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São José dos Campos – SP – Brazil

aclorena@ita.br

2Time de Data Science – Itaú Unibanco
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Abstract. Sample bias is a common issue on traditional machine learning stud-
ies but rarely considered when discussing meta-learning. It happens when the
training data sample lacks or overemphasizes one or more characteristics, com-
pared to others. Herewith, models trained on such data may become inaccurate
for some instances. This work aims to analyze this issue in the meta-learning
context. Indeed, in most of the meta-learning literature, a random sample of
datasets is taken for building meta-models. Nonetheless, there is no discus-
sion over a possible side-effect bias not controlled in such random sampling.
This work aims to analyze these effects, in order not only to discuss their con-
sequences, but also to start a debate over the need of their consideration in
meta-learning research.

1. Introduction

Machine learning (ML) refers to a vast set of tools and algorithms for analyzing and
understanding data [Gareth et al. 2013]. Mostly, it involves building a predictive model
for estimating an output for a given input data. This process can be simplified into five
main steps:

1. Data Gathering: finding, collecting and integrating data from different sources
(e.g: APIs, websites, data warehouse);

2. Data Preparation and Preprocessing: data may be in different shapes, so there is
the need to fix errors and rearrange formats;

3. Feature Selection and Engineering: not every information is relevant and fre-
quently it is necessary to refine how data is going to be inputted into our model,
by either creating new features or selecting a subset of the available features;

4. Modeling: involves choosing which model to use, set its hyperparameters values
and performing the algorithm training;

5. Prediction and Model Interpretation: checking if the model generalizes well to
new data and interpreting the patterns obtained.



Each of these steps requires human labor, often with several trial and error
episodes until a good outcome is achieved. In terms of an enterprise it means that if
one wants to scale ML production, a large specialized team is needed. However, several
companies do not have the resources or means necessary to build such a technical team.
Therefore, comes the urge to automatize the end-to-end ML process, which is the objec-
tive of the Automated machine learning (AutoML) research area [Hutter et al. 2019].

AutoML aims to make ML process populated with data-driven and automated de-
cisions in a user friendly way. In other words, the objective is to democratize the ML
usage. Herewith, an user with less expertise can provide the data to the AutoML system,
which will decide the best approach for this new problem [Hutter et al. 2019].

Meta-Learning is a subarea of AutoML and has interest in “learning to learn”
[Vanschoren 2019]. When humans master something new, we normally make associa-
tions with knowledge we obtained in previous experiences. These associations provide us
a possibility to learn across tasks. Meta-Learning (MtL) tries to emulate this human be-
havior by observing the performance of different ML techniques on diverse tasks, calling
these observations meta-data. Using this meta-data, MtL tries to leverage the efficiency
of the learning process when presented to new similar tasks [Vanschoren 2019].

It is possible to use MtL to either: select an algorithm for a new problem, rank a
set of candidate algorithms, or estimate the predictive accuracy of one or more classifiers.
Each of these cases can be modelled as a learning task by themselves. In the latter case,
one may see MtL as a regression task, whilst the former is a standard classification task.
Bensusan and Kalousis [Bensusan and Kalousis 2001] show that this estimation can be
done with a high degree of confidence.

Normally, when performing learning from data, we assume that the training and
the testing data belong to the same distribution. Nonetheless, this assumption may not
hold in most of the real world problems. This difference can be attributed to dynamic
characteristics of the problem or, in most of the cases, to faults in the data gathering
process, making the training dataset not a good representation of our problem global
properties [Zadrozny 2004]. This issue is also named sample bias in the literature. An
example would be training a voice detection algorithm with a dataset composed of male
voices only, which will fail to generalize to female voices. As a result of faults similar
to this, some models have been recently noticed as spreaders of sexism, racism or even
xenophobic behavior [Maloney 2017, Wallis 2018, Comi 2018].

