# CQM-DW: Gerenciamento de Consultas em Data Warehouse Distribuído

Orlando P. S. Júnior<sup>1</sup>, Edie C. Santana<sup>2</sup>, Ernando O. Santana<sup>1</sup>

<sup>1</sup>Instituto Federal de Educação e Tecnologia de Mato Grosso (IFMT) Núcleo Avançado de Campo Verde - São Vicente – MT – Brazil

<sup>2</sup>Faculdades Evangélicas Integradas Cantares de Salomão (FEICS) - Cuiabá-MT-Brazil orlando.junior@svc.ifmt.edu.br, ediecs@gmail.br, ernando-1231@hotmail.com

Abstract. The main objective of this paper is to present a solution to facilitate the management of queries in data warehouse distributed repositories stored in cloud. As result the research presents the module CQM-DW, which was developed in order to manage the execution of queries to the data warehouse distributed repositories, counting on a proposed partitioning algorithm queries, which is based on meta-information about the data organization and physical distribution.

Resumo. O objetivo principal deste artigo é apresentar uma solução para facilitar o gerenciamento de consultas em repositórios de Data Warehouse distribuídos armazenados em nuvem. Como resultado, a pesquisa apresenta o módulo CQM-DW, que foi desenvolvido com o intuito de gerenciar a execução de consultas a repositórios de DW distribuídos, contando com a proposta de um algoritmo de particionamento de consultas, que se baseia em meta-informações sobre a organização e distribuição física dos dados.

## 1. Introdução

Data Warehouse (DW) são repositórios de dados voltados à análise histórica de informações e são compostos por informações oriundas de diferentes tipos de sistemas e aplicações. Tais informações são carregadas ao DW e transformadas de modo a refletir uma visão ampla e histórica acerca das informações operacionais das organizações (KIMBAL; ROSS, 2002). A sumarização e temporalidade das informações armazenadas, os repositórios de DW proporcionam informações estratégicas para as organizações, o que é fundamental para a constante melhoria de seus resultados.

Devido a esta importância, faz-se necessário que tais repositórios de dados, mesmo volumosos, estejam disponíveis para consulta contando com armazenamento de dados flexível com alta capacidade de vazão. O módulo CQM-DW executa consultas a repositórios de DW distribuídos e armazenados em nuvem, propondo a divisão das consultas através da análise das informações acerca da distribuição dos dados, possibilitando a execução paralela das subconsultas geradas com o intuito de diminuir o tempo de resposta das consultas em grandes massas de dados.

Na seção 2 apresentaremos os principais conceitos de DW e Computação em Nuvem (CN). Na seção 3 apresentaremos a arquitetura do módulo CQM-DW. Na seção 4 discutiremos os resultados dos experimentos realizados.

# 2. Data Warehouse e Computação em Nuvem

A Computação em Nuvem oferece um grande conjunto de recursos (*hardware* e/ou *software*) virtualizados facilmente utilizáveis. Tais recursos são entregues como serviços pela internet, onde são contratados conforme a demanda (ABADI, 2009).

Data Warehouse são repositórios de dados para análise histórica de informações. Tais informações são gerenciais, orientadas a um determinado assunto de interesse da organização e que integram informações operacionais de diferentes fontes. Devido à característica histórica, tais informações não são voláteis (KIMBAL; ROSS, 2002).

Diversas pesquisa foram realizadas com o intuito de melhorar o tempo de consultas em grandes repositórios de DW, com destaque o ParGRES e o ESQP. O ParGRES tem por objetivo prover paralelismo para a execução eficiente em aplicações OLAP sobre clusters de banco de dados (MATTOSO *et al.*, 2006). O ESQP é um algoritmo baseado em MapReduce realiza consultas OLAP em réplicas de dados (ZHAO *et al.*, 2010).

Ambos os trabalhos, ParGRES e ESQP, trabalham com réplicas de dados, já o módulo CQM-DW foi construído para trabalhar com dados distribuídos em nuvem, consultados conforme a necessidade, visando Escalabilidade e Otimização de Recursos de armazenamento e processamento, propondo uma maneira de particionar as consultas com base nas informações sobre a distribuição dos dados.

# 3. Arquitetura do módulo COM-DW

A abordagem do CQM-DW é focada na CN, pois fornece um mecanismo gerenciar consultas em DW's distribuídos, armazenados em nuvem, onde o CQM-DW atua como um *middleware* que gerencia as subconsultas aos locais de armazenamento do DW.

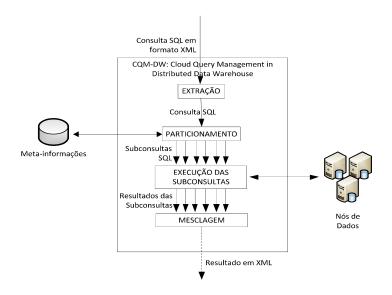



Figura 1 - Arquitetura CQM-DW

O CQM-DW foi desenvolvido propondo uma solução para o problema da localização dos dados, onde o particionamento das consultas é feito segundo o critério da distribuição dos dados. As subconsultas geradas são executadas paralelamente, visando oferecer maior escalabilidade em consultas em grandes repositórios de DW.

