
Automatic creating variation of CS1 assignments and exams
Filipe Dwan Pereira

Hermino Júnior

Federal University of Roraima, Boa Vista, BR

filipe.dwan@ufrr.br

Elaine H. T. Oliveira

Leandro S. G. Carvalho

David B. F. Oliveira

Federal University of Amazonas, Manaus, BR

Aileen Benedict

Mohsen Dorodchi

University of North Carolina at Charlotte, Charlotte, US

Alexandra I. Cristea

Durham University, Durham, UK

The adoption of Online Judge (OJ) environments by CS1 instructors

has increased over the last few years [8–11, 14, 17, 19, 22, 24, 27–31].

OJs reduce instructors’ workload in correcting learners’ codes and

provide instantaneous and accurate feedback to students about the

correctness of their solutions [3, 6, 16, 21, 23, 26, 28]. Despite the

benefits, there are still repetitive and laborious tasks to feed OJ

systems. For example, the literature [1, 5, 13, 16, 18] recommends

that instructors create variations of assignments and exams for

different CS1 classes during the semesters to hamper plagiarism

practice. By creating variations of assignments and exams, it is

more difficult for students to use code solutions from past courses

[13]. Indeed, an even more rigorous way of avoiding plagiarism

would be to create personalized assignments and exams proactively

for each student [5]. However, doing this manually is impractical,

especially in classes with a high number of students.

To address this, we intend to create a mechanism for automati-

cally selecting problems to compose new assignments and exams

so that the new selection of problems is similar enough to the old

in terms of problem topics and challenge levels. Ordinarily, the

questions from an assignment available in CS1 courses share the

same topic (e.g., conditional structure) [4, 12], and are scaffolded

from easier to more challenging problems [7, 15]. In this work, we

propose a way to generate N new assignments based on a previous

one, called the "master assignment." These new assignments will

then be composed of problems unique to the master assignment

but similar in terms of topics and difficulty levels. Additionally, the

same reasoning must be used to create new exams.

To accomplish our goal, we propose the procedure illustrated in

Algorithm 1. In the procedure getNewList, 𝐿 = {𝑞1 ...𝑞𝑚} represents
a given master assignment, where m is the number of questions in

𝐿. The output 𝐿′ = {𝑞′
1
...𝑞′𝑚} depicts a new assignment which has

the same topic of L and requires a resolution effort (i.e., challenge

level) similar to that of 𝐿. To create more than one new 𝐿′s, we can
manipulate the global variable 𝐾 . For example, to create a second

𝐿′ using a given 𝐿 as input, we just need to assign 2 to the global

variable 𝐾 (𝐾 ← 2 in line 1 of the algorithm).

Notice that our procedure uses two auxiliary functions: get-
Topic and findKthNearestNeighbour. In the getTopic function, each
question from the OJ we will have the tuple (q, p), where q is the

statement of the problem and p is a vector that represents the ef-

fort required to solve the question q. Each pair (𝑞, 𝑝) has a topic t

The author(s) or third-parties are allowed to reproduce or distribute, in part or in whole,

the material extracted from this work, in textual form, adapted or remixed, as well as

the creation or production based on its content, for non-commercial purposes, since

the proper credit is provided to the original creation, under CC BY-NC 4.0 License.

EduComp’21, Abril 27–30, 2021, Jataí, Goiás, Brasil (On-line)
© 2021 Copyright held by the owner/author(s). Publication rights licensed to Brazilian

Computing Society (SBC).

associated. The possible topics of the questions is based on the CS1

curriculum: Sequential, Composite conditional structures, Chained
conditional structures, Repeating structures by condition, Repeating
structures by count, Vectors and Strings and Matrices. As the ques-
tions of many OJs are not annotated with the topic of the question,

the function getTopic uses machine learning and natural language

processing techniques to predict the topic t of the statement q. More

specifically, we will use a word embedding layer representation of

each question q in a deep learning model, similar to what we have

done in these works [2, 12, 25].

Algorithm 1 Creating new assignment/exam

1: global const 𝐾 ← 1 ⊲ K sets the ith 𝐿′ created based on 𝐿.

