
XXXVI Congresso da Sociedade Brasileira de Computação

760

Multi-Objective Test Case Selection: Local Search Approaches
for the NSGA-II algorithm

Luciano Soares de Souza1

1Instituto Federal do Norte de Minas Gerais (IFNMG) - Câmpus Pirapora
R. Dr. Humberto Malard, 1355, 39270-000, Pirapora - MG - Brasil

luciano.souza@infnmg.edu.br

Abstract. The software testing process can be very expensive and it is important
to find ways in order to reduce its costs. Test case selection techniques can be
used in order to reduce the amount of tests to execute and this way reducing
the costs. Search algorithms are very promising approach to deal with the test
case selection problem. This work proposes new hybrid algorithms for multi-
objective test case selection by adding local search mechanisms into the NSGA-
II algorithm. The results showed that some of the mechanisms were capable of
improve the NSGA-II algorithm.

Resumo. O processo de testes de software pode ser bastante caro, portanto é
importante se encontrar formas de reduzir os custos desse processo. Técnicas
de seleção de casos de teste podem ser usadas de forma a reduzir a quantidade
de testes a executar e dessa forma reduzir os custos. A utilização de algoritmos
de busca são uma maneira promissora de resolver o problema de seleção de
casos de teste. Esse trabalho propõe novos algoritmos hı́bridos de busca para
seleção multiobjetivo de casos de teste através da inserção de mecanismos de
busca local no algoritmo NSGA-II. Os resultados mostraram que alguns dos
mecanismos foram capazes the introduzir melhoras no algoritmo NSGA-II.

1. Introduction
Software testing is an expensive and time consuming process, which may reach about 40%
of total costs involved in software development [Ramler and Wolfmaier 2006]. As such,
automation emerges as the key solution for improving the efficiency and effectiveness of
the testing process, as well as to reduce its costs.

Fortunately, it is possible to identify, in test suites, redundant test cases concerning
a piece of code. Thus, we can envision ways to reduce the suites in order to fit the available
resources without seriously compromising the coverage of the adequacy criterion, and
thus the quality of the testing process.

The task of reducing a test suite based on a selection criterion is known as Test
Case selection. Given an input test suite, test case selection aims to find a relevant subset
regarding the adopted test adequacy criterion, such that the test cases that do not improve
the reduced suite coverage can be eliminated. Clearly, the selection criterion relies upon
the coverage of the adopted adequacy criterion.

Test case selection is not easy or trivial since there may be a large number of
combinations to consider when searching for an adequate subset. A very promising ap-
proach to deal with this problem relies upon the use of search optimization techniques



761

ENCompIF - 3º Encontro Nacional de Computação dos Institutos Federais

Multi-Objective Test Case Selection: Local Search Approaches
for the NSGA-II algorithm

Luciano Soares de Souza1

1Instituto Federal do Norte de Minas Gerais (IFNMG) - Câmpus Pirapora
R. Dr. Humberto Malard, 1355, 39270-000, Pirapora - MG - Brasil

luciano.souza@infnmg.edu.br

Abstract. The software testing process can be very expensive and it is important
to find ways in order to reduce its costs. Test case selection techniques can be
used in order to reduce the amount of tests to execute and this way reducing
the costs. Search algorithms are very promising approach to deal with the test
case selection problem. This work proposes new hybrid algorithms for multi-
objective test case selection by adding local search mechanisms into the NSGA-
II algorithm. The results showed that some of the mechanisms were capable of
improve the NSGA-II algorithm.

Resumo. O processo de testes de software pode ser bastante caro, portanto é
importante se encontrar formas de reduzir os custos desse processo. Técnicas
de seleção de casos de teste podem ser usadas de forma a reduzir a quantidade
de testes a executar e dessa forma reduzir os custos. A utilização de algoritmos
de busca são uma maneira promissora de resolver o problema de seleção de
casos de teste. Esse trabalho propõe novos algoritmos hı́bridos de busca para
seleção multiobjetivo de casos de teste através da inserção de mecanismos de
busca local no algoritmo NSGA-II. Os resultados mostraram que alguns dos
mecanismos foram capazes the introduzir melhoras no algoritmo NSGA-II.

