ENComplF - II Encontro Nacional de Computagdo dos Institutos Federais

Software Evolution Sonification: Why and How
Pedro O. Raimundo e Sandro S. Andrade

Grupo de Pesquisa em Sistemas Distribuidos, Otimizagao, Redes e Tempo-Real (GSORT)
Instituto Federal de Educacao, Ciéncia e Tecnologia da Bahia (IFBa)
Av. Aradjo Pinho, n° 39 - Canela - Salvador - BA - CEP: 40.110-150

{pedrooraimundo, sandroandrade}@ifba.edu.br

Abstract. Program comprehension is one of the most challenging tasks under-
taken by software developers. Achieving a firm grasp on the software’s structure,
behavior and evolution directly from its development artifacts is usually a time-
consuming and challenging task. Software visualization tools have effectively
been used to assist developers on these tasks, motivated by the use of images
as outstanding medium for knowledge dissemination. Under such perspective,
software sonification tools emerge as a novel approach to convey temporal and
concurrent streams of information and have been proven to perform remarkably
well due to the their inherently temporal nature. In this work, we describe how
software evolution information can be effectively conveyed by audio streams and
propose a tool for sonification of software repositories.

Resumo. Compreender programas de computador é uma das tarefas mais desa-
fiadoras que desenvolvedores precisam realizar. Adquirir entendimento solido
acerca da estrutura, comportamento e evolucdo de um software através da
investigacdo direta dos seus artefatos de implementacdo é um processo demo-
rado e desafiador. Ferramentas para visualizacdo de software tém sido utiliza-
das com sucesso para este fim, motivadas pela efetividade do uso de imagens
como mecanimos para dissemina¢do de informagdo. Sob esta perspectiva, fer-
ramentas para sonorizagdo de software emergem como uma forma inovadora
de comunicac¢do de informacoes temporais e concorrentes, se mostrando no-
tadamente eficazes devido a sua natureza inerentemente temporal. Neste tra-
balho, sdo apresentados os fundamentos para representagcdo — como fluxos de
dudio — de informacdes sobre a evolucdo de um software e uma ferramenta para
sonorizacdo de repositorios de software é proposta.

1. Introduction

Comprehending computer programs is a notoriously difficult task that involves gathering
information from diverse sources (source code, documentation, runtime behavior, version
history, just to mention a few) and gets progressively harder as the program’s size and
complexity grow [Stefik et al. 2011]. Synthesizing that information to tackle the develop-
ment process effectively and efficiently is an endeavor that requires time, experience and,
more often than not, peer support.

Regardless of the abstraction level (code, design, architecture) at which the de-
veloper is going to address the problem at hand, tools are usually employed in order to
help the decision making and understanding. Such tools range from built-in Integrated

748



XXXIV Congresso da Sociedade Brasileira de Computacdo — CSBC 2014

Development Environment (IDE) helpers and code metric viewers to complex software
visualization solutions, focusing on conveying information to the user through the com-
puter screen using tables, charts, drawings or animations. While such approaches are
helpful in the comprehension process, exploring aural representations of software struc-
ture and behavior has been shown to excel at representing structural [Vickers 1999], rela-
tional [Berman 2011] and parallel or rapidly changing behavioral data [Sonnenwald et al.
1990] in an non-invasive and uncluttered fashion with high apprehension rate.

In this paper, we present a novel approach to convey information about software
evolution by exploiting sound’s uniquely temporal nature and aural events such as melody,
harmony, rthythm and noise. Different events are used because each event has a diverse
impact on the listener and they can be mixed and matched together to convey different
streams of information, as long as not being confusing or intensely overwhelming.

We make two key contributions in this paper. First, we propose the foundations
for a tool in which the evolutionary aspects of a piece of software can be represented as
sound streams, in an unobtrusive and noninvasive manner. We build upon the existing
research on the fields of auditory display and software comprehension through sonifica-
tion. Second, we explore a research field that, to the best of our knowledge, has yet many
research challenges, raising awareness to this particular field and possibly creating a new
forum for idea exchange with a lot of untapped multidisciplinary potential.

2. Software Evolution Sonification

Software Evolution deals with the progressive changes that occur to a computer program
over the time, in order to adapt itself to real world demands. That differs from software
maintenance because whilst maintenance is closely related to minor tweaks and bug fixes,
evolution focuses on adapting and migrating the software systems in order to keep their
initial efficacy.

While significant studies have already been developed to auralize structural and
behavioral software aspects, only modest contributions have been made in the way of
sonifying evolutionary information. The aurally extended version of CocoViz [Bocuzzo
and Gall 2008] does this by tracking how much the source code of a selected entity of
interest has changed across two versions and giving the user audio feedback depending
on a pre-defined threshold. Although that is a good start, it by no means explore the full
potential of auralizations to represent software evolution.

Our approach takes this idea one step further, by extracting software metrics from
the elected versions of the software and using sound to convey information about the
changes in these metrics and overall structure and architecture of the software over time.
Such information can theoretically be discretized by number of commits, timespan or a
weighting of both. Studies are still being conducted to decide on a particular discretization
criteria.

3. Proposed Approach

Our approach to sonifying software evolution involves three main steps: source-code
retrieval, data extraction and sound synthesis, all of which are detailed on the following
paragraphs.

