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Abstract. Many works that apply Deep Neural Networks (DNNs) to Speech
Emotion Recognition (SER) use single datasets or train and evaluate the models
separately when using multiple datasets. Those datasets are constructed with
specific guidelines and the subjective nature of the labels for SER makes it diffi-
cult to obtain robust and general models. We investigate how DNNs learn shared
representations for different datasets in both multi-task and unified setups. We
also analyse how each dataset benefits from others in different combinations
of datasets and popular neural network architectures. We show that the long-
standing belief of more data resulting in more general models doesn’t always
hold for SER, as different dataset and meta-parameter combinations hold the
best result for each of the analysed datasets.

1. Introduction

In the process of communication between people, speech not only carries language but
also emotion, which is important in transmitting the state-of-mind of the speaker. There-
fore, one way of enhancing speech processing systems and its various applications is by
using the emotional information of the user. Speech Emotion Recognition (SER) is a
field whose objective is to automatically infer emotion from speech signals. It has been
an active field of research for at least over twenty years [Schuller 2018] and has many
applications in the areas of affective computing, human-computer interaction and speech
analytics [Ramakrishnan and El Emary 2013].

As with most problems that can be solved with data-driven techniques, Deep
Learning has been recently applied to SER [Pandey et al. 2019], including a variety of
architectures [Fayek et al. 2017, Lim et al. 2016, Trigeorgis et al. 2016], alternative opti-
mization [Han et al. 2014], mixed supervision [Mao et al. 2014], attentive mechanisms
[Mirsamadi et al. 2017, Neumann and Vu 2017, Sarma et al. 2018], and so on. Deep
Learning holds the current state-of-the-art for SER and prior to its use the main ap-
proaches were based on traditional techniques in speech processing, such as hand-crafted
features [El Ayadi et al. 2011] and Gaussian Mixture Models combined with classifiers
like Support Vector Machines [Dileep and Sekhar 2013].

*Supported by ANEEL’s R&D program (Project ID PD0063-3039/2018) in partnership with CPFL EN-
ERGIA group companies.



Table 1. Summary of the emotional speech datasets.

IEMOCAP TESS RAVDESS  CustomerPTBR
Speakers 10 2 24 > 30
Language English English English  Brazilian Portuguese
Spontaneity Scripted and acted  Scripted Scripted Natural
Utterances 10039 2800 7356 5364
Classes 9 8 8 )
Situation dialogue monologue monologue dialogue

Deep Learning models are expected to scale well with data availability. But even
though many public datasets have been provisioned along the years of research in SER,
it is difficult to use them in conjunction due to the each one applying its own annotation
protocols. Many differences arise both in the nature of the annotation (dimensional or
categorical), the subsequent choice of labels [Neumann and g. Thang Vu 2018], the num-
ber of annotators and level of agreement between them. For the most part, we believe
this is because the nature of the problem is inherently subjective [Lee 2019], and so its
formulation.

In the last decade some works on SER tried to address the poor general-
ity of models to different domains [Lefter I. 2010, Schuller et al. 2010]. A special
case is multilingual and cross-lingual SER [Lee 2019, Neumann and g. Thang Vu 2018].
The strategies include conditioning on language or domain [Sagha et al. 2016],
removing cross-domain variations [Chiou and Chen 2014], and merging datasets
[Neumann and g. Thang Vu 2018]. In this work we analyse three public datasets in En-
glish and a proprietary one in Brazilian Portuguese and their inter-affection with different
modeling strategies.

2. Emotional datasets

We use the datasets IEMOCAP [Busso et al. 2008], TESS
[Dupuis and Pichora-Fuller 2010], RAVDESS [Livingstone and Russo 2018], and a
private dataset which we will call CUSTOMERPTBR. In Table 1 we compare the overall
characteristics of the datasets. CustomerPTBR consists of recordings along with textual
transcriptions and emotional labels from phone calls of customer services. The majority
of the calls are between clients and attendants, although there are calls between attendants
(e.g. transfer of attendance). The emotional labels present in this dataset are happy,
angry, neutral, sad, and fearful.

Between those datasets, [IEMOCAP and CustomerPTBR have more phonetic vari-
ation as they are richer in language than TESS and RAVDESS. Each of the 5 sections from
IEMOCAP have distinctive dialogues and CustomerPTBR is naturally varied in this as-
pect. Meanwhile, utterances from TESS and RAVDESS consist only of a limited number
of phrases that are repeated with different emotional modes and actors.

