
Além da Corretude: Investigando os Limites da Correção
Automática ao Analisar Códigos Corretos

Eryck Pedro da Silva1, Ricardo Caceffo2, Rodolfo Azevedo1

1Universidade Estadual de Campinas (UNICAMP)

2Universidade Virtual do Estado de São Paulo (Univesp)

{eryck.silva,rodolfo}@ic.unicamp.br, ricardo.caceffo@univesp.br

A integração de componentes curriculares de Ciência da Computação em diferentes
cursos de ensino superior tem sido tradicionalmente justificada pela necessidade de
formar uma nova geração de profissionais com habilidades voltadas não somente à
programação, como também à aplicação da computação em campos interdisciplinares
[Blikstein and Moghadam 2019, Guzdial and du Boulay 2019]. Esse contexto tem moti-
vado a inclusão de disciplinas de Ciência da Computação em diversos níveis educacionais,
estendendo-se para alunos com históricos e interesses não necessariamente alinhados com
áreas de Ciências, Tecnologia, Engenharia e Matemática (STEM).

Dentro do contexto dos cursos de graduação, a disciplina de Introdução à
Programação (Computer Science 1 – CS1) é, em geral, uma das primeiras com as
quais os estudantes têm contato [Austing et al. 1979, Hertz 2010]. Embora não haja
consenso completo sobre os tópicos que devem compor seu conteúdo programático
[Becker and Fitzpatrick 2019, Hertz 2010, Silva et al. 2023b], seu principal objetivo é de-
senvolver o raciocínio lógico e sistemático dos discentes. No entanto, disciplinas de CS1
estão frequentemente associadas a desafios [Bosse and Gerosa 2015, Walker 2017], en-
tre os quais pode-se listar a necessidade de aplicar avaliações concisas e coerentes para
garantir um aprendizado efetivo [Bloom et al. 1971]. Essa questão é particularmente re-
levante, uma vez que as atividades avaliativas desempenham um papel central no alcance
dos objetivos de aprendizagem [Black and William 1998, Lancaster et al. 2019].

Uma das abordagens tradicionalmente adotadas para promover o aprendizado tem
sido o aumento do número de avaliações, com o intuito de proporcionar maior prática aos
discentes. Com base nisso, sistemas de correção automática (também conhecidos como
autograders ou Juízes Online) [Hollingsworth 1960] foram desenvolvidos para reduzir o
tempo e o esforço despendidos pelos docentes. Atualmente, em CS1, autograders são
utilizados no envio e na correção de tarefas submetidas pelos estudantes, baseando-se
predominantemente na verificação da saída gerada por um programa em relação a um
conjunto predefinido de entradas [Prather et al. 2018], denominado casos de teste.

À primeira vista, avaliar um programa com base em sua passagem nos
casos de teste pode parecer suficiente. No entanto, estudantes de CS1 fre-
quentemente elaboram códigos que apresentam características normalmente evitadas
por programadores experientes, mesmo quando o programa gera a saída correta
[De Ruvo et al. 2018, Keuning et al. 2021]. Exemplos incluem aumentos redundantes na
complexidade devido ao uso inadequado de estruturas de decisão ou laços de repetição
[Ihantola and Petersen 2019, Silva et al. 2021, Silva et al. 2023a]. Dessa forma, o uso ex-
clusivo de autograders com foco na corretude gera o risco de que discentes sejam apro-

vados em CS1 sem uma compreensão adequada dos conceitos ensinados.

À luz do exposto, este estudo identificou e classificou Problemas de Compre-
ensão em Códigos Corretos (PC³) [Silva 2024], que são padrões de codificação pre-
sentes em códigos considerados corretos por um autograder, que potencialmente indi-
cam que o discente não está compreendendo totalmente algum conceito abordado em
CS1. A nomenclatura foi baseada nos estudos de problemas de compreensão (mis-
conceptions) [Qian and Lehman 2017] que, em CS1, têm como objetivo identificar e
esclarecer erros comuns em níveis sintático, semântico ou lógico [Caceffo et al. 2016,
Kaczmarczyk et al. 2010], mas não necessariamente se limitam a códigos corretos.

