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Abstract. Even though social networks can provide free space for discussing
ideas, people can also use them to propagate hate speech and, given the amount
of written material in such networks, it becomes necessary to rely on automatic
methods for identifying this problem. In this work, we set out to verify the use of
some classic Machine Learning algorithms for the task of hate speech detection
in tweets written in Portuguese, by testing four different models (SVM, MLP, Lo-
gistic Regression and Naı̈ve Bayes) with different configurations. Results show
that these algorithms produce better results (in terms of micro-averaged F1
score) than the LSTM used for benchmark, being also competitive to other re-
sults by the related literature.

1. Introduction
Even though social networks can provide free space for discussing ideas, sometimes peo-
ple can also use them to propagate hate speech. Defined as “language which attacks or
demeans a group based on race, ethnic origin, religion, gender, age, disability, or sexual
orientation/gender identity” [Nobata et al. 2016], hate speech is something taken so seri-
ously as to be highlighted in some social network policy terms, such as Twitter’s1, where
one reads that “You may not promote violence against or directly attack or threaten other
people on the basis of race, ethnicity, national origin, caste, sexual orientation, gender,
gender identity, religious affiliation, age, disability, or serious disease”.

Due to the vast amount of users and publications in such networks, however, it is
virtually impossible for a human agent to analyse all the content that will be published,
thereby setting the need for an automated way of identifying hate speech. This need
has, in turn, led the community to study the problem, mostly constrained to the English
language [Fortuna and Nunes 2018]. Nevertheless, recent years have witnessed a pro-
fusion of tasks set up in competitions to detect hate speech in other languages, such as
GermEval for German [Wiegand et al. 2018], EVALITA for Italian [Bosco et al. 2018],
IberEval [Fersini et al. 2018b] for Spanish and PolEval [Ptaszynski et al. 2019] for Pol-
ish.

Hate speech in Portuguese, however, is still little explored and, in this work,
we aim to help fill in this gap by comparing some classic machine learning algorithms
(namely Support Vector Machines (SVM), Multilayer Perceptron Neural Network (MLP),
Logistic Regression (LR) and Naı̈ve Bayes (NB)) to identify hate speech in tweets writ-
ten in Portuguese, also comparing them to a deep learning architecture from the related

1https://help.twitter.com/en/rules-and-policies/
hateful-conduct-policy



literature. As it will be made clearer in the forthcoming sections, results show that most
of these traditional algorithms produced results which are competitive to those in other
languages, also outperforming our benchmark for Portuguese.

The rest of this article is organised as follows. In Section 2, we present some
related initiatives for hate speech detection. Section 3, in turn, describes the methodol-
ogy and tools used in our experiments, whereas Section 4 presents our main results. In
Section 5, we discuss and compare our results with those by current research. Finally, in
Section 6, we present our final considerations along with some venues for future research.

2. Related Work
Several strategies are currently being adopted to identify hate speech in text messages.
In [Basile et al. 2019], for example, an SVM with RBF kernel was used to identify hate
speech against immigrants and women in tweets written in English, achieving a macro-
averaged F1 score of 0.65. This model was the winner at SemEval 2019, in their hate
speech Identification task. Another winner, for the Spanish language, was an SVM model
with a linear kernel, which delivered a macro-averaged F1 score of 0.73.

SVMs were also proposed to identify racism in Twitter messages in English,
achieving an F1 score of 0.76 [Hasanuzzaman et al. 2017]. Apart from English, they
have also been used to detect hate speech in tweets written in Arabic, with an F1 score
of 0.82. They were, however, outperformed by a Naı̈ve Bayes model, implemented for
the same task, which obtained F1 = 0.90 [Mulki et al. 2019]. Logistic Regression was
another model to be applied to hate speech identification in English, in this case focusing
in hate speech towards women, with a reported accuracy of 0.70 [Saha et al. 2018]. This
model has won at EVALITA 2018 competition [Fersini et al. 2018a], which counted with
10 competing teams running many different algorithms.

Finally, regarding hate speech identification in Portuguese,
in [Fortuna et al. 2019] the authors apply an LSTM, with pre-trained word embed-
dings, to detect hate speech in a database of labeled tweets (’hate’ vs. ’not hate speech’),
obtaining a micro-averaged F1 score of 0.72. Since their corpus of labeled tweets is
freely available for download, we have chosen it as a test bed for our models, also using
their LSTM as the main benchmark for the classifiers tested in this research.

