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The adoption of Online Judge (OJ) environments by CS1 instructors

has increased over the last few years [8–11, 14, 17, 19, 22, 24, 27–31].

OJs reduce instructors’ workload in correcting learners’ codes and

provide instantaneous and accurate feedback to students about the

correctness of their solutions [3, 6, 16, 21, 23, 26, 28]. Despite the

benefits, there are still repetitive and laborious tasks to feed OJ

systems. For example, the literature [1, 5, 13, 16, 18] recommends

that instructors create variations of assignments and exams for

different CS1 classes during the semesters to hamper plagiarism

practice. By creating variations of assignments and exams, it is

more difficult for students to use code solutions from past courses

[13]. Indeed, an even more rigorous way of avoiding plagiarism

would be to create personalized assignments and exams proactively

for each student [5]. However, doing this manually is impractical,

especially in classes with a high number of students.

To address this, we intend to create a mechanism for automati-

cally selecting problems to compose new assignments and exams

so that the new selection of problems is similar enough to the old

in terms of problem topics and challenge levels. Ordinarily, the

questions from an assignment available in CS1 courses share the

same topic (e.g., conditional structure) [4, 12], and are scaffolded

from easier to more challenging problems [7, 15]. In this work, we

propose a way to generate N new assignments based on a previous

one, called the "master assignment." These new assignments will

then be composed of problems unique to the master assignment

but similar in terms of topics and difficulty levels. Additionally, the

same reasoning must be used to create new exams.

To accomplish our goal, we propose the procedure illustrated in

Algorithm 1. In the procedure getNewList, 𝐿 = {𝑞1 ...𝑞𝑚} represents
a given master assignment, where m is the number of questions in

𝐿. The output 𝐿′ = {𝑞′
1
...𝑞′𝑚} depicts a new assignment which has

the same topic of L and requires a resolution effort (i.e., challenge

level) similar to that of 𝐿. To create more than one new 𝐿′s, we can
manipulate the global variable 𝐾 . For example, to create a second

𝐿′ using a given 𝐿 as input, we just need to assign 2 to the global

variable 𝐾 (𝐾 ← 2 in line 1 of the algorithm).

Notice that our procedure uses two auxiliary functions: get-
Topic and findKthNearestNeighbour. In the getTopic function, each
question from the OJ we will have the tuple (q, p), where q is the

statement of the problem and p is a vector that represents the ef-

fort required to solve the question q. Each pair (𝑞, 𝑝) has a topic t
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associated. The possible topics of the questions is based on the CS1

curriculum: Sequential, Composite conditional structures, Chained
conditional structures, Repeating structures by condition, Repeating
structures by count, Vectors and Strings and Matrices. As the ques-
tions of many OJs are not annotated with the topic of the question,

the function getTopic uses machine learning and natural language

processing techniques to predict the topic t of the statement q. More

specifically, we will use a word embedding layer representation of

each question q in a deep learning model, similar to what we have

done in these works [2, 12, 25].

Algorithm 1 Creating new assignment/exam

1: global const 𝐾 ← 1 ⊲ K sets the ith 𝐿′ created based on 𝐿.

2: procedure getNewList(𝐿)

3: 𝐿′ ← {}
4: for (𝑞, 𝑝) ∈ 𝐿 do
5: t ← getTopic(q)
6: k ← K ⊲ Kth nearest neighbour of p is first used as 𝑝′

7: 𝑞′ ← findKthNearstNeighbour(p, t, k)
8: while 𝑞′ ∈ 𝐿′ do
9: k ← k + 1
10: 𝑞′ ← findKthNearstNeighbour(p, t, k)
11: end while
12: 𝐿′ ← 𝑞′ ∪ 𝐿′
13: end for
14: return 𝐿′ ⊲ new assignment/exam 𝐿′

15: end procedure

To find a problem that requires similar effort, findKthNearst-
Neighbour is used. Here, we use the nearest neighbour technique
over the features, further discussed in previous works where we

proposed and validated features to measure the students’ required

effort per problem [20, 23, 24]. The features will be the dimensions

of the vector p that represents the effort required to solve q. In
total, there are 21 features. Given a pair (q, p), the vector p has

the aggregation of the features’ values based on the learners who

solved that question q. To illustrate, given a question 𝑞𝑎 , there is

a feature called loc which is the lines of code a student used in

their solution for question 𝑞𝑎 . Thus, one of the dimensions of the

vector 𝑝𝑎 will be the average 𝑙𝑜𝑐𝑞𝑎 for all students who submitted

accepted solutions for 𝑞𝑎 .

Finally, we can assume that the questions from 𝐿′ is sorted by

difficult level. The reason is that 𝐿′ is created based on the master

list 𝐿, which has been previously sorted by difficult level by an

instructor. In line 12 of Algorithm 1, the question 𝑞′ in inserted

in 𝐿′ in the same interaction of the for loop (line 4) when 𝑞 ∈ 𝐿
is accessed. That is, as the pair of questions (𝑞, 𝑞′) are potentially
from the same topic and requires a similar effort to be solved, hence,

𝐿 and 𝐿′ are arranged in the same order.
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