm.read('image.png').

4.3 Image Format Conversions
After reading an image, it is often necessary to convert it to a desired
format. While many image formats are available, we recommend
using the RGB format for color images and converting them to
this format using the mm.color() method in morph.py (Figure 5).
Additionally, we suggest using images with values between 0 and
255 of type ‘uint8’ whenever possible. To convert an image to
grayscale, use the mm.gray() method (Figure 6).

Finally, to convert a grayscale image to binary, please refer to
Figure 7 for an example. When the second parameter threshold>0

1 def read(file):
2 """ Reads an image from a local file path or URL.
3 Input: <str> File path or URL (full or 'id=keyGoogleDrive').
4 Output: the read image.
5 Example:
6 img_local = mm.read('image.png')
7 img_url = mm.read('https://example.com/image.jpg')
8 img_gdrive = mm.read('id=keyGoogleDrive')
9 """
10 if file.startswith(('http', 'id=')):
11 url, pre = '', 'https://drive.google.com/file/d/'
12 if pre in file:
13 url = 'https://drive.google.com/uc?export=view&id='
14 url += file[len(pre):].split('/')[0]
15 elif file.startswith('id='):
16 url = 'https://drive.google.com/uc?export=view&id=' + file[3:]
17 else:
18 url = file
19 return io.imread(url)
20 else:
21 return cv2.imread(file)

Figure 4: Method for reading an image from a local file path
or URL.

1 def color(img):
2 """ Converts an image to RGB color space.
3 Input: <numpy.ndarray> Image in BGR, grayscale, or RGBA format.
4 Output: RGB image in <numpy.ndarray> format.
5 Example:
6 img = mm.read('image.png')
7 img_rgb = mm.color(img)
8 """
9 if len(img.shape) == 2:
10 return cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
11 elif len(img.shape) == 3 and img.shape[2] == 4:
12 return cv2.cvtColor(img, cv2.COLOR_RGBA2RGB)
13 elif len(img.shape) == 3 and img.shape[2] == 3:
14 return cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
15 else:
16 raise ValueError("Unsupported image format.")

Figure 5: Method to convert an image to the RGB color space.

exists in this method, all pixels greater than thresholdwill receive
the value 255. Furthermore, if this argument does not exist, as in the
comment on line 7, the Otsu method will perform the thresholding
[15].

307 



A Practical DIP Course with morph.py EduComp’24, Abril 22-27, 2024, São Paulo, Brasil (On-line)

1 def gray(img):
2 """ Converts a color image to grayscale.
3 Input: <numpy.ndarray> Input color image.
4 Output: grayscale image.
5 Example:
6 img = mm.read('image.png')
7 img_gray = mm.gray(img)
8 """
9 if len(img.shape) == 3 and img.shape[2] == 4:
10 return cv2.cvtColor(img, cv2.COLOR_BGRA2GRAY)
11 else:
12 return cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)

Figure 6: Method to convert an image to the grayscale space.

1 def threshold(img, threshold=0):
2 """ Thresholds an input image by a threshold value or using Otsu's method.
3 Input: <numpy.ndarray> Input image to be thresholded.
4 Output: <numpy.ndarray> Thresholded image.
5 Example:
6 img = mm.read('image.png')
7 th = mm.threshold(img)
8 """
9 if threshold == 0:
10 value,th=cv2.threshold(img,0,255,cv2.THRESH_BINARY + cv2.THRESH_OTSU)
11 else:
12 value,th=cv2.threshold(img,threshold,255,cv2.THRESH_BINARY)
13 return th

Figure 7: Method for converting a grayscale image to binary.

Please take note that, for image conversion using this method, it
is significantly easier for students to remember the command:

th = mm.threshold(img)

compared to the command mentioned in line 10 of Figure 7:

value,th=cv2.threshold(img,0,255,cv2.THRESH_BINARY
+ cv2.THRESH_OTSU)

Furthermore, it’s worth highlighting that this method can be
further enhanced to accommodate the conversion of various image
types and can be integrated with alternative libraries, in addition
to OpenCV. This allows for the encapsulation of implementation
details, eliminating the need for students to memorize them in order
to effectively utilize the method.