3. Materials and Methods
In this work we relied on a dataset of tweets in Portuguese [Fortuna et al. 2019], collected
through Twitter’s API from January to March 2017. To build the dataset, tweets were
fetched using specific keywords, and then filtered so as to come from user accounts known
to produce hate speech material (i.e. belonging to the so called “haters”). They were then
manually labeled by two annotators (one of them an expert in the field of Social Psychol-
ogy), reaching κ = 0.72 (Cohens’ Kappa coefficient of agreement [Garmer et al. 2014]).
The dataset comprises 5,668 tweets of which 1,228 are classified as hate speech.

During preprocessing, we followed [Fortuna et al. 2019] and removed stop words
and punctuation marks using the NLTK (Natural Language Toolkit2) library and the
python punctuation package, respectively. Text representations were built under the Bag

2https://www.nltk.org/



of Words (BOW) [Fan et al. 2008] and N-Gram [Collobert and Weston 2009] paradigms.
BOW models were tested at the word level, whereas N-Gram models were tested both at
the word and character level, with N ranging from 2 to 5. Within either paradigm, tests
were made both using plain word frequencies (i.e. with no normalization) and with term
frequency - inverse document frequency (tf-idf) [Rajaraman and Ullman 2011] normal-
ization.

The dataset was randomly split in a training/validation set (with 90% of the data)
and an out-of-sample test set (with 10% of the data). Models were trained in the train-
ing/validation set using 10-fold cross-validation [Han et al. 2011], whereby one further
divides this set in 10 different subsets (folds), using 9 of them for training and the last one
for validating the model. This procedure is repeated 10 times, with a different fold used
for validation each time (while the remaining 9 are used for retraining the models).

Binary classifiers (hate × no hate) were then developed, trained and validated in
the training/validation set, with the above mentioned different text representation strate-
gies, both with and without the preprocessing step being applied to the dataset. Trained
classifiers were Naı̈ve Bayes, Logistic Regression, Support Vector Machine and Multi-
layer Perceptron Neural Network. In the end of the process, the best versions of each
classifier (i.e. those with the highest mean F1 score, across the 10 folds, in the train-
ing/validation set) were run in the test set for out-of-sample comparisons.

4. Results

In what follows, results for each classifier are presented in detail. Mean F1 scores, across
the 10 folds, are presented for the training/validation set. Out of sample F1 scores, mea-
sured at the test set, are also presented for all competing models. Even though we base
our analysis only on the winning models during validation, along with their respective
performance at the test set, we still present the performance of all tested configurations
in this set, so as to allow for a better understanding of how winning models depart from
their counterparts.

4.1. Naı̈ve Bayes

Even though plain frequencies are discrete, the fact that tf-idf may result in real-valued
vectors led us to choose a Gaussian Naı̈ve Bayes model for this comparison. Mean F1
scores, over 10-folds, during training and validation, for every combination of language
model (BOW × N-Gram, 2 ≤ N ≤ 5), representation level (word × character), nor-
malization strategy (none × tf-idf) and preprocessing (yes × no) are shown in Table 1,
whereas the same results for the final test stage are shown in Table 2.

Best results were observed with BOW, at the word level, and with no nor-
malization or preprocessing (F1 ≈ 0.46), for the validation set3 (Table 1). Over-
all results for this set were seen to vary significantly according to representation level
(ANOVA: F (1, 352) ≈ 192.29, p << 0.001) and language model (ANOVA: F (4, 352) ≈
89.68, p << 0.001). Significant differences could not be determined over prepro-
cessing (ANOVA: F (1, 352) ≈ 0.05, p ≈ 0.83) and normalization strategy (ANOVA:
F (1, 352) ≈ 1.38, p ≈ 0.24).

3From now on, we will refer to the training/validation set as validation set only.