749



ENComplF - II Encontro Nacional de Computagdo dos Institutos Federais

Software evolution is an inherently temporal phenomenon, as such it’s fundamen-
tal to track the changes in a program’s structure and code-metrics across a period of time
to achieve a proper representation of it. This involves retrieving snapshots of the soft-
ware’s source code at different versions. At the time of this study, no technology seems
more appropriate to handle this particular task than batch processing with source control
tools such as Git and Subversion. By doing that, we automatically maintain and store
changes across software revisions on a repository. By using such tools, multiple versions
of the software’s source code can be stored locally for further analysis.

Once local repositories are created from retrieved versions of the program’s code,
it’s possible to parse the source files and retrieve the software’s logical structure using
one of the many available tools for this purpose. In our preliminary studies we considered
GCC-XML [GCC-XML 2012] and Clang [Clang 2013] as potential tools for this task.
Further experimentations and impressions make us lean towards Clang as the superior
tool, mainly due to the fact that GCC-XML doesn’t extract information on the method’s
bodies, necessary for calculating many of the commonly used code-metrics. However,
both tools are still under consideration due to factors such as reliability, ease-of-use and
performance.

After extracting the chosen metrics from the retrieved versions, a comprehensive
mapping can be elaborated between the software metrics collected and the various aural
events that will be defined according to the guidelines already present in the software
sonification literature. Both musicality [Vickers and Alty 1998] and comprehensibility
[Stefik et al. 2011] of the auditory cues should be taken into account.

Once the mapping process is complete, a musical score will be generated accord-
ing to one of the available sonification technologies. Exploratory research indicates that
CSound [Vercoe 1992], the Structured Audio Orchestra Language / Structured Audio
Score Language (SAOL/SASL) [Scheirer 1998] suite, and Lilypond are relatively proven
and well-developed technologies for audio synthesis and rendering, while in-depth re-
search brought up NSound [Hilton 2014] as a viable alternative to the first three. While
being relatively new and obscure, NSound has the advantage of being completely object-
oriented and built from the ground-up with C++ support. Again, the choice between one
of these technologies is going to involve a compromise between reliability, ease-of-use
and performance, with the added criteria of extensibility.

4. Conclusions and Future Work

The technologies and the methodology described in this paper lay the foundations for
a tool that will be able to generate comprehensive auralizations that convey meaningful
information about the software’s evolution. Such information, previously displayed only
in a spatial medium via complex graphical representations, can be auralized as a musi-
cal score. Studies [Berman 2011, Vickers and Alty 2000] have already shown that even
those with little musical background can quickly grasp the concepts conveyed by aural
representations after proper training. Thus, the apprehension and retention rates for this
approach may be inferred as superior to that of a visual-based approach.

A secondary contribution of this work is that it touches upon a field that’s still
not explored on the current body of knowledge. With good visibility and promotion, it
fosters the beginning of a new research area and opens up a new forum of discussion

750



XXXIV Congresso da Sociedade Brasileira de Computacdo — CSBC 2014

that welcomes researchers from areas such as computer science, music, education and
communication.

Along with this paper, a systematic literature review is on its finishing stages and
future publications are already in sight, building upon this work with the final method-
ological steps and validation experiments to assert the tool’s effectiveness and efficacy.

References

[Berman 2011] Berman, L. (2011). Program Comprehension Through Sonification. PhD
thesis, Durham University.

[Bocuzzo and Gall 2008] Bocuzzo, S. and Gall, H. (2008). Software visualization with au-
dio supported cognitive glyphs. In 2008 IEEE International Conference on Software
Maintenance.

[Clang 2013] Clang (2003-2013). C language family frontend for llvm. http://clang.llvm.
org/index.html. Accessed: 08/04/2014.

[GCC-XML 2012] GCC-XML (2002-2012). Xml output for gcc. http://gccxml.github.
10/HTML/Index.html. Accessed: 08/04/2014.

[Hilton 2014] Hilton, N. (2014). Nsound. http://nsound.sourceforge.net. Accessed: 08/04/
2014.

[Scheirer 1998] Scheirer, E. D. (1998). The mpeg-4 structured audio standard.

[Sonnenwald et al. 1990] Sonnenwald, D. H., Gopinath, B., Haberman, G. ., IlI, W. M. K.,
and Myers, J. S. (1990). Infosound: An audio aid to program comprehension. In
System Sciences, 1990., Proceedings of the Twenty-Third Annual Hawaii International
Conference on.

[Stefik et al. 2011] Stefik, A., Hundhausen, C., and Patterson, R. (2011). An empirical in-
vestigation into the design of auditory cues to enhance computer program comprehen-
sion. International Journal of Human-Computer Studies.

[Vercoe 1992] Vercoe, B. (1992). The canonical csound reference manual.

[Vickers 1999] Vickers, P. (1999). CAITLIN : implementation of a musical program aural-
isation system to study the effects on debugging tasks as performed by novice Pascal
programmers. PhD thesis, Loughborough University.

[Vickers and Alty 1998] Vickers, P. and Alty, J. (1998). Towards some organising principles
for musical program auralisations. In Proceedings of the Fifth International Confer-
ence on Auditory Display.

[Vickers and Alty 2000] Vickers, P. and Alty, J. L. (2000). Musical program auralisation:
Empirical studies. In In Proceedings of International Conference on Auditory Display
(ICAD, pages 157-166.

751



