Além da Corretude: Investigando os Limites da Correcao
Automatica ao Analisar Codigos Corretos

Eryck Pedro da Silva', Ricardo Caceffo?, Rodolfo Azevedo'

!Universidade Estadual de Campinas (UNICAMP)
2Universidade Virtual do Estado de Sdo Paulo (Univesp)

{eryck.silva,rodolfo}@ic.unicamp.br, ricardo.caceffo@univesp.br

A integracdo de componentes curriculares de Ciéncia da Computacdo em diferentes
cursos de ensino superior tem sido tradicionalmente justificada pela necessidade de
formar uma nova geragdo de profissionais com habilidades voltadas ndo somente a
programagdo, como também a aplicacdo da computacdo em campos interdisciplinares
[Blikstein and Moghadam 2019, Guzdial and du Boulay 2019]. Esse contexto tem moti-
vado a inclusao de disciplinas de Ciéncia da Computacdo em diversos niveis educacionais,
estendendo-se para alunos com histéricos e interesses ndo necessariamente alinhados com
areas de Ciéncias, Tecnologia, Engenharia e Matematica (STEM).

Dentro do contexto dos cursos de graduacdo, a disciplina de Introdugdo a
Programacdo (Computer Science 1 — CS1) é, em geral, uma das primeiras com as
quais os estudantes t€m contato [Austing et al. 1979, Hertz 2010]. Embora nio haja
consenso completo sobre os tépicos que devem compor seu conteido programético
[Becker and Fitzpatrick 2019, Hertz 2010, Silva et al. 2023b], seu principal objetivo € de-
senvolver o raciocinio légico e sistematico dos discentes. No entanto, disciplinas de CS1
estdo frequentemente associadas a desafios [Bosse and Gerosa 2015, Walker 2017], en-
tre os quais pode-se listar a necessidade de aplicar avaliacdes concisas e coerentes para
garantir um aprendizado efetivo [Bloom et al. 1971]. Essa questdo € particularmente re-
levante, uma vez que as atividades avaliativas desempenham um papel central no alcance
dos objetivos de aprendizagem [Black and William 1998, Lancaster et al. 2019].

Uma das abordagens tradicionalmente adotadas para promover o aprendizado tem
sido 0 aumento do nimero de avalia¢des, com o intuito de proporcionar maior pratica aos
discentes. Com base nisso, sistemas de corre¢do automatica (também conhecidos como
autograders ou Juizes Online) [Hollingsworth 1960] foram desenvolvidos para reduzir o
tempo e o esforco despendidos pelos docentes. Atualmente, em CS1, autograders sdo
utilizados no envio e na correcdo de tarefas submetidas pelos estudantes, baseando-se
predominantemente na verificagdo da saida gerada por um programa em relacdo a um
conjunto predefinido de entradas [Prather et al. 2018], denominado casos de teste.

A primeira vista, avaliar um programa com base em sua passagem nos
casos de teste pode parecer suficiente. = No entanto, estudantes de CS1 fre-
quentemente elaboram cddigos que apresentam caracteristicas normalmente evitadas
por programadores experientes, mesmo quando o programa gera a saida correta
[De Ruvo et al. 2018, Keuning et al. 2021]. Exemplos incluem aumentos redundantes na
complexidade devido ao uso inadequado de estruturas de decisdo ou lacos de repeti¢ao
[Ihantola and Petersen 2019, Silva et al. 2021, Silva et al. 2023a]. Dessa forma, o uso ex-
clusivo de autograders com foco na corretude gera o risco de que discentes sejam apro-

vados em CS1 sem uma compreensao adequada dos conceitos ensinados.

A luz do exposto, este estudo identificou e classificou Problemas de Compre-
ensdo em Codigos Corretos (PC3) [Silva 2024], que sdo padrdes de codificagdo pre-
sentes em codigos considerados corretos por um autograder, que potencialmente indi-
cam que o discente ndo estd compreendendo totalmente algum conceito abordado em
CS1. A nomenclatura foi baseada nos estudos de problemas de compreensdo (mis-
conceptions) [Qian and Lehman 2017] que, em CS1, tém como objetivo identificar e
esclarecer erros comuns em niveis sintdtico, semantico ou logico [Caceffo et al. 2016,
Kaczmarczyk et al. 2010], mas ndo necessariamente se limitam a c6digos corretos.