4.4 Displaying Multiple Images
Figure 8, adapted from the mmorph toolbox, illustrates an important
method for displaying multiple images. To use this method, call
mm.show(imgRGB, img1, img2), for example. The first imagemust
be in RGB format, while the rest should be binary. The first image
is the base, and the other images are overlaid with colors (see lines
11 and 12). Suppose the notebook is not being executed in Colab.
In that case, if the student uses Jupyter Notebook or runs the code
on a local computer’s console, the code after line 18 will save the
image to the local computer’s local disk.

4.5 Morphological Erosion
In morph.py, we conventionally represent morphological operators
as follows. First, if we disregard the weights of neighboring pixels
in the structuring element B of a morphological operator, such as

1 def show(*args):
2 """ This method will draw images f
3 Input: <*args> set of images f_i, where i>0 is binary image
4 Output: image drawing
5 Example:
6 f1, f2 = np.zeros((100, 100,3)), np.zeros((100, 100))
7 f2[50:60, 50:60] = 1
8 mm.show(f1, f2)
9 """
10 f = args[0].copy()
11 colors = [[255,0,0], [0,255,0], [0,0,255], [255,0,255], [0,255,255],
12 [255,255,0], [255,50,50], [50,255,50]] # red, green, blue, cyan, ...
13 for i in range(1,len(args)):
14 if i >= len(colors):
15 break
16 f[args[i] > 0] = colors[i-1]
17 _ = plt.imshow(f, "gray")
18 if not mm.IN_COLAB:
19 plt.savefig('fig_' + str(mm.count_Images).zfill(4) + '.png')
20 mm.count_Images += 1

Figure 8: Method for drawing multiple images, where the
first image is RGB.

in erosion [1], we write mm.ero0(img). Refer to Figure 9 for an
example. Morphological erosion calculates, for each pixel in the
output image, the minimum value among the corresponding pixels
in the input image, considering the neighborhood defined by Bwith
some origin (usually the center of B).

1 def ero0(f, B=np.ones((3, 3), dtype='uint8')):
2 """ Creates an erosion of the input image f by the structuring element B.
3 Input: f (ndarray): The input image; B (ndarray, optional): The str. elem.
4 Output: The result of the erosion.
5 Example:
6 mm.ero0(f, B=np.ones((5, 5), dtype='uint8'))
7 """
8 H, W, Bh, Bw, g = f.shape, B.shape, f.copy()
9 for y in range(H): # Loops over each pixel in the input image.
10 for x in range(W):
11 for by in range(Bh): # Loops over each neighbor of the current pixel.
12 for bx in range(Bw):
13 neig_y, neig_x = int(y + by - Bh/2 + 0.5), int(x + bx - Bw/2 + 0.5)
14 # Check if the neighbor is within the bounds of image and B.
15 if B[by, bx] and 0 <= neig_y < H and 0 <= neig_x < W:
16 # Update current pixel with the minimum value of its neighbors.
17 if g[y, x] > f[neig_y, neig_x]:
18 g[y, x] = f[neig_y, neig_x]
19 return g

Figure 9: Morphological erosion without weights on neigh-
boring pixels.

Another option to consider is the incorporation of weights on
neighboring pixels, achieved through a structuring function b. Refer
to Figure 10 for an illustration. This modification can be observed
in lines 15, 17, and 18 of Figures 9 and 10. In the latter case, we
have the difference - b[by, bx]. It is crucial to draw the students’
attention to this point, as this difference may be less than zero in
some instances, which is often undesirable. In such cases, additional
post-processing may be necessary to clamp it to zero.

Comparing with the OpenCV erosion usage, shown in Figure 11,
it is important to note that these three implementations of erosion
do not return exactly the same results, and the student needs to
understand the differences between them. Another possibility for a
more efficient implementation is to increase the image dimensions
and not consider the border pixels in the neighborhood calculations.