There are countless works on the effects of sample bias in traditional ML algo-
rithms and also studies proposing ways of overcoming this problem by making adaptions
on classical learning algorithms, specially in econometrics studies [Liu and Ziebart 2014,
Huang et al. 2007]. However, limited discussions have been made involving MtL and
sample bias. Indeed, in most works from the literature the datasets to be employed as
learning experience are chosen at random. Since the meta-model induction is a learning
problem itself, the sample bias issue can also be observed and the meta-model may not
generalize well to some new datasets.

There are also some works demonstrating that many of the common repositories
of benchmark datasets used by the Machine Learning (ML) community lack diversity
[Macià and Bernadó-Mansilla 2014, Muñoz et al. 2018] and propose strategies to gener-
ate more diverse datasets. For instance, [Macià and Bernadó-Mansilla 2014] show exper-
imentally that the classification datasets of the UCI repository [Dua and Graff 2017] are



not challenging enough and many ML techniques are able to achieve a high predictive
performance on them. These studies differ from what we consider here but corroborate
our investigation, once the datasets commonly gathered in MtL studies come from such
public repositories.

In this work, we intent to explore more the sample bias effect in a MtL setup,
encouraging the community to look towards solutions for this issue also on the AutoML
field. This paper is organized as follows: Section 2 presents the materials and methods
employed in this work. Section 3 presents some experiments used to evaluate sample bias
in MtL. And Section 4 concludes this work.

2. Materials and Methods
In order to develop our analysis, we followed the steps shown in Fig. 1, detailed next.

Figure 1. Methodology adopted in the work.

2.1. Data Gathering

When using MtL it is necessary to gather a set of datasets for which the ML solu-
tions are known. They must be also characterized by some measures or meta-features,
which results on a meta-dataset construction. The meta-dataset is similar to a regular
dataset used in ML, the difference is that each line represents one particular dataset
and the columns exhibit their characteristics or meta-features, accompanied with a la-
bel according to the MtL task considered (e.g., the best of a pool of algorithms for
the dataset). Fig. 2 demonstrates a meta-dataset construction. Consequently, to build
a meta-dataset, several datasets are needed. The present work uses datasets sampled from
the OpenML repository [Vanschoren et al. 2014], using a Python API in their collection
[Feurer et al. 2019]. OpenML is an open repository of ML benchmarks, including sev-
eral datasets, pre-computed meta-features and also results from runs of various ML algo-
rithms.

We used the API specification to select and extract meta-features from datasets
that were submitted to supervised classification and had ML algorithms run with a 10-fold
cross validation procedure for estimating accuracy performance. These meta-features are
accessed by the qualities of the dataset object provided by the API [Feurer et al. 2019].
Datasets with unknown meta-features were filtered out from this selection.

Next, we collected data on the performance obtained by classifiers in the predictive
tasks considered. An OpenML task contains information on ML algorithms applied on a
specific dataset, along with their performance. For each dataset, different ML algorithms
may be applied. In our MtL experiments we disregard which are the ML algorithms
employed and retrieve the best accuracy value reported for each dataset. Each dataset
in our meta-dataset will then be labeled according to the best achievable performance as
reported in the OpenML platform. The objective of the meta-learner will be to predict



Figure 2. Meta-data creation Prodecure.

the top performance that may be achieved for a new dataset, in a regression task. We are
not aware of similar approaches in the literature, although it is sound to expect similar
predictive performances for datasets with very similar characteristics.

As a result of this step, we have a meta-dataset composed of 670 datasets and
107 meta-features, each one labeled according to the best accuracy performance in cross-
validation registered in OpenML.

2.2. Data Preparation

As an initial step of our data preparation phase, we checked if the collected meta-features
made sense when considering our problem of predicting a model performance. The ex-
istent meta-features are usually classified in the related literature as simple, statistical,
information-theoretic, complexity, model-based, and landmarkers [Vanschoren 2019].
Table. 1 presents some of the collected metrics per category.