Table 1. F1 result for Naı̈ve Bayes in the validation set

Without Preprocessing With Preprocessing
Level Lang. Model No Norm. tf-idf No Norm. tf-idf

Word

BOW 0.4647 0.4503 0.4643 0.4494
2-Gram 0.4530 0.4363 0.4338 0.4309
3-Gram 0.4002 0.3973 0.3970 0.3971
4-Gram 0.3786 0.3786 0.3753 0.3753
5-Gram 0.3725 0.3725 0.3692 0.3692

Char

2-Gram 0.3987 0.3995 0.4000 0.4004
3-Gram 0.3837 0.3809 0.4148 0.4172
4-Gram 0.3109 0.3073 0.3138 0.3091
5-Gram 0.3086 0.2954 0.3006 0.2875

Regarding the differences observed across language models, a Tukey multiple
comparisons test showed them to be relevant, at p << 0.001 for almost all pairwise com-
parisons. Only differences between 2-Gram and BOW (p ≈ 0.68) and between 4-Gram
and 5-Gram (p ≈ 0.55) were not found to be statistically significant.

Within the test set (Table 2), the best result was achieved with 2-Gram, at the word
level, with no normalization or preprocessing (F1 ≈ 0.48). Interestingly, the winning
configuration during validation was not the same during out-of-sample testing, achieving
F1 ≈ 0.46, almost the same performance4 as in the validation set. Overall results were
also found to vary significantly according to representation level (ANOVA: F (1, 28) ≈
143.59, p << 0.001) and language model (ANOVA: F (4, 28) ≈ 63.15, p << 0.001).

Here too significant differences could not be determined for preprocessing
(ANOVA: F (1, 28) ≈ 0.12, p ≈ 0.74) and normalization strategy (ANOVA: F (1, 28) ≈
0.48, p ≈ 0.50). Differences in pairwise comparisons of language models were found to
be relevant (p << 0.001) for all pairs but between 2-Gram and BOW (p ≈ 0.1), 3-Gram
and BOW (p ≈ 0.17), and 4-Gram and 5-Gram (p ≈ 0.38)

Table 2. F1 result for Naı̈ve Bayes in the test set

Without Preprocessing With Preprocessing
Level Lang. Model No Norm. tf-idf No Norm. tf-idf

Word

BOW 0.4560 0.4534 0.4541 0.4534
2-Gram 0.4829 0.4768 0.4750 0.4634
3-Gram 0.4084 0.4092 0.4076 0.4076
4-Gram 0.3885 0.3885 0.3810 0.3810
5-Gram 0.3780 0.3780 0.3787 0.3787

Char

2-Gram 0.4253 0.4217 0.4188 0.4154
3-Gram 0.3768 0.3768 0.4107 0.3891
4-Gram 0.2874 0.2787 0.2891 0.2891
5-Gram 0.3209 0.3105 0.3292 0.3292

4.2. Logistic Regression

In this work, Logistic Regression was implemented with L2 regularization and limited
memory BFGS optimization [Byrd et al. 1995]. F1 scores in the validation set are shown
in Table 3, whereas results for the test set are presented in Table 4. During validation, the

4Before rounding.



best result (F1 ≈ 0.69) was observed with 4-Grams, at the character level representation,
without normalization and without preprocessing.

An analysis of the influence of each experimental variable in F1 scores revealed
that only preprocessing did not seem to have significantly influenced the results (ANOVA:
F (1, 352) ≈ 1.04, p = 0.31). All other variables were found relevant, at p << 0.001
(ANOVA: F (1, 352) ≈ 396.22 for normalization, F (4, 352) ≈ 383.04 for language
model, and F (1, 352) ≈ 2200.30 for representation level).

Table 3. F1 results for Logistic Regression in the validation set

Without Preprocessing With preprocessing
Level Lang. Model No Norm. tf-idf No Norm. tf-idf

Word

BOW 0.6690 0.5193 0.6658 0.5348
2-Gram 0.4023 0.0716 0.3422 0.0801
3-Gram 0.1620 0.0037 0.1012 0.0052
4-Gram 0.1160 0 0.0804 0
5-Gram 0.0921 0 0.0709 0

Char

2-Gram 0.5594 0.4940 0.5432 0.4939
3-Gram 0.6591 0.5375 0.6417 0.5411
4-Gram 0.6889 0.4779 0.6843 0.4958
5-Gram 0.6881 0.3892 0.6799 0.4245

Regarding language model, a Tukey multiple comparisons test showed that only
differences between 5-Gram and 4-Gram (p ≈ 0.20) and between 4-Gram and 3-Gram
(p ≈ 0.79) were not found to be statistically significant. All other pairwise differences
were found significant at p << 0.001. Within the test set, the configuration that produced
the highest F1 score was that under the 5-Gram model, at the character level, with no
preprocessing or normalization (F1 ≈ 0.72), as shown in Table 4.