2: procedure getNewList(𝐿)

3: 𝐿′ ← {}
4: for (𝑞, 𝑝) ∈ 𝐿 do
5: t ← getTopic(q)
6: k ← K ⊲ Kth nearest neighbour of p is first used as 𝑝′

7: 𝑞′ ← findKthNearstNeighbour(p, t, k)
8: while 𝑞′ ∈ 𝐿′ do
9: k ← k + 1
10: 𝑞′ ← findKthNearstNeighbour(p, t, k)
11: end while
12: 𝐿′ ← 𝑞′ ∪ 𝐿′
13: end for
14: return 𝐿′ ⊲ new assignment/exam 𝐿′

15: end procedure

To find a problem that requires similar effort, findKthNearst-
Neighbour is used. Here, we use the nearest neighbour technique
over the features, further discussed in previous works where we

proposed and validated features to measure the students’ required

effort per problem [20, 23, 24]. The features will be the dimensions

of the vector p that represents the effort required to solve q. In
total, there are 21 features. Given a pair (q, p), the vector p has

the aggregation of the features’ values based on the learners who

solved that question q. To illustrate, given a question 𝑞𝑎 , there is

a feature called loc which is the lines of code a student used in

their solution for question 𝑞𝑎 . Thus, one of the dimensions of the

vector 𝑝𝑎 will be the average 𝑙𝑜𝑐𝑞𝑎 for all students who submitted

accepted solutions for 𝑞𝑎 .

Finally, we can assume that the questions from 𝐿′ is sorted by

difficult level. The reason is that 𝐿′ is created based on the master

list 𝐿, which has been previously sorted by difficult level by an

instructor. In line 12 of Algorithm 1, the question 𝑞′ in inserted

in 𝐿′ in the same interaction of the for loop (line 4) when 𝑞 ∈ 𝐿
is accessed. That is, as the pair of questions (𝑞, 𝑞′) are potentially
from the same topic and requires a similar effort to be solved, hence,

𝐿 and 𝐿′ are arranged in the same order.

21



EduComp’21, Abril 27–30, 2021, Jataí, Goiás, Brasil (On-line) Pereira et al.

ACKNOWLEDGMENTS
This research, carried out within the scope of the Samsung-UFAM

Project for Education and Research (SUPER), according to Article

48 of Decree nº 6.008/2006 (SUFRAMA), was partially funded by

Samsung Electronics of Amazonia Ltda., under the terms of Fed-

eral Law nº 8.387/1991, through agreements 001/2020 and 003/2019,

signed with Federal University of Amazonas and FAEPI, Brazil.

This study was financed in part by the Coordenação de Aperfeiçoa-

mento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code

001 and the Conselho Nacional de Desenvolvimento Científico e

Tecnológico - Brasil (CNPq grant 308513/2020-7).

REFERENCES
[1] Ibrahim Albluwi. 2019. Plagiarism in programming assessments: a systematic

review. ACM Transactions on Computing Education (TOCE) 20, 1 (2019), 1–28.
[2] Tahani Aljohani, Filipe Dwan Pereira, Alexandra I Cristea, and Elaine Oliveira.

2020. Prediction of Users’ Professional Profile in MOOCs Only by Utilising

Learners’Written Texts. In International Conference on Intelligent Tutoring Systems.
Springer, 163–173.

[3] Joe Michael Allen and Frank Vahid. 2021. Concise Graphical Representations of

Student Effort on Weekly Many Small Programs. In Proceedings of the 52nd ACM
Technical Symposium on Computer Science Education. 349–354.

[4] Ada Araujo, Daniel Lopes Zordan Filho, Elaine Harada Teixeira de Oliveira, Lean-

dro Silva Galvão de Carvalho, Filipe Dwan Pereira, and David Braga Fernandes

de Oliveira. 2021. Mapeamento e análise empírica de misconceptions comuns

em avaliações de introdução à programação. In Anais do Simpósio Brasileiro de
Educação em Computação. SBC, 123–131.

[5] Steven Bradley. 2016. Managing plagiarism in programming assignments with

blended assessment and randomisation. In Proceedings of the 16th Koli Calling
International Conference on Computing Education Research. 21–30.

[6] Hermino Barbosa de Freitas Júnior, Filipe Dwan Pereira, Elaine Harada Teixeira

de Oliveira, David Braga Fernandes de Oliveira, and Leandro Silva Galvão de

Carvalho. 2020. Recomendação Automática de Problemas em Juízes Online

Usando Processamento de Linguagem Natural e Análise Dirigida aos Dados. In

Anais do XXXI Simpósio Brasileiro de Informática na Educação. SBC, 1152–1161.
[7] Marcos Avner Pimenta de Lima Lima, Leandro Silva Galvão de Carvalho, Elaine

Harada Teixeira de Oliveira, David Braga Fernandes de Oliveira, and Filipe Dwan

Pereira. 2021. Uso de atributos de código para classificação da facilidade de

questões de codificação. In Anais do Simpósio Brasileiro de Educação em Com-
putação. SBC, 113–122.