308 



EduComp’24, Abril 22-27, 2024, São Paulo, Brasil (On-line) Zampirolli et al.

1 def ero1(f, b=np.ones((3, 3), dtype='uint8')):
2 """ Creates an erosion of the input image f by the structuring function b.
3 Input: f (ndarray): The input image; b (ndarray, optional): The str. func.
4 Output: The result of the erosion.
5 Example:
6 mm.ero1(f, b=np.ones((5, 5), dtype='uint8'))
7 """
8 H, W, bh, bw, g = f.shape, b.shape, f.copy()
9 for y in range(H): # Loops over each pixel in the input image.
10 for x in range(W):
11 for by in range(bh): # Loops over each neighbor of the current pixel.
12 for bx in range(bw):
13 neig_y, neig_x = int(y + by - bh/2 + 0.5), int(x + bx - bw/2 + 0.5)
14 # Check if the neighbor is within the bounds of the image.
15 if 0 <= neig_y < H and 0 <= neig_x < W: # HERE IS DIFFERENT
16 # Update the current pixel with the minimum value of b.
17 if g[y, x] > f[neig_y, neig_x] - b[by, bx]: # HERE IS DIFFERENT
18 g[y, x] = f[neig_y, neig_x] - b[by, bx] # HERE IS DIFFERENT
19 return g

Figure 10: Morphological erosion with weights on neighbor-
ing pixels.

Additionally, it is possible to create a highly efficient implemen-
tations in ANSI C and then create a Python method that simply
calls this implementation, such as the mmorph toolbox, generated
by AdessoWiki [13]. Furthermore, erosion can also be implemented
on a GPU for even better performance [29].

1 def ero(f, b=np.ones((3, 3), dtype='uint8')):
2 """ Creates an erosion of the input image f by the structuring function b.
3 Input: f (ndarray): The input image; b (ndarray, optional): The str. func.
4 Output: The result of the erosion.
5 Example:
6 mm.ero(f, b=np.ones((5, 5), dtype='uint8'))
7 """
8 return cv2.erode(f, b)

Figure 11: Morphological erosion of OpenCV.

4.6 A Simple Example of Using the Library
morph.py

The code to display the image (b) of Figure 13 is shown in Figure 12.
The command on line 9, np.ones((7,7),dtype='uint8'), defines
the structure element and can be replaced with the mm.sebox(2)
method, which is also implemented in the morph.py library. If the
code cell shown in Figure 3 has already been executed previously
in the Jupyter Notebook or Colab, lines 1 to 5 in Figure 12 do not
need to be executed anymore.

1 # download morph.py from GitHub
2 # !wget https://raw.githubusercontent.com/fzampirolli/morph/main/morph.py
3
4 from morph import *
5 mm.install()
6 img = mm.read('https://www.dropbox.com/s/ekjbzp14jt90bfq/00004.jpg?dl=1')
7 img = img[25:120,30:285] # cropping the image - Figure 13-(a)
8 th = mm.threshold(mm.gray(img),30)
9 mm.show(img, th-mm.ero(th, np.ones((7,7), dtype='uint8'))) # Figure 13-(b)

Figure 12: Code for downloading morph.py from a GitHub
key, reading an image from a Dropbox URL, and displaying
the image.

(a)

(b)
Figure 13: Image (a) shows the cropped portion of the image
read in lines 6 and 7 of Figure 12. Image (b) provides an
example of using mm.threshold() and mm.show() in lines 8
and 9 of Figure 12.

5 USING morph.py FOR DIP IN EXAMS
In addition to the pedagogical intervention discussed in Section 3.2
and development environments in Section 3.3, we will explain in
detail in this section how the morph.py library was employed in
the two exams conducted in the DIP course.

5.1 Exam 1
Exam 1 was designed parametrically, with the random selection of
3 questions for each student, as detailed in this section.

5.1.1 Question 1. In [28], the process of creating parametric ques-
tions was presented, offering a detailed example of a question de-
signed for a programming logic course (CS1) focusing on matrices.
This question was adapted for DIP, as illustrated in Figure 14.