O processo de identificacdo e catalogagcdo dos PC3 foi realizado por meio da ané-
lise inicial de 2.441 c6digos em Python submetidos por estudantes das turmas da disci-
plina Algoritmos e Programacdo de Computadores (MC102) da Universidade Estadual de
Campinas (UNICAMP). No total, foram identificados 45 PC3, os quais foram organizados
em oito categorias: A) Varidveis, identificadores e escopo (8); B) Expressdes booleanas
(12); C) Iteracao (8); D) Parametros de func¢do e escopo (4); E) Raciocinio (2); F) Casos
de teste (2); G) Organizacao de cddigo (6) e H) Outros (3). Cada PC3 foi representado por
um identificador composto pela letra de sua respectiva categoria seguida de um ndmero.
O Cddigo 1 exemplifica um caso em que o estudante, acreditando que a cldusula else era
obrigatdria, incluiu-a com um bloco de cédigo redundante.

var = int(input())
if var >= 0:
print("positivo._ou.0")

var = int(input())
if var >= 0:

print ("positivo.ou.0")
else:

print ("negativo")

print ("negativo")
else:

(O O I

1
2
3
4 elif var < 0:
5
6
7

-2 Cédigo 2. Cédigo 1 sem o else
Codigo 1. Exemplo de else desnecessario.
desnecessario.

Os passos da metodologia que compds este estudo estdo representados, em ordem
cronoldgica, na Figura 1. O estudo foi estruturado a partir de métodos que buscaram vali-
dar os PC3 tanto de forma externa (considerando outras disciplinas de CS1) quanto interna
(no contexto especifico de MC102). A validacao externa foi conduzida por meio da ana-
lise de 225 ementas de disciplinas de CS1 em nivel nacional, as quais foram comparadas
com ementas internacionais. Essa etapa permitiu verificar que os topicos mais abordados
estavam alinhados as categorias de PC3. Além disso, 32 docentes de CS1 responderam
um questiondrio e participaram de entrevistas para avaliar os 45 PC3 iniciais e indicar
quais seriam os mais graves, isto €, aqueles que demandariam maior atencao na correcao,
resultando em uma lista de 15 PC3. Os docentes entrevistados também destacaram que os
PC3 poderiam ter origens distintas, sendo decorrentes tanto da desatencdo (e.g., PC3 A4 —
Redefini¢do de built-in) quanto de concepgdes equivocadas dos conceitos (e.g., PC3 C1 —
Condic¢ao while testada novamente em seu interior).

A validagdo interna, por sua vez, complementou a analise das razdes de ocorréncia
dos PC3 por meio da observac¢do em sala de aula, envolvendo 20 discentes e um docente
de MC102. Os resultados indicaram que os PC? mais graves das categorias A, D, Ge H
estavam relacionados a desatencdo ou, em alguns casos, foram deliberadamente cometi-

r

Ementa de I

MC102* I I. |=
Observagao Analise em larga-

Estudo de

Validagédo
Interna

i

! i

! 1

! I

! i

! i

' i
1

1 em turmas NI

1 Analise manual de MC102 escala da frequéncia caso em :

H = codigos dos PC3 MCl02 1

I —] o

: \L v A4 ’l

o
I 8T e 9= !
Y = 2 — !
- o=

1 ST 0= 1

! g 2 15 PC3 Deteccdo 9 PC3 mais 1

1 e 4spe mais graves automatica** fre t !

H A [¢] quentes 1

1 ,—‘

1 b > ‘L

1o > D

1] S H

1 O£ 1

18§ %

- 9 @NN 1

: = % W 1

1 S W Ementas decst Consultas !

: nacionais e com docentes 1

: internacionais de CS1 *Disciplina de CS1 da UNICAMP :
1

| .