O processo de identificação e catalogação dos PC³ foi realizado por meio da aná-
lise inicial de 2.441 códigos em Python submetidos por estudantes das turmas da disci-
plina Algoritmos e Programação de Computadores (MC102) da Universidade Estadual de
Campinas (UNICAMP). No total, foram identificados 45 PC³, os quais foram organizados
em oito categorias: A) Variáveis, identificadores e escopo (8); B) Expressões booleanas
(12); C) Iteração (8); D) Parâmetros de função e escopo (4); E) Raciocínio (2); F) Casos
de teste (2); G) Organização de código (6) e H) Outros (3). Cada PC³ foi representado por
um identificador composto pela letra de sua respectiva categoria seguida de um número.
O Código 1 exemplifica um caso em que o estudante, acreditando que a cláusula else era
obrigatória, incluiu-a com um bloco de código redundante.

1 var = int(input ())
2 if var >= 0:
3 print("positivo␣ou␣0")
4 elif var < 0:
5 print("negativo")
6 else:
7 (...)

Código 1. Exemplo de else
desnecessário.

1 var = int(input ())
2 if var >= 0:
3 print("positivo␣ou␣0")
4 else:
5 print("negativo")

Código 2. Código 1 sem o else
desnecessário.

Os passos da metodologia que compôs este estudo estão representados, em ordem
cronológica, na Figura 1. O estudo foi estruturado a partir de métodos que buscaram vali-
dar os PC³ tanto de forma externa (considerando outras disciplinas de CS1) quanto interna
(no contexto específico de MC102). A validação externa foi conduzida por meio da aná-
lise de 225 ementas de disciplinas de CS1 em nível nacional, as quais foram comparadas
com ementas internacionais. Essa etapa permitiu verificar que os tópicos mais abordados
estavam alinhados às categorias de PC³. Além disso, 32 docentes de CS1 responderam
um questionário e participaram de entrevistas para avaliar os 45 PC³ iniciais e indicar
quais seriam os mais graves, isto é, aqueles que demandariam maior atenção na correção,
resultando em uma lista de 15 PC³. Os docentes entrevistados também destacaram que os
PC³ poderiam ter origens distintas, sendo decorrentes tanto da desatenção (e.g., PC³ A4 –
Redefinição de built-in) quanto de concepções equivocadas dos conceitos (e.g., PC³ C1 –
Condição while testada novamente em seu interior).

A validação interna, por sua vez, complementou a análise das razões de ocorrência
dos PC³ por meio da observação em sala de aula, envolvendo 20 discentes e um docente
de MC102. Os resultados indicaram que os PC³ mais graves das categorias A, D, G e H
estavam relacionados à desatenção ou, em alguns casos, foram deliberadamente cometi-

V
a

li
d

a
ç

ã
o

In
te

rn
a

V
a

li
d

a
ç

ã
o

E
x

te
rn

a

A
rt

e
fa

to
p

ro
d

u
z

id
o

Ementa de
MC102*

Análise manual
de códigos

45 PC³

Observação
em turmas
de MC102

15 PC³
mais graves

Detecção
automática**

Ementas de CS1
nacionais e

internacionais

Consultas
com docentes

de CS1

Análise em larga-
escala da frequência

dos PC³

9 PC³ mais
frequentes

*Disciplina de CS1 da UNICAMP
**Detecção para 14 dos 15 PC³ mais graves

Estudo de
caso em
MC102

Materiais didáticos

Linha do
tempo

Figura 1. Metodologia empregada na pesquisa em ordem cronológica.

dos por estudantes que buscavam diferenciar seus códigos, receosos de que o autograder
os classificasse como plágio. Em contraste, os PC³ das categorias B e C tiveram suas
ocorrências associadas a compreensões erradas. Esse aspecto representa um desafio sig-
nificativo, dado que expressões booleanas e iteração são conceitos fundamentais em CS1.
Para complementar, o desenvolvimento de script1 para a detecção automática de 14 PC³
mais graves viabilizou uma análise em larga escala de mais de 40 mil códigos submetidos
ao longo de oito semestres de MC102. A aplicação do teste de Kruskal-Wallis revelou
que a frequência de ocorrência dos PC³ entre a primeira e a segunda metade da disciplina
não apresentou uma redução estatisticamente significativa, reforçando a hipótese de que
os discentes podem concluir a disciplina ainda mantendo compreensões inadequadas.