[8] Joseph de Oliveira, Felipe Salem, Elaine Harada Teixeira de Oliveira, David

Braga Fernandes Oliveira, Leandro Silva Galvão de Carvalho, and Filipe Dwan

Pereira. 2020. Os estudantes leem as mensagens de feedback estendido exibidas

em juízes online?. InAnais do XXXI Simpósio Brasileiro de Informática na Educação.
SBC, 1723–1732.

[9] Aracele Garcia de Oliveira Fassbinder, Tiago Gonçalves Gonçalves Botelho, Ri-

cardo José Martins, and Ellen Francine Barbosa. 2015. Applying flipped classroom

and problem-based learning in a CS1 course. In 2015 IEEE Frontiers in Education
Conference (FIE). IEEE, 1–7.

[10] Ingrid Lima dos Santos, David Braga Fernandes Oliveira, Leandro Silva Galvão

de Carvalho, Filipe Dwan Pereira, and Elaine Harada Teixeira de Oliveira. 2020.

Tempos de Transição em Estados de Corretude e Erro como Indicadores de

Desempenho em Juízes Online. InAnais do XXXI Simpósio Brasileiro de Informática
na Educação. SBC, 1283–1292.

[11] Filipe Dwan, Elaine Oliveira, and David Fernandes. 2017. Predição de zona de

aprendizagem de alunos de introdução à programação em ambientes de cor-

reção automática de código. In Brazilian Symposium on Computers in Education
(Simpósio Brasileiro de Informática na Educação-SBIE), Vol. 28. 1507.

[12] Samuel C Fonseca, Filipe Dwan Pereira, Elaine HT Oliveira, David BF Oliveira,

Leandro SG Carvalho, and Alexandra I Cristea. 2020. Automatic Subject-based

Contextualisation of Programming Assignment Lists. EDM.

[13] Max Fowler and Craig Zilles. 2021. Superficial Code-guise: Investigating the

Impact of Surface Feature Changes on Students’ Programming Question Scores. In

Proceedings of the 52nd ACM Technical Symposium on Computer Science Education.
3–9.

[14] Rodrigo Elias Francisco and Ana Paula Ambrosio. 2015. Mining an Online Judge

System to Support Introductory Computer Programming Teaching.. In EDM
(Workshops). Citeseer.

[15] Marcos Lima, Leandro Silva Galvão de Carvalho, Elaine Harada Teixeira de

Oliveira, David Braga Fernandes Oliveira, and Filipe Dwan Pereira. 2020. Clas-

sificação de dificuldade de questões de programação com base em métricas de

código. In Anais do XXXI Simpósio Brasileiro de Informática na Educação. SBC,
1323–1332.

[16] Andrew Luxton-Reilly, Ibrahim Albluwi, Brett A Becker, Michail Giannakos, Am-

ruth N Kumar, Linda Ott, James Paterson, Michael James Scott, Judy Sheard, and

Claudia Szabo. 2018. Introductory programming: a systematic literature review.

In Proceedings Companion of the 23rd Annual ACM Conference on Innovation and

Technology in Computer Science Education. 55–106.
[17] Filipe Pereira, Elaine Oliveira, David Fernandes, Hermino Junior, and Leandro

Silva Galvão de Carvalho. 2019. Otimização e automação da predição precoce do

desempenho de alunos que utilizam juízes online: uma abordagem com algoritmo

genético. In Brazilian Symposium on Computers in Education (Simpósio Brasileiro
de Informática na Educação-SBIE), Vol. 30. 1451.

[18] Filipe Dwan Pereira, Linnik Maciel de Souza, Elaine Harada Teixeira de Oliveira,

David Braga Fernandes de Oliveira, and Leandro Silva Galvão de Carvalho. 2020.

Predição de desempenho em ambientes computacionais para turmas de progra-

mação: um Mapeamento Sistemático da Literatura. In Anais do XXXI Simpósio
Brasileiro de Informática na Educação. SBC, 1673–1682.