The blue-colored text has been added to emphasize the para-
metric part, which varies for each generated exam and is removed
in the PDF version that will be printed and delivered individually
to the student. The student is required to solve this question in a
Moodle VPL activity. This question can be easily adapted for DIP
and was used in Exam 1, where the student should use erosion
or dilation operators with a 3 × 3 neighborhood. For this specific
case of North lesser, the student should use the structuring ele-
ment B = np.array([[1,1,1],[0,1,0],[0,0,0]]) along with
ero0(f,B) (adapting code shown in Figure 9 and without consider-
ing the border elements). The input matrix/image, Figure 14-(left),
is provided as input data in the test cases, and (right) represents
the output.

To read this input image, there is also specific code in the
morph.py library, readImg2(), which can be used when the di-
mensions of the image are not known, as shown in Figure 15. The
readImg(width, height) method is also available when the im-
age dimensions are known. This code reads input lines containing

309 



A Practical DIP Course with morph.py EduComp’24, Abril 22-27, 2024, São Paulo, Brasil (On-line)

Figure 14: Question 1 on Exam 1 involves using adapted erosion or dilation.

pixel values, splits each line into individual pixel values, converts
them to integers, and stores them in a list. It continues this process
until there is no more input (the last line is empty). Finally, it con-
verts the list into a NumPy array with an unsigned 8-bit integer
data type and returns the resulting array.

1 def readImg2():
2 """ This function reads an image of varying size from standard input.
3 Example:
4 f = mm.readImg2()
5 255 0 255
6 128 64 192
7 0 192 128
8
9 """
10 f = []
11 read_row = input()
12 while read_row: # Read each line of the input until there is no more input
13 # Split the line into individual pixel values and convert them to int.
14 row = [int(i) for i in read_row.split() if i]
15 f.append(row) # Add the row to the list of rows.
16 read_row = input()
17 return np.array(f).astype('uint8')

Figure 15: Read a variable size image.

Even if this question is presented as an activity to be performed
with internet research, the student will not find a ready-made so-
lution. For example, when asking about generative models like
ChatGPT (chat.openai.com). Additionally, this question has 16 vari-
ations, including variations in the values and dimensions of the
input image. There are eight variations for the cardinal directions,
with two variations each for greater or lesser. Creating even more
significant variations is possible using a neighborhood of 5 × 5 or
7 × 7.

5.1.2 Question 2. The second question of Exam 1 instructed the
student to read an input image f and apply a filter from the OpenCV
library. Such a parametric question was created for each of the
filters:

(1) cv2.medianBlur(f, bw),
(2) cv2.filter2D(f, -1, bw), and
(3) cv2.GaussianBlur(f, (bw, bh), 0).

Each student received a random question. For example, for the
filter cv2.medianBlur(f, bw), we randomly assigned each student
a neighborhood bw of size 3, 5, or 7. We generated a random input
image, as Figure 16 illustrates.

5.1.3 Question 3. The third question on Exam 1 required the stu-
dent to calculate the distance transform (DT – shortest distance
to a pixel with a value of zero) using successive erosions, as illus-
trated in Figure 17. Each student is assigned a different image 𝑓

and neighborhood 𝑏, which can vary significantly. Furthermore,
multiple test cases are generated for each student, with the ran-
domly assigned neighborhood 𝑏 determining the type of distance
used. For the 2D case, various distance types are available, including
Euclidean, City-Block, and Chessboard. [2]. In some variations of
this question, students may also be asked to print the number of
erosions performed until convergence to the DT.

These three questions presented in Exam 1 assess students’ abil-
ities and competencies in creating operators for DIP. Although
students have access to the morph.py library during the assess-
ment, they will need to make adaptations to ensure their solutions
pass various test cases generated automatically for the Moodle VPL
activity, following the method defined in [27].

310 

https://chat.openai.com/


EduComp’24, Abril 22-27, 2024, São Paulo, Brasil (On-line) Zampirolli et al.