1. Introduction
Software testing is an expensive and time consuming process, which may reach about 40%
of total costs involved in software development [Ramler and Wolfmaier 2006]. As such,
automation emerges as the key solution for improving the efficiency and effectiveness of
the testing process, as well as to reduce its costs.

Fortunately, it is possible to identify, in test suites, redundant test cases concerning
a piece of code. Thus, we can envision ways to reduce the suites in order to fit the available
resources without seriously compromising the coverage of the adequacy criterion, and
thus the quality of the testing process.

The task of reducing a test suite based on a selection criterion is known as Test
Case selection. Given an input test suite, test case selection aims to find a relevant subset
regarding the adopted test adequacy criterion, such that the test cases that do not improve
the reduced suite coverage can be eliminated. Clearly, the selection criterion relies upon
the coverage of the adopted adequacy criterion.

Test case selection is not easy or trivial since there may be a large number of
combinations to consider when searching for an adequate subset. A very promising ap-
proach to deal with this problem relies upon the use of search optimization techniques

(see [Harman 2011]), which is the focus of this research. Here, the aim is to search for
a subset of test cases which optimizes a given objective function (i.e., the given selection
criterion).

Within this work we addressed the test case selection problem using two selection
criteria: (1) branch coverage, and (2) execution cost (time). In this light, the TC selection
problem here was treated as a multi-objective optimization problem.

The focus of this work was to investigate whether local search mechanisms were
capable of improve the results of the Non-Dominated Sorting Genetic Algorithm (NSGA-
II) [Deb et al. 2000]. For that, we combined three local search strategies with the NSGA-
II algorithm in order to create three new hybrid algorithms: (1) NSGA-II-FSBE, (2)
NSGA-II-1opt and (3) NSGA-II-AG.

2. Problem Formulation
In this work, the solution is defined as a binary vector representing a candidate subset of
TCs to be applied in the software testing process. Let T = {T1, . . . , Tn} be a test suite
with n test cases. A solution is defined as t = (t1, . . . , tn), in which tj ∈ {0, 1} indicates
the presence (1) or absence (0) of the test case Tj within the subset of selected TCs.

As said, two objective functions were adopted: branch coverage and execution
cost. The branch coverage (function to be maximized) consists of the ratio (in percentage)
between the amount of code branches covered by a solution t and the amount of branches
covered by T . In turn, the execution cost (function to be minimized) represents the amount
of time required to execute the selected suite. Finally, the proposed algorithms are used
to deliver a good Pareto frontier regarding the objective functions.

3. Local Search Approaches
Generally speaking, local search algorithms choose, at each step, the locally best node
(which yields the best objective evaluation). The local search algorithms used in this
work are the Forward Selection (FS) [Webb 2002], the Backward Elimination (BE)
[Webb 2002], the 1-opt [Papadimitriou and Steiglitz 1998] and the Additional Greedy
(AG) algorithm [Elbaum et al. 2000].

3.1. NSGA-II-FB

In order to create the NSGA-II-FB algorithm, we introduced the local search procedure
as the last step of the main loop as follows:

1. Select 10% of the non-dominated solutions by using a Roulette Wheel;
2. For each selected solution t randomly select one objective to improve
3. IF the selected objective is to be maximized, THEN use the FS local search algo-

rithm; ELSE (if it is to be minimized) use the BE local search algorithm.

The FS algorithm takes the solution t and iterates as follows: for each test case tj
not yet present in the current solution t (i.e., for each tj = 0) a new candidate solution t′ is
produced by setting tj ← 1. For each candidate solution, the previously chose objective
function is computed. The candidate solution which yields the highest objective value
and is not dominated is then adopted as the new current solution in the search process.



XXXVI Congresso da Sociedade Brasileira de Computação

762

The algorithm stops (1) when all candidate solutions found at an the current iteration are
dominated, or (2) when all test cases have been already added to the current solution.
Contrarily, the BE algorithm takes the solution t and iterates as follows: for each TC
present in the current solution (i.e., for each tj = 1) a candidate solution t′ is produced
by setting tj ← 0. The objective function is computed and the candidate solution which
yields the lowest objective value and is not dominated is considered as the current solution
for the next iteration.