Table 4. F1 results for Logistic Regression in the test set

Without Preprocessing With Preprocessing
Level Lang. Model No Norm. tf-idf No-Norm. tf-idf

Word

BOW 0.6759 0.5257 0.6729 0.5310
2-Gram 0.4268 0.0465 0.3289 0.0312
3-Gram 0.1582 0.0157 0.1044 0.0178
4-Gram 0.1459 0 0.0757 0
5-Gram 0.0902 0 0.0610 0

Char

2-Gram 0.5898 0.4804 0.5740 0.4719
3-Gram 0.6772 0.5139 0.6446 0.5303
4-Gram 0.6929 0.4523 0.6968 0.4588
5-Gram 0.7214 0.3046 0.70 0.3544

Again, an analysis of the influence of each experimental variable in F1 scores
revealed that only preprocessing did not seem to have significantly influenced the re-
sults (ANOVA: F (1, 28) ≈ 0.34, p = 0.57). All other variables were found relevant at
p << 0.001. An analysis of language model, across all other variables, showed that
only differences between BOW and all N-Gram models (2 ≤ N ≤ 5) were significant
(p << 0.001) in the test set.



4.3. Support Vector Machine
For each combination of language model (BOW × N-Gram) and level (word
× character), the best SVM hyper-parameters were determined through grid
search [Bergstra and Bengio 2012]. Tests were performed with the RBF, linear, poly and
sigmoid kernels, with regularisation values of 0.01, 0.1, 1 and 10. Tables 5 and 6 present
the results (in terms of F1 score), both in the validation and test sets, respectively, of the
best classifiers for each of the proposed scenarios.

During validation (Table 5), the best performance (F1 ≈ 0.69) was achieved with
5-Gram, without normalization, with preprocessing, at the character level. An analysis
of the influence of each experimental variable in F1 scores revealed that only language
model (ANOVA: F (4, 352) ≈ 234.07, p << 0.001) and representation level (ANOVA:
F (1, 352) ≈ 1310.24, p << 0.001) produced statistically relevant differences, whereas
normalization (ANOVA: F (1, 352) ≈ 1.66, p ≈ 0.20) was not found significant, with
preprocessing being borderline (ANOVA: F (1, 352) ≈ 3.87, p ≈ 0.05).

Table 5. F1 results for SVM in the validation set

Without Preprocessing With Preprocessing
Level Lang. Model No Norm. tf-idf No Norm. tf-idf

Word

BOW 0.6798 0.6581 0.6717 0.6713
2-Gram 0.4924 0.4534 0.4300 0.4029
3-Gram 0.2430 0.2280 0.1873 0.1836
4-Gram 0.1606 0.1653 0.1354 0.1416
5-Gram 0.1378 0.1336 0.1083 0.1068

Char

2-Gram 0.6063 0.6031 0.6141 0.5983
3-Gram 0.6494 0.6379 0.6458 0.6340
4-Gram 0.6811 0.6712 0.6738 0.6682
5-Gram 0.6882 0.6659 0.6946 0.6728

As for language model, a Tukey test showed non-significant differences between
4-Gram and 3-Gram, 5-Gram and 3-Gram, and 5-Gram and 4-Gram representations, with
all other pairwise combination being significant at p << 0.001. Differently from the
validation set, SVM’s best result in the test (F1 ≈ 0.72) was fount at the word level, with
BOW, no normalization or preprocessing (Table 6). Within this set, only representation
level (F (1, 28) ≈ 129, 26, p << 0.001) and language model (F (4, 28) ≈ 23.75, p <<
0.001) were found to significantly correlate with F1 scores and, within language model,
only differences between BOW and N-Gram (2 ≤ N ≤ 5) were significant (p << 0.001).
Differences between the remaining variables turned out to be non-significant.

4.4. Multilayer Perceptron Neural Network
As our last model, we built an MLP Neural Network, with three hidden layers containing
8000, 5000 and 2000 neurons each, respectively, and weights updated according to the
Adam optimization algorithm [Kingma and Ba 2014]. Neurons were activated by ReLU,
and the learning rate was set to 0.001. Tables 7 and 8 present F1 results (both in the vali-
dation and test sets, respectively) of the best classifiers for each combination of language
model, representation level, normalization strategy and preprocessing.