Figure 16: Question 2 on Exam 1 involves using the cv2.medianBlur() filter.

Figure 17: Question 3 on Exam 1 for 1D Distance Transform (DT) using successive erosions.

5.2 Exam 2
Following Exam 1, students are expected to gain proficiency in
utilizing the methods offered by the morph.py library, and other
DIP libraries. Consequently, in the second part of the course features
several practical examples of problem-solving using DIP, building

upon concepts introduced in previous sections and evaluated in the
final exam.

In the final exam, students were asked to detect nine classes,
encompassing 27 randomly generated geometric objects based on

311 



A Practical DIP Course with morph.py EduComp’24, Abril 22-27, 2024, São Paulo, Brasil (On-line)

their color, size, and rotation. Figure 13-(a) shows an image display-
ing a selection of three objects. The URL below was presented in a
student’s question prompt:

https://www.dropbox.com/s/ekjbzp14jt90bfq/00004.jpg

These were the nine classes of random objects:

objects=['Triangle', 'Square', 'Pentagon', 'Hexagon',
'Heptagon', 'Circle', 'Ellipse', 'Star', 'Cross']

In addition to this image, a TXT file was provided containing
each object’s class and bounding box on separate lines. Here’s an
example:

https://www.dropbox.com/s/s5z2muo0bx4calx/00004.txt

The following is a TXT file snippet showing classes 0, 1, and 2,
which correspond to Triangle, Square, and Pentagon, respectively.
In the first column is the class, and in the subsequent columns
are the bounding box values represented as a percentage of width
(columns 2 and 4) and height (columns 3 and 5):

0 0.2895 0.2007 0.3750 0.2862
0 0.0938 0.6678 0.1595 0.7336
0 0.4934 0.3076 0.5954 0.4095
1 0.0543 0.0872 0.1595 0.1924
1 0.3421 0.7911 0.4079 0.8569
1 0.2664 0.4424 0.3322 0.5082
2 0.4211 0.6661 0.5263 0.7714
2 0.5757 0.4688 0.6678 0.5609
2 0.0938 0.8355 0.2122 0.9539

Each student received a distinct image and a corresponding TXT
file and was tasked with assessing the accuracy of their detection
method. The question was set up with automatic corrections in
the VPL activity, including various test cases, which means several
pairs of images and corresponding TXT files containing bounding
boxes. During the classes, it was mentioned that the datasets used to
train convolutional neural networks often consist of pairs of images
and accompanying TXT files, as seen in popular frameworks like
YOLO [5].

6 RESULTS AND DISCUSSION
We conducted one voluntary survey to gather data from students in
our DIP course. The survey was administered after the final exam
and included 5 Likert-based questions to gather feedback on the
course content and strategies.

For the students who completed the course, the survey received
15 responses (≈ 60%) for the Likert questions (Table 2). We analyzed
these responses and found that questions Q2 and Q3 resemble
a normal distribution. This was determined by considering the
skewness or kurtosis 𝑧 − 𝑣𝑎𝑙𝑢𝑒𝑠 falling between −2.575 and 2.575
for 99% confidence level (CL) [18]. Therefore, we used a parametric
method (𝑡 − 𝑡𝑒𝑠𝑡 ) for these two questions and an equivalent non-
parametric method (𝑊𝑖𝑙𝑐𝑜𝑥𝑜𝑛 𝑆𝑖𝑔𝑛𝑒𝑑 − 𝑅𝑎𝑛𝑘) for the remaining.
Additionally, we applied Cronbach’s Alpha to assess the internal

Table 2: Post-class Likert questions

Id Question
1 Does the morph.py library contributed to your DIP’s learn-

ing process by allowing you to focus on the problem to be
solved?

2 Does the morph.py library motivated you to learn DIP?
3 Have you used morph.py through all course tasks?
4 Do you suggest more implementations into morph.py?
5 Do you think that morph.py was easier to use and learn

than openCV?