**Deteccgao para 14 dos 15 PC3 mais graves

Figura 1. Metodologia empregada na pesquisa em ordem cronologica.

dos por estudantes que buscavam diferenciar seus codigos, receosos de que o autograder
os classificasse como plagio. Em contraste, os PC3 das categorias B e C tiveram suas
ocorréncias associadas a compreensoes erradas. Esse aspecto representa um desafio sig-
nificativo, dado que expressdes booleanas e iteracdo sio conceitos fundamentais em CS1.
Para complementar, o desenvolvimento de script! para a detec¢io automatica de 14 PC3
mais graves viabilizou uma andlise em larga escala de mais de 40 mil c6digos submetidos
ao longo de oito semestres de MC102. A aplicac@o do teste de Kruskal-Wallis revelou
que a frequéncia de ocorréncia dos PC3 entre a primeira e a segunda metade da disciplina
ndo apresentou uma reducao estatisticamente significativa, reforcando a hipdtese de que
os discentes podem concluir a disciplina ainda mantendo compreensdes inadequadas.

Por fim, materiais didaticos' especificos foram desenvolvidos e avaliados por meio
de um estudo de caso em uma turma de MC102. Ao todo, participaram 23 discentes, di-
vididos em dois grupos distintos, A e B, que foram expostos a esses materiais antes da
realizacdo das respectivas atividades praticas. Ao término do estudo, a incidéncia de PC3
foi quantificada e comparada entre os alunos que alegaram ter visto os materiais com
aqueles que ndo viram. A aplicacdo do teste Chi-Quadrado revelou que os cédigos dos
discentes do grupo A apresentaram uma reducio na ocorréncia de PC3 quando expostos
aos materiais didaticos. Em contrapartida, os c6digos dos alunos do grupo B que acessa-
ram os materiais apresentaram mais PC3 em comparagdo aqueles que nao os viram. No
entanto, somente foi possivel rejeitar a hipdtese nula para o grupo A.

Os resultados sugerem que, embora determinados PC3 possam ser atenuados por
meio de materiais didaticos, estratégias complementares devem ser empregadas em sala
de aula para garantir um aprendizado compreensivo. A ocorréncia dos PC3 pode ser uma
visao de esfor¢o extra desnecessario [Wigfield and Eccles 2000] para programar ou ainda
resultante de uma linha de raciocinio rdpido e intuitivo [Robins 2022]. Dessa forma,
docentes e instrutores deveriam incentivar metodologias que promovam a importancia dos
discentes se preocuparem com demais caracteristicas de seus cddigos além da corretude.

1https ://linktr.ee/materiaispc3

Agradecimentos

Gostariamos de agradecer aos 32 docentes e 56 discentes que se voluntariaram para os
estudos conduzidos. A pesquisa foi financiada pelo Fundo de Apoio ao Ensino, Pesquisa
e Extensdao (FAEPEX) sob os nimeros 38813-20 e 69086-24 e pelo Conselho Nacional
de Desenvolvimento Cientifico e Tecnoldgico (CNPq) sob o nimero 142476/2020-0.

Referéncias

Austing, R. H., Barnes, B. H., Bonnette, D. T., Engel, G. L., and Stokes, G. (1979). Curri-
culum ’78: Recommendations for the Undergraduate Program in Computer Science—

a Report of the ACM Curriculum Committee on Computer Science. Commun. ACM,
22(3):147-166.

Becker, B. A. and Fitzpatrick, T. (2019). What do cs1 syllabi reveal about our expectati-
ons of introductory programming students? In Proceedings of the 50th ACM Techni-
cal Symposium on Computer Science Education, SIGCSE ’19, page 1011-1017, New
York, NY, USA. Association for Computing Machinery.

Black, P. and William, D. (1998). Assessment and classroom learning. Assessment in
Education: Principles, Policy & Practice, 5(1):7-74.

Blikstein, P. and Moghadam, S. H. (2019). Computing Education Literature Review and
Voices from the Field, page 56—78. Cambridge Handbooks in Psychology. Cambridge
University Press.

Bloom, B., Hastings, J., and Madaus, G. (1971). Handbook on Formative and Summative
Evaluation of Student Learning. McGraw-Hill.

Bosse, Y. and Gerosa, M. (2015). Reprovacdes e Trancamentos nas Disciplinas de Intro-
ducgdo a Programacdo da Universidade de Sao Paulo: Um Estudo Preliminar. In Anais
do XXIII Workshop sobre Educacdo em Computacdo, pages 426—435, Porto Alegre,
RS, Brasil. SBC.