During training and validation (Table 7), the best performance configuration was
that under a 5-Gram language model, at the character level, no preprocessing and tf-
idf normalization (F1 ≈ 0.66). Of the four analysed variables, only normalization



Table 6. F1 results for SVM in the test set

Without Preprocessing With Preprocessing
Level Lang. Model No Norm. tf-idf No Norm. tf-idf

Word

BOW 0.7234 0.6725 0.6986 0.6902
2-Gram 0.5538 0.4571 0.4615 0.4285
3-Gram 0.2432 0.1857 0.1985 0.1985
4-Gram 0.1726 0.1726 0.1594 0.1726
5-Gram 0.1594 0.1594 0.1323 0.1459

Char

2-Gram 0.6311 0.5970 0.6697 0.6169
3-Gram 0.6842 0.648 0.6981 0.666
4-Gram 0.6935 0.7017 0.6638 0.6725
5-Gram 0.7124 0.6933 0.7130 0.6995

did not presented significant influence on F1 scores. Influence by the remaining vari-
ables was found significant (ANOVA: F (1, 352) ≈ 13.16, p < 0.001 for preprocessing,
F (1, 352) ≈ 740.89, p << 0.001 for representation level, and F (4, 352) ≈ 132.02, p <<
0.001 for language model).

Table 7. F1 results for the MLP-ANN in the validation set

Without Preprocessing With Preprocessing
Level Lang. Model No Norm. tf-idf No Norm. tf-idf

Word

BOW 0.6371 0.6206 0,6282 0.6129
2-Gram 0.5096 0.5144 0.4927 0.4246
3-Gram 0.3895 0.3840 0.2526 0.2197
4-Gram 0.2090 0.2192 0.1490 0,1428
5-Gram 0.1582 0.1453 0.1174 0.1176

Char

2-Gram 0.5624 0.5527 0.5862 0.5577
3-Gram 0.6217 0.6382 0.6267 0.6253
4-Gram 0.6528 0.6472 0.6442 0.6192
5-Gram 0.6376 0.6621 0.6410 0.6525

When comparing the results for pairwise combinations of language models, a
Tukey multiple comparisons test showed non-significant differences only between 4-
Gram and 5-Gram representations (p ≈ 0.71), with all other combinations showing sig-
nificant differences (p < 0.01). In the out-of-sample test set (Table 8), the best perfor-
mance was found with 3-Gram, no preprocessing or normalization, at the character level
(F1 ≈ 0.71).

Table 8. F1 results for the MLP-ANN in the test set

Without Preprocessing With Preprocessing
Level Lang. Model No Norm. tf-idf No Norm. tf-idf

Word

BOW 0.6602 0.6719 0.6792 0.6637
2-Gram 0.5586 0.5224 0.4986 0.4684
3-Gram 0.4226 0.4108 0.2585 0.2112
4-Gram 0.1971 0.2206 0.2237 0.1726
5-Gram 0.1971 0.1843 0.1459 0.1594

Char

2-Gram 0.6283 0.5462 0.5862 0.5257
3-Gram 0.7127 0.6218 0.6381 0.6093
4-Gram 0.6431 0.7029 0.6864 0.6371
5-Gram 0.6920 0.6911 0.6533 0.6801



Within this set, only representation level (ANOVA: F (1, 28) ≈ 61.69, p <<
0.001) and language model (F (4, 28) ≈ 61.69, p << 0.001) were found to signifi-
cantly correlate with F1 results. Regarding this last variable, a Tukey test showed dif-
ferences between language models to be significant only between BOW and N-Gram
(2 ≤ N ≤ 5, p = 0.01), with other combinations producing non-significant differences.

5. Discussion and Model Comparison
When analysing the influence each variable had in F1 scores by the tested models (Ta-
bles 9 and 10), we see significant differences5 regarding representation level and language
model (both in validation and test sets). The influence by specific types of language
model, however, varied substantially across classifiers. During validation, best models
were seen at the character level, with only Naı̈ve Bayes producing a better result at the
word level. Over the test set, best results were seen at both representation levels.