Table 3:𝑊𝑖𝑙𝑐𝑜𝑥𝑜𝑛 𝑆𝑖𝑔𝑛𝑒𝑑 −𝑅𝑎𝑛𝑘 analysis for questions Q1, Q4
and Q5

Q 𝑇 𝑀𝑒𝑑𝑖𝑎𝑛 𝑧 − 𝑠𝑐𝑜𝑟𝑒 Effect Size(ES) Power(CL=99%)
Q1 120 5 < .01 .93 .82
Q4 96 5 < .01 .74 .61
Q5 118 5 < .01 .87 .76

Table 4: 𝑡 − 𝑡𝑒𝑠𝑡 analysis for all questions for questions Q2
and Q3

Q 𝑡 𝑑 𝑓 𝑝 − 𝑣𝑎𝑙𝑢𝑒 Std. Deviation
Mean Median Effect Size (ES) Power(CL=99%)

Q2 7.67 14 < .01 .81
4.56 5 1.92 .99

Q3 10.48 14 < .01 .61
4.62 5 2.62 1

consistency of the Likert data, and the obtained value was .90.
Finally, we tested the hypothesis below.

𝐻0 : the morph.py library had a neutral effect on stu-
dents’ learning,𝑚𝑑𝑛 ≤ 3.

𝐻1 : the morph.py library positively affected students’
learning,𝑚𝑑𝑛 > 3.

Table 3 presents the results of assessing students’ perception
of our library’s value in their DIP learning process. The findings
demonstrate significant differences between all the questions and
the null hypothesis (𝐻0). For example, the students’ positive per-
ception of our library (Q1) indicates that the alternative hypothesis
(𝐻1) holds statistical significance based on the one-group𝑊𝑖𝑙𝑐𝑜𝑥𝑜𝑛

𝑆𝑖𝑔𝑛𝑒𝑑 − 𝑅𝑎𝑛𝑘 test, 𝑁 = 15, T=120, 𝑝 < 0.01, ES=large (.82). This
result suggests that our library facilitated students to explore the
different pre-implemented algorithms without implementing them
from scratch. Consequently, they could focus more on understand-
ing the underlying concepts and techniques behind the algorithms,
thereby reducing the initial learning curve. This finding aligns with
previous studies [21, 25].

The results of a one-group t-test, measuring students’ utiliza-
tion of our library throughout the course, are presented in Table 4.
Notably, the students’ motivation scores (Q2) indicate that the alter-
native hypothesis (𝐻1) holds statistical significance, with a median
score of 5, 𝑡 (14) = 7.67, 𝑝 < 0.01, ES=large (.99). This result aligns
with the findings about Q1 and Q3, indicating the availability of

312 

https://www.dropbox.com/s/ekjbzp14jt90bfq/00004.jpg
https://www.dropbox.com/s/s5z2muo0bx4calx/00004.txt


EduComp’24, Abril 22-27, 2024, São Paulo, Brasil (On-line) Zampirolli et al.

high-level functions provided by morph.py significantly simplified
the implementation of complex image processing operations. Con-
sequently, students could concentrate more on the practical aspects
of image processing, as was also suggested by [17, 21].

Finally, out of the 25 students who completed the course, only 4
did not achieve approval, resulting in an 84% approval rate.

Threats to validity
Our study encounters challenges to its validity. Given that DIP is an
elective course in our university primarily chosen by students near-
ing graduation, the results we have presented remain inconclusive,
prompting the need for further experimentation. Some students
enroll in multiple courses, often leaning toward those requiring
less effort, which contributes to a lower course completion rate.

Moreover, conducting experiments involving both test and con-
trol groups necessitates approval from the ethics committee. Addi-
tionally, it requires the establishment of multiple classes, all taught
by the same professor, with consistent learning conditions, schedul-
ing within the same academic term, and a commitment to ensuring
comparable levels of dedication. This undertaking poses logistical
challenges at our university, where typically only one class is of-
fered per year (since the founding of our university in 2006, the
DIP has been offered in only ten classes, mainly after 2011).