Caceffo, R., Wolfman, S., Booth, K. S., and Azevedo, R. (2016). Developing a Compu-
ter Science Concept Inventory for Introductory Programming. In Proceedings of the
47th ACM Technical Symposium on Computing Science Education, SIGCSE ’16, page
364-369, New York, NY, USA. Association for Computing Machinery.

De Ruvo, G., Tempero, E., Luxton-Reilly, A., Rowe, G. B., and Giacaman, N. (2018).
Understanding semantic style by analysing student code. In Proceedings of the 20th
Australasian Computing Education Conference, ACE ’18, page 73-82, New York, NY,
USA. Association for Computing Machinery.

Guzdial, M. and du Boulay, B. (2019). The History of Computing Education Research,
page 11-39. Cambridge Handbooks in Psychology. Cambridge University Press.

Hertz, M. (2010). What Do "CS1"and "CS2"Mean? Investigating Differences in the
Early Courses. In Proceedings of the 41st ACM Technical Symposium on Computer
Science Education, SIGCSE ’10, page 199-203, New York, NY, USA. Association for
Computing Machinery.

Hollingsworth, J. (1960). Automatic graders for programming classes. Commun. ACM,
3(10):528-529.

Ihantola, P. and Petersen, A. (2019). Code complexity in introductory programming cour-
ses. In Proceedings of the 52nd Hawaii International Conference on System Sciences,
pages 7662-7670.

Kaczmarczyk, L. C., Petrick, E. R., East, J. P., and Herman, G. L. (2010). Identifying
student misconceptions of programming. In Proceedings of the 41st ACM Technical
Symposium on Computer Science Education, SIGCSE 10, page 107-111, New York,
NY, USA. Association for Computing Machinery.

Keuning, H., Heeren, B., and Jeuring, J. (2021). A tutoring system to learn code refac-
toring. In Proceedings of the 52nd ACM Technical Symposium on Computer Science
Education, SIGCSE °21, page 562-568, New York, NY, USA. Association for Com-
puting Machinery.

Lancaster, T., Robins, A. V., and Fincher, S. A. (2019). Assessment and Plagiarism, page
414-444. Cambridge Handbooks in Psychology. Cambridge University Press.

Prather, J., Pettit, R., McMurry, K., Peters, A., Homer, J., and Cohen, M. (2018). Me-
tacognitive difficulties faced by novice programmers in automated assessment tools.
ICER 2018 - Proceedings of the 2018 ACM Conference on International Computing
Education Research, pages 41-50.

Qian, Y. and Lehman, J. (2017). Students’ misconceptions and other difficulties in intro-
ductory programming: A literature review. ACM Transactions on Computing Educa-
tion (TOCE)., 18(1).

Robins, A. V. (2022). Dual process theories: Computing cognition in context. ACM
Trans. Comput. Educ., 22(4).

Silva, E. (2024). Misconceptions in Correct Code: Assisting Instructors and Students by
Shedding Light on What Is Potentially Overshadowed by Automated Correction. Tese
(doutorado), Universidade Estadual de Campinas (UNICAMP), Instituto de Compu-
tacdo, Campinas, SP, Brazil. Disponivel em: https://hdl.handle.net/20.500.
12733/23209. Acesso em: 21 mar. 2025.

Silva, E., Caceffo, R., and Azevedo, R. (2021). Anadlise estética de c6digo em conjunto
com autograders. In Anais Estendidos do I Simpdsio Brasileiro de Educagcdo em Com-
putagdo, pages 25-26, Porto Alegre, RS, Brasil. SBC.

Silva, E., Caceffo, R., and Azevedo, R. (2023a). Misconceptions in Correct Code: rating
the severity of undesirable programming behaviors in Python CS1 courses. Technical
Report IC-23-01, Institute of Computing, University of Campinas.

Silva, E., Caceffo, R., and Azevedo, R. (2023b). A syllabi analysis of csl courses
from brazilian public universities. Brazilian Journal of Computers in Education,
31(1):407-436.

Walker, H. M. (2017). ACM RETENTION COMMITTEE Retention of Students in In-
troductory Computing Courses: Curricular Issues and Approaches. ACM Inroads,
8(4):14-16.

Wigfield, A. and Eccles, J. S. (2000). Expectancy—Value Theory of Achievement Moti-
vation. Contemporary Educational Psychology, 25(1):68-81.