Por fim, materiais didáticos1 específicos foram desenvolvidos e avaliados por meio
de um estudo de caso em uma turma de MC102. Ao todo, participaram 23 discentes, di-
vididos em dois grupos distintos, A e B, que foram expostos a esses materiais antes da
realização das respectivas atividades práticas. Ao término do estudo, a incidência de PC³
foi quantificada e comparada entre os alunos que alegaram ter visto os materiais com
aqueles que não viram. A aplicação do teste Chi-Quadrado revelou que os códigos dos
discentes do grupo A apresentaram uma redução na ocorrência de PC³ quando expostos
aos materiais didáticos. Em contrapartida, os códigos dos alunos do grupo B que acessa-
ram os materiais apresentaram mais PC³ em comparação àqueles que não os viram. No
entanto, somente foi possível rejeitar a hipótese nula para o grupo A.

Os resultados sugerem que, embora determinados PC³ possam ser atenuados por
meio de materiais didáticos, estratégias complementares devem ser empregadas em sala
de aula para garantir um aprendizado compreensivo. A ocorrência dos PC³ pode ser uma
visão de esforço extra desnecessário [Wigfield and Eccles 2000] para programar ou ainda
resultante de uma linha de raciocínio rápido e intuitivo [Robins 2022]. Dessa forma,
docentes e instrutores deveriam incentivar metodologias que promovam a importância dos
discentes se preocuparem com demais características de seus códigos além da corretude.

1https://linktr.ee/materiaispc3

Agradecimentos
Gostaríamos de agradecer aos 32 docentes e 56 discentes que se voluntariaram para os
estudos conduzidos. A pesquisa foi financiada pelo Fundo de Apoio ao Ensino, Pesquisa
e Extensão (FAEPEX) sob os números 38813-20 e 69086-24 e pelo Conselho Nacional
de Desenvolvimento Científico e Tecnológico (CNPq) sob o número 142476/2020-0.

Referências
Austing, R. H., Barnes, B. H., Bonnette, D. T., Engel, G. L., and Stokes, G. (1979). Curri-

culum ’78: Recommendations for the Undergraduate Program in Computer Science—
a Report of the ACM Curriculum Committee on Computer Science. Commun. ACM,
22(3):147–166.

Becker, B. A. and Fitzpatrick, T. (2019). What do cs1 syllabi reveal about our expectati-
ons of introductory programming students? In Proceedings of the 50th ACM Techni-
cal Symposium on Computer Science Education, SIGCSE ’19, page 1011–1017, New
York, NY, USA. Association for Computing Machinery.

Black, P. and William, D. (1998). Assessment and classroom learning. Assessment in
Education: Principles, Policy & Practice, 5(1):7–74.

Blikstein, P. and Moghadam, S. H. (2019). Computing Education Literature Review and
Voices from the Field, page 56–78. Cambridge Handbooks in Psychology. Cambridge
University Press.

Bloom, B., Hastings, J., and Madaus, G. (1971). Handbook on Formative and Summative
Evaluation of Student Learning. McGraw-Hill.

Bosse, Y. and Gerosa, M. (2015). Reprovações e Trancamentos nas Disciplinas de Intro-
dução à Programação da Universidade de São Paulo: Um Estudo Preliminar. In Anais
do XXIII Workshop sobre Educação em Computação, pages 426–435, Porto Alegre,
RS, Brasil. SBC.

Caceffo, R., Wolfman, S., Booth, K. S., and Azevedo, R. (2016). Developing a Compu-
ter Science Concept Inventory for Introductory Programming. In Proceedings of the
47th ACM Technical Symposium on Computing Science Education, SIGCSE ’16, page
364–369, New York, NY, USA. Association for Computing Machinery.