It is important to highlight that all non-dominated solutions found during the local
search process are stored within the non dominated solutions of the NSGA-II algorithm.

3.2. NSGA-II-1opt

The NSGA-II-1opt algorithms was created by adding the 1-opt algorithm as local search
in the following way:

1. Select 10% of the non-dominated solutions stored in the EA by using a Roulette
Wheel;

2. For each solution t do:
(a) For each test case tj ∈ t do:

i. Flip the bit of tj (i.e if tj = 0 then tj ← 1, or the contrary) in order
to create the neighborhood solution t′;

ii. Evaluate t′ according to the objectives and store if it is a non-
dominated solution;

3.3. NSGA-II-AG

In order to create the NSGA-II-AG algorithm we adapted the idea of the aforementioned
traditional Additional Greedy algorithm in the following way:

1. Select 10% of the non-dominated solutions stored in the EA by using a Roulette
Wheel;

2. For each solution t do:
(a) REPEAT

i. For each test case tj ∈ t where tj = 0 do:
A. Creates t′ by making tj = 1;
B. Computes the additional coverage per cost of t′;

ii. Choose the t′ with the best additional coverage per cost value and
update the current solution t = t′

(b) UNTIL it is not possible find a t′ that enhances t
(c) Store each non-dominated solution found during the previous steps

4. Experiments and Results
The experiments were performed using 4 programs (flex, grep, sed and space) from the
SIR (Software-artifact Infrastructure Repository). Each algorithm (NSGA-II, NSGA-
II-FB, NSGA-II-1opt and NSGA-II-AG) was executed 100 times with a total of 50000
functions evaluations and they used the parameters’ values proposed in [Deb et al. 2000].
Furthermore, three well known multi-objective metrics (Hypervolume - HV, Generational
Distance - GD and Inverted Generational Distance - IGD) were used in order to evaluate
the algorithms.



763

ENCompIF - 3º Encontro Nacional de Computação dos Institutos Federais

The algorithm stops (1) when all candidate solutions found at an the current iteration are
dominated, or (2) when all test cases have been already added to the current solution.
Contrarily, the BE algorithm takes the solution t and iterates as follows: for each TC
present in the current solution (i.e., for each tj = 1) a candidate solution t′ is produced
by setting tj ← 0. The objective function is computed and the candidate solution which
yields the lowest objective value and is not dominated is considered as the current solution
for the next iteration.

It is important to highlight that all non-dominated solutions found during the local
search process are stored within the non dominated solutions of the NSGA-II algorithm.

3.2. NSGA-II-1opt

The NSGA-II-1opt algorithms was created by adding the 1-opt algorithm as local search
in the following way:

1. Select 10% of the non-dominated solutions stored in the EA by using a Roulette
Wheel;

2. For each solution t do:
(a) For each test case tj ∈ t do:

i. Flip the bit of tj (i.e if tj = 0 then tj ← 1, or the contrary) in order
to create the neighborhood solution t′;

ii. Evaluate t′ according to the objectives and store if it is a non-
dominated solution;

3.3. NSGA-II-AG

In order to create the NSGA-II-AG algorithm we adapted the idea of the aforementioned
traditional Additional Greedy algorithm in the following way:

1. Select 10% of the non-dominated solutions stored in the EA by using a Roulette
Wheel;

2. For each solution t do:
(a) REPEAT

i. For each test case tj ∈ t where tj = 0 do:
A. Creates t′ by making tj = 1;
B. Computes the additional coverage per cost of t′;

ii. Choose the t′ with the best additional coverage per cost value and
update the current solution t = t′

(b) UNTIL it is not possible find a t′ that enhances t
(c) Store each non-dominated solution found during the previous steps

4. Experiments and Results
The experiments were performed using 4 programs (flex, grep, sed and space) from the
SIR (Software-artifact Infrastructure Repository). Each algorithm (NSGA-II, NSGA-
II-FB, NSGA-II-1opt and NSGA-II-AG) was executed 100 times with a total of 50000
functions evaluations and they used the parameters’ values proposed in [Deb et al. 2000].
Furthermore, three well known multi-objective metrics (Hypervolume - HV, Generational
Distance - GD and Inverted Generational Distance - IGD) were used in order to evaluate
the algorithms.