Therefore, the detailed exposition of our teaching-learning-eva-
luation method in this article paves the way for future research to
explore new avenues for experimentation.

7 CONCLUSIONS AND FUTUREWORKS
This paper presents an interactive course instructing novice learn-
ers in Digital Image Processing (DIP) using Python’s morph.py
library. The course is delivered through Google Colab and VPL ac-
tivities on Moodle, offering practical examples and exercises to rein-
force fundamental concepts and operators. The course encompasses
essential topics, including image representation, sampling, quanti-
zation, and perception, and advanced subjects like transformations,
enhancements, restoration, segmentation, feature extraction, object
detection, and machine learning for computer vision.

The course has effectively addressed the challenges associated
with instructing Digital Image Processing (DIP) beginners. Students
have consistently appreciated the course’s practical and interac-
tive nature. By leveraging the morph.py library and engaging in
hands-on exercises, students have successfully bridged the gap be-
tween theoretical knowledge and practical application, resulting in
a deeper and more comprehensive understanding of DIP principles.

In the future, the course has the potential for expansion into
more advanced topics in DIP, providing students with a broader
skill set by adding more libraries and frameworks. To further en-
rich the learning experience, incorporating real-life case studies
and projects can enhance students’ problem-solving abilities and
improve comprehension of practical DIP applications.

DATA AVAILABILITY STATEMENT
The data supporting the findings of this study are available at the
following URL: github.com/fzampirolli/morph, and are open-source
under the MIT License.

REFERENCES
[1] Gerald Jean Francis Banon and Junior Barrera. 1994. Bases da Morfologia

Matemática para a análise de imagens binárias. UFPE-DI.
[2] Olivier Cuisenaire. 1999. Distance transformations: fast algorithms and applications

to medical image processing. Technical Report.
[3] Edward R. Dougherty and Roberto de Alencar Lotufo. 2003. Hands-on morpho-

logical image processing. Vol. 59. SPIE press.
[4] Rafael C Gonzalez and Richard C Woods. 2009. Processamento digital de imagens.

Pearson Educación.
[5] Muhammad Hussain. 2023. YOLO-v1 to YOLO-v8, the Rise of YOLO and Its

Complementary Nature toward Digital Manufacturing and Industrial Defect
Detection. Machines 11, 7, 677.

[6] Donald Ervin Knuth. 1984. Literate programming. Comput. J. 27, 2, 97–111.
[7] Konstantinos Konstantinides and John R Rasure. 1994. The Khoros software

development environment for image and signal processing. IEEE Transactions on
Image Processing 3, 3, 243–252.

[8] Andrés Fernando Jiménez López, Marla Carolina Prieto Pelayo, and Án-
gela Ramírez Forero. 2016. Teaching image processing in engineering using
python. IEEE Revista Iberoamericana de Tecnologias del Aprendizaje 11, 3, 129–
136.

[9] Roberto de Alencar Lotufo. 2017. Set of functions used in the course IA898 -
Digital Image Processing. https://github.com/robertoalotufo/ia898. GitHub
repository.

[10] Roberto de Alencar Lotufo. 2019. Set of functions used in the course IA870 -
Mathematical Morphology. https://github.com/robertoalotufo/ia870p3. GitHub
repository.

[11] Roberto de Alencar Lotufo, Francisco de Assis Zampirolli, Roberto Hirata Junior,
and Junior Barrera. 1997. MMachLib functions andMMach operators. In Brazilian
Workshop’97 on Mathematical Morphology.

[12] Rubens C Machado, Roberto de Alencar Lotufo, Alexandre G Silva, and André Vi-
tal Saúde. 2003. ADESSO. Scientific Software Development Environment. Journal
of Computer Science and Technology 3, 01, 1–6.

[13] Rubens C. Machado, Leticia Rittner, and Roberto de Alencar Lotufo. 2011.
Adessowiki-Collaborative platform for writing executable papers. Procedia Com-
puter Science 4, 759–767.