[19] Filipe Dwan Pereira, Samuel C Fonseca, Elaine HT Oliveira, David BF Oliveira,

Alexandra I Cristea, and Leandro SG Carvalho. 2020. Deep learning for early

performance prediction of introductory programming students: a comparative

and explanatory study. Brazilian journal of computers in education. 28 (2020),

723–749.

[20] Filipe D Pereira, Hermino Junior, Luiz Rodriguez, Armando Toda, Elaine HT

Oliveira, Alexandra I Cristea, David Oliveira, Leandro Carvalho, Samuel Fonseca,

Ahmed Alamri, and Seiji Isotani. 2021. A recommender system based on effort:

towardsminimising negative affects andmaximising achievement in CS1 learning.

In International Conference on Intelligent Tutoring Systems. Springer.
[21] Filipe D Pereira, Elaine Oliveira, Alexandra Cristea, David Fernandes, Luciano

Silva, Gene Aguiar, Ahmed Alamri, andMohammad Alshehri. 2019. Early dropout

prediction for programming courses supported by online judges. In International
Conference on Artificial Intelligence in Education. Springer, 67–72.

[22] Filipe Dwan Pereira, Elaine HT Oliveira, David Fernandes, and Alexandra Cristea.

2019. Early performance prediction for CS1 course students using a combination

ofmachine learning and an evolutionary algorithm. In 2019 IEEE 19th International
Conference on Advanced Learning Technologies (ICALT), Vol. 2161. IEEE, 183–184.

[23] Filipe Dwan Pereira, Elaine HT Oliveira, David Oliveira, Alexandra I Cristea,

Leandro Carvalho, Samuel Fonseca, Armando Toda, and Seiji Isotani. 2020. Us-

ing learning analytics in the Amazonas: understanding students’ behaviour in

introductory programming. British journal of educational technology. (2020).
[24] Filipe Dwan Pereira, Elaine H T Oliveira, and David F B Oliveira. 2018. Uso de um

método preditivo para inferir a zona de aprendizagem de alunos de programação
em um ambiente de correção automática de código. Mestrado em Informática.

Universidade Federal do Amazonas, Manaus.

[25] Filipe Dwan Pereira, Francisco Pires, Samuel C Fonseca, Elaine HT Oliveira,

Leandro SG Carvalho, David BF Oliveira, and Alexandra I. 2021. Towards a

Human-AI hybrid system for categorising programming problems (SIGCSE ’21).
Association for Computing Machinery, New York, NY, USA, 7 pages. https:

//doi.org/10.1145/3408877.3432422

[26] Filipe D Pereira, Armando Toda, Elaine HT Oliveira, Alexandra I Cristea, Seiji

Isotani, Dion Laranjeira, Adriano Almeida, and Jonas Mendonça. 2020. Can we

use gamification to predict students’ performance? A case study supported by an

online judge. In International Conference on Intelligent Tutoring Systems. Springer,
259–269.

[27] Tomohiro Saito and Yutaka Watanobe. 2020. Learning Path Recommendation

System for Programming Education based on Neural Networks. International
Journal of Distance Education Technologies (IJDET) 18, 1 (2020), 36–64.

[28] SzymonWasik, Maciej Antczak, Jan Badura, Artur Laskowski, and Tomasz Sternal.

2018. A survey on online judge systems and their applications. ACM Computing
Surveys (CSUR) 51, 1 (2018), 3.

[29] Ruiguo Yu, Zhiyong Cai, Xiuping Du, Muwen He, Zan Wang, Binlan Yang, and

Peng Chang. 2015. The research of the recommendation algorithm in online

learning. International Journal of Multimedia and Ubiquitous Engineering 10, 4

(2015), 71–80.

[30] Wayne Xin Zhao, Wenhui Zhang, Yulan He, Xing Xie, and Ji-Rong Wen. 2018.

Automatically learning topics and difficulty levels of problems in online judge

systems. ACM Transactions on Information Systems (TOIS) 36, 3 (2018), 27.
[31] Daniel Lopes Zordan Filho, Elaine Harada Teixeira de Oliveira, Leandro

Silva Galvão de Carvalho, Marcela Pessoa, Filipe Dwan Pereira, and David

Braga Fernandes de Oliveira. 2020. Uma análise orientada a dados para avaliar

o impacto da gamificação de um juiz on-line no desempenho de estudantes. In

Anais do XXXI Simpósio Brasileiro de Informática na Educação. SBC, 491–500.

22

https://doi.org/10.1145/3408877.3432422
https://doi.org/10.1145/3408877.3432422