Table 1. Mean and standard deviation values for each algorithm and each metric.
HV GD IGD HV GD IGD HV GD IGD HV GD IGD

NSGA-II 0.793 0.018 0.021 NSGA-II 0.707 0.025 0.025 NSGA-II 0.776 0.030 0.019 NSGA-II 0.852 0.003 0.016
(0.012) (0.004) (0.001) (0.013) (0.005) (0.001) (0.021) (0.008) (0.001) (0.017) (0.001) (0.001)

NSGA-II-FB 0.909 0.018 0.009 NSGA-II-FB 0.769 0.033 0.018 NSGA-II-FB 0.940 0.008 0.004 NSGA-II-FB 0.976 0.001 0.001
flex (0.064) (0.011) (0.006) grep (0.072) (0.013) (0.007) sed (0.085) (0.009) (0.006) space (0.001) (0.001) (0.001)

NSGA-II-1opt 0.763 0.024 0.022 NSGA-II-1opt 0.672 0.037 0.029 NSGA-II-1opt 0.788 0.027 0.016 NSGA-II-1opt 0.920 0.004 0.006
(0.011) (0.003) (0.001) (0.012) (0.005) (0.001) (0.021) (0.005) (0.001) (0.009) (0.001) (0.001)

NSGA-II-AG 0.697 0.027 0.024 NSGA-II-AG 0.592 0.054 0.038 NSGA-II-AG 0.670 0.069 0.024 NSGA-II-AG 0.746 0.015 0.019
(0.12) (0.009) (0.001) (0.011) (0.010) (0.001) (0.020) (0.010) (0.001) (0.024) (0.004) (0.001)

Table 1 shows the mean and standard deviation values for each algorithm and for
each metric. The values were compared using the Mann-Whitney U statistical test and
the best value for each metric is highlighted.

According to the results from the Table 1, it is possible to see that the NSGA-II-
FB outperformed the others in almost all cases. Hence, the FB local search mechanism
indeed was able to improve the results of the NSGA-II algorithm in the studied cases. In
turn, the 1-opt mechanism was able to improve the results only in some cases. Finally,
the AG mechanism was not able to improve the results of the NSGA-II algorithm. In fact,
the results of the NSGA-II-AG algorithm were worse than the NSGA-II results.

5. Conclusions
This paper proposes the use of three local search mechanisms in order to create new
hybrid algorithms. These algorithms were used in the context of multi-objective test case
selection. Experiments, using programs from the SIR repository, were performed in order
to evaluate wether the proposed hybrid algorithms were capable of improving the results
of the NSGA-II algorithm.

The results showed that the NSGA-II-FB algorithm was able to improve the re-
sults of the NSGA-II algorithm in almost all observed cases. Hence it indicates that the
FB local search mechanism indeed improved the NSGA-II algorithm. Furthermore, the
NSGA-II-FB algorithm was considered the best. Further studies will expand these exper-
iments in order to allow the comparison of the algorithms in more diverse environments.

References
Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T. (2000). A fast elitist non-dominated

sorting genetic algorithm for multi-objective optimization: Nsga-ii. In Parallel Prob-
lem Solving from Nature PPSN VI, volume 1917 of Lecture Notes in Computer Science,
pages 849–858. Springer Berlin Heidelberg.

Elbaum, S., Malishevsky, A. G., and Rothermel, G. (2000). Prioritizing test cases for
regression testing. SIGSOFT Softw. Eng. Notes, 25(5):102–112.

Harman, M. (2011). Making the case for morto: Multi objective regression test optimiza-
tion. In Fourth International IEEE Conference on Software Testing, Verification and
Validation, pages 111–114. IEEE Computer Society.

Papadimitriou, C. and Steiglitz, K. (1998). Combinatorial optimization: algorithms and
complexity. Dover books on mathematics. Dover Publications.

Ramler, R. and Wolfmaier, K. (2006). Economic perspectives in test automation - balanc-
ing automated and manual testing with opportunity cost. In Workshop on Automation
of Software Test, ICSE 2006.

Webb, A. R. (2002). Statistical Pattern Recognition, 2nd Edition. John Wiley & Sons.