Table 1. Examples of meta-features per group

Category Meta-features
simple Number of instances, Number of features, Number of classes
statistical Skewness, Kurtosis, Correlation, Sparsity
information Class entropy, Mutual information
complexity Data consistency, Concept variation
model-based Number of nodes, Number of Leaves, Information gain
landmarkers Landmarker(1NN), Landmarker(NB), Landmarker(Tree)

In order to clean our meta-data, we removed the columns that correspond to ir-
relevant information to the MtL algorithm. This happened for some meta-features which
had the same value for all datasets, or other meaningless information, such as the time
and date when someone uploaded the learning task. Afterwards, we analyzed the corre-
lation between the meta-features and used a threshold above 0.95 to remove some meta-
features. The idea was to remove redundant information. The comparison did not take
under consideration the target meta-feature. As a result of this process we cleared away
56 meta-features and 61 meta-features remained to the further steps



As a final cleaning step, we removed all datasets with missing values for at least
one meta-feature, reducing our meta-dataset to 169 rows and 61 columns. It is worth
noting that there is no simple method to try to input those missing information, since each
one of them regards to a different dataset.

2.3. Obtaining the Training Samples
Considering X the meta-feature space, Y the target-feature space and Si a binary space
representing a given relation. If we build a dependence relation of some kind considering
properties of the elements of X , we are able to select a sample when it assumes a true
value for Si [Zadrozny 2004]. The idea is to vary the Si values according to a given
condition, which can impose different biases in the training samples used in MtL. We
created three types of Si, considering characteristics that could influence the accuracy of
a classifier if underrepresented in a training meta-dataset.

• Type 1: Si reflects the dataset sparsity, as computed by Equation 1
[Ho and Basu 2002]. We calculate the median value of the sparsity values for
all datasets available. Every dataset with sparsity value higher than this threshold
has Si = true and it is false otherwise. The idea is to obtain two distinct sets:
one with dense datasets as measured by Equation 1 and other with sparse datasets
according to Equation 1. As discussed in [Ho and Basu 2002], the sparsity of a
dataset is directly related to the complexity of the classification problem. More
sparse datasets may pose more challenges, since there may be many regions of
the input space underrepresented. Ho and Basu [Ho and Basu 2002] proposed the
use of the measure presented in Equation 1 to have a rough estimate of the dataset
sparsity.

sparsity =
]Instances

]Features
(1)

• Type 2: Si in this case is dependent on the dataset imbalance ratio
[Fernández et al. 2018], given by Equation 2. A similar procedure to the first sam-
ple is taken, but here we use Equation 2 instead of Equation 1. It is also known
in the related literature that a high IR may harm the predictive performance of
classification models, specially for the minority class examples.

IR =
]InstancesOnMajorityClass

]InstancesOnMinorityClass
(2)

• Type 3: Si depends on the number of target classes of the dataset. In this case,
we separated binary classification problems (Si = 1) from multiclass problems
(Si = 0). It is also known that a higher number of classes usually implies in a
higher complexity of the classification problem [Lorena et al. 2008]. Within this
sample, 43 datasets are binary and the remaining 126 are multiclass.

The three previous criteria are used to create the biased samples. Therefore, we
have a bias concerning the sparsity of the datasets (dense vs sparse), the IR (high IR vs low
IR) and the number of classes (binary vs multiclass). We also performed some random
sampling of the datasets (three training-testing pairs, due to the stochastic nature of the
process). In order to simplify references to the samples we are going to use the following
notations:



• Sample j Part 1: If the column Si is True or 1;
• Sample j Part 2: If the column Si is False or 0.

Aiming to inspect the effect of sample bias, we trained a meta-learner on each
of the parts of the samples and tested its performance on the sample counterpart. Then,
it is possible to compare the performance on each of the training and test pairs. The
objective is to verify if training the meta-learner on a training sample with some type of
bias may influence the obtained results on a different sample containing datasets with a
complementary bias. We also compare the results attained to those obtained in a leave-
one-out (LOO) procedure using each one of the samples alone. That would correspond to
the case in which only datasets with a biased characteristic are given for both training and
testing the meta-learner. Fig. 3 illustrates the procedure.