[14] MathWorks. 2024.MathWorks Image Processing Toolbox. https://www.mathworks.
com/products/image.html Acessado em 8 de janeiro de 2024.

[15] Nobuyuki Otsu. 1979. A threshold selection method from gray-level histograms.
IEEE transactions on systems, man, and cybernetics 9, 1, 62–66.

[16] Juan Carlos Rodríguez del Pino, Enrique Rubio Royo, and Zenón José Hernán-
dez Figueroa. 2010. VPL: laboratorio virtual de programación para Moodle. In
Jornadas de Enseñanza Universitaria de la Informática. 429–435.

[17] Penny M Rowe and et al. 2018. Teaching image processing in an upper level CS
undergraduate class using compuational guided inquiry and polar data. Journal
of computing sciences in colleges 34, 1.

[18] Thomas P Ryan. 2013. Sample size determination and power. John Wiley & Sons.
[19] Daniel Sage and Michael Unser. 2001. Easy Java programming for teaching image-

processing. In Proceedings 2001 International Conference on Image Processing (Cat.
No. 01CH37205), Vol. 3. IEEE, 298–301.

[20] Daniel Sage and Michael Unser. 2003. Teaching image-processing programming
in Java. IEEE Signal Processing Magazine 20, 6, 43–52.

[21] Daniel Sage and Michael Unser. 2003. Teaching image-processing programming
in Java. IEEE Signal Processing Magazine 20, 6, 43–52.

[22] A.G. Silva and et al. 2003. Toolbox of image processing using the Python language.
In Proc. Int. Conf. on Image Processing, Vol. 3. III–1049.

[23] Gloria Bueno García Oscar Deniz Suarez. 2013. Learning image processing with
OpenCV.

[24] Ali Abdullah Yahya. 2019. Teaching Digital Image Processing Topics via Matlab
Techniques. International Journal of Information and Education Technology 9, 10,
729–734.

[25] Ziv Yaniv and et al. 2018. SimpleITK image-analysis notebooks: a collaborative
environment for education and reproducible research. Journal of digital imaging
31, 3, 290–303.

[26] F.A. Zampirolli, P.H. Pisani, J.M. Josko, G. Kobayashi, F. Fraga, D. Goya, and H.R.
Savegnago. 2020. Parameterized and automated assessment on an introductory
programming course. In Anais do XXXI SBIE. SBC, 1573–1582.

[27] F.A. Zampirolli, Cristiane M. Sato, Heitor Rodrigues Savegnago, Valério Ramos
Batista, and Guiou Kobayashi. 2021. Automated assessment of parametric pro-
gramming in a large-scale course. In 2021 XVI Latin American Conference on
Learning Technologies (LACLO). 357–363.

[28] F.A. Zampirolli, F. Teubl, and V.R. Batista. 2019. Online Generator and Corrector
of Parametric Questions in Hard Copy Useful for the Elaboration of Thousands
of Individualized Exams.. In CSEDU. 352–359.

[29] F. A. Zampirolli and Leonardo Filipe. 2017. A fast CUDA-based implementation
for the Euclidean distance transform. In 2017 International Conference on High
Performance Computing & Simulation (HPCS). IEEE, 815–818.

313 

https://github.com/fzampirolli/morph
https://github.com/robertoalotufo/ia898
https://github.com/robertoalotufo/ia870p3
https://www.mathworks.com/products/image.html
https://www.mathworks.com/products/image.html

	Abstract
	1 Introduction
	2 Background
	3 Method
	3.1 Our Context
	3.2 Pedagogical Intervention
	3.3 Development Environments

	4 Learning and developing DIP through morph.py
	4.1 Initial Part
	4.2 Image Reading
	4.3 Image Format Conversions
	4.4 Displaying Multiple Images
	4.5 Morphological Erosion
	4.6 A Simple Example of Using the Library morph.py

	5 Using morph.py for DIP in Exams
	5.1 Exam 1
	5.2 Exam 2

	6 Results and Discussion
	7 Conclusions and Future Works
	References