De Ruvo, G., Tempero, E., Luxton-Reilly, A., Rowe, G. B., and Giacaman, N. (2018).
Understanding semantic style by analysing student code. In Proceedings of the 20th
Australasian Computing Education Conference, ACE ’18, page 73–82, New York, NY,
USA. Association for Computing Machinery.

Guzdial, M. and du Boulay, B. (2019). The History of Computing Education Research,
page 11–39. Cambridge Handbooks in Psychology. Cambridge University Press.

Hertz, M. (2010). What Do "CS1"and "CS2"Mean? Investigating Differences in the
Early Courses. In Proceedings of the 41st ACM Technical Symposium on Computer
Science Education, SIGCSE ’10, page 199–203, New York, NY, USA. Association for
Computing Machinery.

Hollingsworth, J. (1960). Automatic graders for programming classes. Commun. ACM,
3(10):528–529.

Ihantola, P. and Petersen, A. (2019). Code complexity in introductory programming cour-
ses. In Proceedings of the 52nd Hawaii International Conference on System Sciences,
pages 7662–7670.

Kaczmarczyk, L. C., Petrick, E. R., East, J. P., and Herman, G. L. (2010). Identifying
student misconceptions of programming. In Proceedings of the 41st ACM Technical
Symposium on Computer Science Education, SIGCSE ’10, page 107–111, New York,
NY, USA. Association for Computing Machinery.

Keuning, H., Heeren, B., and Jeuring, J. (2021). A tutoring system to learn code refac-
toring. In Proceedings of the 52nd ACM Technical Symposium on Computer Science
Education, SIGCSE ’21, page 562–568, New York, NY, USA. Association for Com-
puting Machinery.

Lancaster, T., Robins, A. V., and Fincher, S. A. (2019). Assessment and Plagiarism, page
414–444. Cambridge Handbooks in Psychology. Cambridge University Press.

Prather, J., Pettit, R., McMurry, K., Peters, A., Homer, J., and Cohen, M. (2018). Me-
tacognitive difficulties faced by novice programmers in automated assessment tools.
ICER 2018 - Proceedings of the 2018 ACM Conference on International Computing
Education Research, pages 41–50.

Qian, Y. and Lehman, J. (2017). Students’ misconceptions and other difficulties in intro-
ductory programming: A literature review. ACM Transactions on Computing Educa-
tion (TOCE)., 18(1).

Robins, A. V. (2022). Dual process theories: Computing cognition in context. ACM
Trans. Comput. Educ., 22(4).

Silva, E. (2024). Misconceptions in Correct Code: Assisting Instructors and Students by
Shedding Light on What Is Potentially Overshadowed by Automated Correction. Tese
(doutorado), Universidade Estadual de Campinas (UNICAMP), Instituto de Compu-
tação, Campinas, SP, Brazil. Disponível em: https://hdl.handle.net/20.500.
12733/23209. Acesso em: 21 mar. 2025.

Silva, E., Caceffo, R., and Azevedo, R. (2021). Análise estática de código em conjunto
com autograders. In Anais Estendidos do I Simpósio Brasileiro de Educação em Com-
putação, pages 25–26, Porto Alegre, RS, Brasil. SBC.

Silva, E., Caceffo, R., and Azevedo, R. (2023a). Misconceptions in Correct Code: rating
the severity of undesirable programming behaviors in Python CS1 courses. Technical
Report IC-23-01, Institute of Computing, University of Campinas.

Silva, E., Caceffo, R., and Azevedo, R. (2023b). A syllabi analysis of cs1 courses
from brazilian public universities. Brazilian Journal of Computers in Education,
31(1):407–436.

Walker, H. M. (2017). ACM RETENTION COMMITTEE Retention of Students in In-
troductory Computing Courses: Curricular Issues and Approaches. ACM Inroads,
8(4):14–16.

Wigfield, A. and Eccles, J. S. (2000). Expectancy–Value Theory of Achievement Moti-
vation. Contemporary Educational Psychology, 25(1):68–81.