Figure 3. Modeling Procedure.

2.4. Model Training
A Random Forest (RF) regressor [Breiman 2001, Ho 1995] was chosen for building the
meta-learners in this work. This choice was motivated by the good performance this tech-
nique has achieved in previous MtL experiments from the literature [Garcia et al. 2018].

For each training round performed, an hyper-parameter optimization by Grid
Search was run, using 3-fold cross validation on training data and focusing on two pa-
rameters of the RF: maximum depth from the tree (max depth) and number of trees on
the forest (n estimators). Grid Search verifies the performance for each combination of
hyperparameters specified, which were here varied as follows:

• max depth: 2, 4, 6, 8, 10
• n estimators: 4, 8, 16, 32, 50

All meta-models induced are evaluated according to the following performance
metrics: Mean Absolute Error (MAE), Mean Squared Error (MSE) and Root Mean
Squared Error (RMSE) [Gareth et al. 2013]:

MAE =
1

n

n∑
i=1

|yi − ypred|



MSE =
1

n

n∑
i=1

(yi − ypred)
2

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ypred)2

where n is the number of meta-instances in the test data partitions, yi is the true
label of meta-instance i (best accuracy reported at OpenML for the dataset) and ypred
corresponds to the values predicted by the meta-learner.

3. Results

Table 2 details the acronyms used for the samples tested. Table 3 presents the MAE, MSE
and RMSE values achieved in all experiments performed.

Table 2. Acronyms used for the samples generated

Acronym Sample name Description
R1P1 Random sample 1, part 1 First part of first stochastic chosen sample
R1P2 Random sample 1, part 2 Second part of first stochastic chosen sample
R2P1 Random sample 2, part 1 First part of second stochastic chosen sample
R2P2 Random sample 2, part 2 Second part of second stochastic chosen sample
R3P1 Random sample 3, part 1 First part of third stochastic chosen sample
R3P2 Random sample 3, part 2 Second part of third stochastic chosen sample
SpP1 Sample of type 1, part 1 Biased sample with sparsity higher than median sparsity
SpP2 Sample of type 1, part 2 Biased sample with sparsity lower or equal than median sparsity
IrP1 Sample of type 2, part 1 Biased sample with balance higher than median IR
IrP2 Sample of type 2, part 2 Biased sample with balance lower or equal than median IR
ClP1 Sample of type 3, part 1 Biased sample with multi-class target
ClP2 Sample of type 3, part 2 Biased sample with binary target

Table 3. Performance Results from each model

Data MAE LOO MAE test MSE LOO MSE test RMSE LOO RMSE test
R1P1 0.045 0.057 0.004 0.007 0.004 0.083
R1P2 0.036 0.046 0.004 0.004 0.004 0.061
R2P1 0.036 0.049 0.003 0.005 0.003 0.071
R2P2 0.047 0.082 0.005 0.015 0.005 0.124
R3P1 0.040 0.043 0.004 0.004 0.004 0.064
R3P2 0.043 0.052 0.003 0.006 0.003 0.081
SpP1 0.037 0.065 0.004 0.010 0.004 0.098
SpP2 0.048 0.072 0.005 0.010 0.005 0.100
IrP1 0.039 0.049 0.004 0.004 0.004 0.065
IrP2 0.039 0.065 0.003 0.010 0.003 0.100
ClP1 0.073 0.054 0.010 0.006 0.010 0.076
ClP2 0.037 0.087 0.002 0.015 0.002 0.121

In order to compare the results considering the case where (i) the same biased data
is used for both training and testing and (ii) a biased sample is used for training and a com-
plementary testing dataset is employed, we created a graph that computes the difference



between the performances achieved in such cases, that is, the performance on comple-
mentary datasets subtracted by the performance on a same biased dataset. For instance,
considering the biased sample SpP1 based on sparsity and the MAE performance metric,
the following steps are followed to obtain the MAE difference:

1. LOO is performed using the biased data sample SpP1 and the MAE obtained is
recorded as MAE1.

2. A model is trained using all SpP1 data and has its MAE performance measured in
the data sample counterpart SpP2, leading to MAE2.