Table 9. Variables comparison across classifiers in the validation set

Variable’s Influence
Classifier Significant Non-Significant Best Configuration

NB Representation Level
Language Model

Preprocessing
Normalization

BOW, word level, no
normalization, no

preprocessing
LR Representation Level

Language Model
Normalization

Preprocessing 4-G, char level, no
normalization, no

preprocessing
SVM Representation Level

Language Model
Preprocessing
Normalization

5-G, char level, no
normalization, with

preprocessing
MLP Representation Level

Language Model
Preprocessing

Normalization 5-G, char level, tf-idf, no
preprocessing

Table 10. Variables comparison across classifiers in the test set

Variable’s Influence
Classifier Significant Non-Significant Best Configuration

NB Representation Level
Language Model

Preprocessing
Normalization

2-G, word level, no
normalization, no

preprocessing
LR Representation Level

Language Model
Normalization

Preprocessing 5-G, char level, no
normalization, no

preprocessing
SVM Representation Level

Language Model
Preprocessing
Normalization

BOW, word level, no
normalization, no

preprocessing
MLP Representation Level

Language Model
Normalization
Preprocessing

3-G, char level, no
normalization, no

preprocessing

At the downside, normalization did not seem to have produced significant differ-
ences in any classifier, both during validation and test. The only exception to this rule

5Even when applying Bonferroni correction.



can be found with Logistic Regression, where we observe a negative effect of tf-idf nor-
malization on F1 scores across all other variables, both in the validation and test sets.
Similarly, the only observable influence of preprocessing was found with MLP, during
validation. For all other models, both at validation and test (including MLP during test-
ing), this variable was not found to have influenced the results.

By comparing the F1 results (across all 10 folds) of the winning configuration in
each tested model (Table 11), one sees the observed differences to be significant (ANOVA:
F (3, 36) ≈ 55.01, p << 0.001). However, when making a pairwise comparison of classi-
fiers, only differences between Naı̈ve Bayes and its counterparts turn out to be significant
(Tukey p << 0.001), with all other combinations producing non-significant results. As
it seems, our assumption about data normality (implicit in the Gaussian implementation)
may have played a role in this model’s low performance.

Table 11. Best configuration scores, for all classifiers along the 10 folds

F1 Score
Fold SVM LR MLP NB

1 0.6417 0.6526 0.6063 0.4828
2 0.6557 0.6023 0.5889 0.4574
3 0.6961 0.6762 0.6639 0.5328
4 0.7170 0.7512 0.7330 0.5224
5 0.7263 0.6702 0.6415 0.4309
6 0.7128 0.6952 0.6304 0.4911
7 0.7374 0.7725 0.7196 0.3727
8 0.6919 0.7273 0.6872 0.4409
9 0.6264 0.6358 0.6733 0.4716
10 0.7407 0.7059 0.6770 0.4444

Interestingly, the winning configuration at validation was not the same as during
out-of-sample testing for any of the tested models. Moreover, F1 scores for these winning
configurations increased when they were run in the test set (Table 12), with SVM standing
out as the best performance model. This increase was noticed for all models but Naı̈ve
Bayes, which performed worse in the test set. Even though these results were nonetheless
found to be statistically non-significant (Wilcoxon W = 6, p ≈ 0.69), they still increase
our confidence that models might generalise well over unseen data.

Table 12. F1 scores at validation and testing, for best trained models

Model Validation Test
NB 0.4647 0.4560
LR 0.6889 0.6929

SVM 0.6946 0.7130
MLP 0.6621 0.6911

Finally, Table 13 presents our results in terms of accuracy, F1 score6 and micro-
averaged F1 score. These values are furnished to allow for a better comparison to the
related literature, since there is still no proper standardisation of metrics for assessing
hate speech classifiers. In this table, we present the results, in the test set, of the best
ranked models at the validation set.

6Which, in our case, also matches macro-averaged F1, since we are dealing with two categories only.



Table 13. Alternative measures for the best-ranked models.

Classifier Accuracy F1 Score Micro F1
SVM 0.8836 0.7130 0.8836
LR 0.8765 0.6929 0.8765

MLP 0.8519 0.6911 0.8518
NB 0.7601 0.4560 0.7601

As it turns out, results for our SVM (F1 = 0.71) were similar to those
by [Basile et al. 2019] for Twitter posts in English and Spanish, which delivered F1 =
0.65 and F1 = 0.73, with RBF and Linear kernels, respectively. It performed worse,
however, when compared to [Hasanuzzaman et al. 2017], which achieved F1 = 0.76,
and to [Mulki et al. 2019], with F1 = 0.82. These, however, work with other languages
(English and Arabic, respectively), which might have influenced the results.