O *engine* principal é responsável por organizar os processos necessários para a execução de uma consulta ao DW. A Figura 1 apresenta a arquitetura do módulo CQM-DW, composto por Extração, Particionamento, Execução de Subconsultas e Mesclagem das Informações.

## 3.1. Extração e Particionamento

A consulta é extraída de uma estrutura XML, que contém informações que identificam o DW e o comando SQL a ser executado, além de informações de segurança de acesso. Em seguida ocorre o Particionamento da consulta, que a subdivide em subconsultas de acordo com as meta-informações. As meta-informações registram a maneira como os dados do DW foram distribuídos. A Figura 2 ilustra o processo de particionamento da consulta.

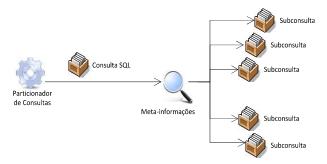



Figura 2 - Particionamento da Consulta

#### 3.2. Execução das subconsultas e Mesclagem dos resultados

As subconsultas são enviadas ao servidor de dados adequado, de acordo com as metainformações e executadas em paralelo, visando diminuir o tempo total de execução. Para a conclusão do processo, é necessário que todas as subconsultas tenham sido concluídas.

Após a execução das subconsultas, as informações resultantes sõ mescladas. Este processo se encarrega de concatenar e reordenar os dados resultantes das subconsultas, conforme a ordem requisitada na consulta extraída.

#### 4. Resultados

Para verificação da performance do módulo, foram montados dois ambientes, o ambiente Solo, composto por um único servidor com cerca de 4 GB de memória RAM e processador de 2.3 Ghz, e o ambiente Heterogêneo, composto por quatro servidores com 1GB de RAM e processadores de 1.5 Ghz. Em ambos os casos os servidores estavam hospedados em Nuvem e o SGBD escolhido foi o PostGreSQL.

O Quadro 1 apresenta os resultados do tempo de execução, desde o recebimento da consulta até a entrega das informações solicitadas. São apresentados o tempo de execução em cada ambiente e a quantidade de registros recuperada em cada quadro de execução.

Quadro 1: Comparativo do Tempo de Execução (em segundos)

|           | Ambiente<br>Solo | Ambiente<br>Heterogêneo | Diferença<br>de Tempo | Qtde. de<br>Registros |
|-----------|------------------|-------------------------|-----------------------|-----------------------|
| 1º Quadro | 33,5869210       | 27,8605936              | 5,7263274             | 120.000               |
| 2º Quadro | 66,3927974       | 53,0190325              | 13,3737649            | 240.000               |
| 3º Quadro | 134,0876694      | 108,6882166             | 25,3994528            | 480.000               |

Constatou-se que o CQM-DW é capaz de diminuir o tempo das consultas. Tal resultado dá-se pelo fato de que as consultas são executadas paralelamente, o que resultou na diminuição do tempo de execução total mesmo em cenários com quantidades crescentes de dados.

O módulo CQM-DW foi desenvolvido em C#.Net, usando técnicas de programação em *thread*, com acesso a dados usando ADO.Net. A requisição de processamento de consultas e a consequente entrega dos dados é realizada via WebServices, característica que torna o módulo plenamente interoperável.

#### 5. Conclusões

O CQM-DW é um modulo que proporciona a consulta em DW's distribuídos em nuvem, visando a diminuição do tempo total de execução de consultas em grandes repositórios de dados. O modulo propõe uma solução para o particionamento de consultas, baseado em informações sobre a distribuição dos dados, e execução paralela das subconsultas geradas.

Destacamos como possíveis trabalhos futuros a implementação da estrutura de acesso a dados usando meios mais velozes para a serialização e entrega dos dados e a construção de mecanismos de análises dos resultados das consultas para a proposição de modificações na distribuição dos dados.

O trabalho se encontra em andamento. Alunos do curso Tecnologia em Análise e Desenvolvimento de Sistemas do IFMT – campus São Vicente - estão desenvolvendo o módulo CQM-DW como trabalho de conclusão de curso e também como atividades de grupos de pesquisa. Espera-se com o desenvolvimento de novas caracteríscias, o módulo possa se apresentar mais robusto e funcional no atendimento às consultas aos DW's.

## 6. References

- Kimbal, R, M. Ross. (2002). The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling, 2nd ed., John Wiley & Sons, 2002.
- Abadi, D. J. (2009). Data management in the cloud: Limitations and opportunities". IEEE Data Eng. Bull., vol. 32, no. 1, pp. 3-12, Mar. 2009
- Mattoso, M. L. Q.; Zimbrão, G.; Lima, A. A.; Baião, F.; Braganholo, V.; Aveleda, A. A.;
  Miranda, B.; Almentero, B. K.; Costa, M. N. (2005). ParGRES: Middleware para Processamento Paralelo de Consultas OLAP em Clusters de Banco de Dados. In: SBBD Sessão de Demos, Uberlândia. pp.19-24.
- ZHAO, J; HU, X; MENG, X. (2010). ESQP: An efficient SQL query processing for cloud data management. In: Proceedings of the second international workshop on Cloud data management. ACM, 2010. p. 1-8.