3. The MAE2 −MAE1 difference is computed and plotted, corresponding to the
last but one column in Fig. 4.

The previous procedure is repeated for each sample type and performance metric
among MAE, MSE and RMSE. Fig. 4 to Fig. 6 present these results, where the bar labels
represent which data sample was used as training set in the LOO experiment.

Figure 4. Mean Absolute Error Comparison.

From Fig. 4, we can see that in most of the cases there is a positive difference be-
tween using one meta-dataset for training and the complementary counterpart for testing,
compared to the use of the biased meta-dataset for both training and testing in a leave-one-
out setup. This was expected, since in the latter case datasets sharing the same character-
istic are used for both training and testing and in the former case we have datasets with
complementary characteristics. But this type of result was never assessed formally be-
fore. The only exception is a negative difference of MAE on ClP1. This can be an artifact
related to the fact that this is the smallest training sample we have, which is almost three
times smaller than its test counterpart. Interestingly, for one of the random runs the differ-
ence is large and it may be the case a bias has been created by the random sampling in this
run. Also, we can detect the biggest MAE difference happened with ClP2, followed by
R2P2 and SpP1. Fig. 5 concerns the MSE results and present a similar behavior, where
ClP2 has a negative difference and Clp2 shows the highest difference. Meanwhile, R2P2

takes second lead and IrP2 takes third lead. When using RMSE to compare the models
(Fig. 6), we have no negative difference. Also, in this case the highest contrast appear on
R2P2.



Figure 5. Mean Squared Error Comparison.

In order to explore further the reasons why the model trained on R2P2 behaved
this way, we performed a descriptive analysis over all the random samples concerning the
sparsity, the IR and the number of classes of the datasets they present. The idea was to ver-
ify if this sample had somehow perpetuated one of those bias that were already mapped.
But it was not possible to notice in the graphs, from Fig. 7 to Fig. 9, any clear difference
between the random samples concerning the measured characteristics. In Fig. 7 (Fig. 8),
the orange bar corresponds to the proportion of observations on the data sample that have
a sparsity (IR) larger than the median sparsity (IR), whereas the blue bar corresponds to
percentage of observations on the data sample with sparsity (IR) lower or equal than the
median sparsity (IR). For both sparsity and IR, there is a similar proportion of datasets in
the two different categories considered in each case, on all random samples. In Fig. 9, the
datasets are divided into binary or multiclass and in this case there is a larger proportion
of binary than of multiclass datasets in all random samples, a characteristic inherited from
the OpenML repository, which gathers a larger amount of binary classification problems.
Again the proportions recorded are similar for all random samples, although R2P2 has a
slightly lower proportion of multiclass datasets than the other random samples. There-
fore, other characteristics may be also impacting the obtained results. But, overall, we
have demonstrated that a simple random sampling of a pool of datasets to train a meta-
learner can lead to a poor MtL performance afterwards and that some care must be taken
in order to prevent such cases. Proposing strategies to circumvent this problem remains
as an open future work.

4. Conclusion
As a conclusion from this work, we can assume that only selecting samples randomly to
apply meta-learning is not sufficient to guarantee overcoming the sample selection bias.
Also, it is clear that meta-learning algorithms have their performance deprecated when
trained on biased meta-data and then presented to data whose trait were not even closely
learned before. For this reason, it is necessary to enhance discussion over the topic in the
field. Moreover, propose solutions to overthrow this issue, such as robust algorithms or
better sampling strategies.



Figure 6. Root Mean Squared Error Comparison.
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