Also, instead of trying to identify hate speech in general, as we did in our work,
the work by [Basile et al. 2019] and [Hasanuzzaman et al. 2017] focused on hate speech
against immigrants and women, and racism, respectively. This narrowing of possible
types of hate speech may have reduced variance, and so increased their classifier’s score.

Logistic Regression, on the other hand, performed better than its counterpart
by [Saha et al. 2018], who report a 70.4% accuracy running on tweets written in English.
With 87.7% accuracy, our model outscored theirs by almost 25%. Still, their focus on
hate speech against women, instead of hate speech in general, along with the difference
in the language of the data, might be responsible for this difference.

At the downside, our Naı̈ve Bayes implementation was outrun by that
of [Mulki et al. 2019], who report F1 ≈ 0.90 in their analysis of tweets in Arabic, when
identifying hate speech in general. Being, in our analyses, the only model to significantly
differ from its counterparts, this is another indication of this model’s non-appropriateness,
at least as we have implemented it, to this task. Still, as it might have also been the case
for SVM, results could be partially due to differences between Arabic and Portuguese.

Finally, regarding hate speech recognition amongst tweets in Portuguese, our re-
sults for the MLP (micro-averaged F1 = 0.85) outscored those by [Fortuna et al. 2019],
who report micro-averaged F1 = 0.72 with LSTM. At this point, it is worth stressing the
fact that both models were run in the same corpus, as mentioned in Section 3, thereby
reducing the influence of external variables, such as data source and language.

These results by [Fortuna et al. 2019] were actually worse than those by any of
the models we tested, Naı̈ve Bayes included, with the largest difference being observed
against SVM (which delivered a 22.2% higher micro-averaged F1 score than LSTM’s).
This is somewhat surprising, specially in light of the fact that, with the exception of MLP,
all other models are simpler to develop, and (much) faster to train and run. Still, it might
be the case that the amount of data (5,668 tweets) may not have been enought for the
LSTM to converge.

6. Conclusion

Identifying Hate Speech in tweets is no simple task, since users may try to disguise their
comments to prevent algorithms from detecting them. To add complexity to the problem,



data are imbalanced, in the sense that one finds much more comments without the use
of hate speech than comments with it. Even though this is good news for everybody, it
becomes a problem when designing classifiers to this end.

In this work, we set out to verify the usefulness of some classic Machine Learning
algorithms for this task, by testing four different models (NB, LR, SVM and an MLP) with
different configurations. Amongst other findings, results showed there to be a significant
influence of representation level (word × character based representations) and language
model (BOW × N-Gram, 2 ≤ N ≤ 5) on F1 scores, even though specific configura-
tions for these variables varied across models. Other studied variables (normalisation and
preprocessing) did not seem to have significantly influenced the results.

Also, significant differences could not be observed between any of our models,
except for comparisons with Naı̈ve Bayes, which performed significantly worse than its
peers in this research. Most importantly, perhaps, was the fact that all our models were
found to be competitive against those by the related literature, sometimes outperforming
them, and sometimes being outperformed by them. Differences in the analysed language,
along with the type of hate speech to be detected (whether in general, or towards some
specific groups), might have influenced these results nonetheless.

When comparing our results to those in the literature for the same task (i.e. detect-
ing hate speech in tweets written in Portuguese) and the same corpus, one sees our models
outperforming the reported LSTM by a good margin (up to around 22%, with SVM). This,
in turn, is an indicative that it is worth looking at more classic models, which usually are
much faster to train and run, for this type of task. Still, the use of micro-averaged F17,
which might not be the best choice for unbalanced data, along with the size of the data
set, may have played a role in this result.

Finally, regarding venues for future improvement, we think it is important to anal-
yse the usefulness of other language models, such as word embeddings for example, for
the detection of hate speech in Portuguese. Also, there are plenty of other classifiers to
be tested, such as Random Forests, Decision Trees, and even other types of Naı̈ve Bayes.
These would most certainly help identify which techniques are better suited for this task.
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