3. DNNs and Speech Emotion Recognition

Speech-related tasks in Machine Learning may have temporal dependencies in the order
of hundreds or thousands of time steps due to the usually high sampling rate of audio. This



applies to SER (Speech Emotion Recognition), as the models should be able to aggregate
information in a big temporal window in order to infer overall emotion. For such, it is
common to use LSTM (Long Short-Term Memory) [Hochreiter and Schmidhuber 1997]
and TDNN (Time-Delay Neural Networks) [Waibel et al. 1989] layers, although some re-
cent work apply Self-Attention [Sarma et al. 2018, Vaswani et al. 2017] as temporal ag-
gregation.

[Mirsamadi et al. 2017] evaluates the effect of weighted mean pooling where the
weights come from what they call a local attention mechanism. Their network includes
a LSTM and a linear transformation responsible for attributing each time step an atten-
tional score (e.g. higher scores indicate higher importance of the time frame in the task).
They evaluate the models only on the IEMOCAP dataset. They show that the attentional
weighting with LSTM is better than regular mean without LSTM (just linear and activa-
tions).

[Sarma et al. 2018] investigate the learning of filters from the pure wave form
in the temporal domain. Their network consists of interleaved TDNN and LSTM lay-
ers plus Network-in-Network (NiN) [Ghahremani et al. 2016] layers for raw signal pro-
cessing and Self-attention. They compare the results with the frequency-domain repre-
sentation and report that the filters learned give substantially superior results over the
pre-defined filters that are used in the frequency-domain representation, like FFT (Fast
Fourier Transform), and MFCC (Mel-frequency Cepstral Coefficients). Their best result
surpasses [Mirsamadi et al. 2017] in both weighted accuracy (by 8.31%) and unweighted
accuracy (by 4.37%). It supposedly defines the new state-of-the art on IEMOCAP.

3.1. DNNs with multiple datasets

[Neumann and g. Thang Vu 2018] show that it is possible to merge English IEMOCAP)
and French speech (Recola [Ringeval et al. 2013]) to obtain one model almost as good as
one model for each dataset. They also show that models trained on IEMOCAP can be
fine-tuned for Recola and vice-versa with results better than pure cross-language (trained
in one and tested in the other language). [Lee 2019] applies dropout regularization on
a multi-task setup with English (IEMOCAP) and Japanese (JTES [Takeishi et al. 2016])
speech. The results show moderate gains for both datasets. Differently from our work, it
feeds the network with emotional descriptors and their tasks are not defined in terms of
recognition in each dataset, but in classification of emotion, gender, and language. In the
cases with only emotion recognition for all the data merged, they use just one regression
layer, like in our “unified” setup.

[Zhang et al. 2017] defines a multi-task setup similar to ours, where each task is
the emotion recognition in each dataset. Their setting includes nine smaller datasets and
they do not variate the configuration of their DNN, which is composed solely of fully-
connected layers. They also use the learned shared representations in order to train single-
task models. In turn, those re-trained single-task models show similar performance to
the multi-task model trained a priori. We leverage the four datasets despite their different
formats by creating a shared representation scheme where a Deep Neural Network (DNN)
learns a latent feature map that is used separately for the classification with respect to each
dataset. If the output labels of each dataset share similarities (e.g. it is possible to map
classes in one dataset to classes in other), we can even have a single classification layer.



4. Experimental setup

In this section we present all the experimental steps, including data preparation and aug-
mentation, feature extraction and our choice of models and hyper-parameters for opti-
mization.

4.1. Choice of emotional classes

Given the emotional classes from the datasets, we select a common subset of those
classes that contain a minimum number of utterances. This is specially necessary for
the unified case (equivalent classes from different datasets mapped into one class), and
although it is not strictly necessary for the multi-task case (equivalent classes remain sep-
arated by dataset) we keep this selection in favor of comparability across datasets. Those

classes are “happy”, “angry”, “neutral”, and “sad” (the same as in [Sarma et al. 2018] and
[Mirsamadi et al. 2017]).

4.2. Data split, processing and augmentation

We split each dataset in train, validation, and test sets without speaker overlap. IEMOCAP
is already divided in 5 sections, each one with two different speakers - one male and one
female. We then take 3 sections for training, 1 for validation, and 1 for test. RAVDESS
is also separated by speakers and we divide it in the proportion of 70% utterances for
training, 20% for validation, and 10% for test. The division of CustomerPTBR goes
along the same line of RAVDESS. Because TESS only has two speakers, it is just used in
training and validation.

The input features of all models are the log-spectra of short-time Fourier trans-
forms (STFTs) from the input signals (Fig. 1). The size of the FFT window is 512 samples
at 8000 samples per second, with a window hop of 128 samples. This results in a sequence
of 257-dimensional vectors for each example. In order to account for the difference in
the number of examples in each dataset, we perform data augmentation in proportions
such that the augmented datasets end up with similar number of examples. The aug-
mentations consist of additive background noise [Barker et al. 2015], VTLP (Vocal Tract
Length Perturbation) [Ko et al. 2015], RIR (Room Impulse Response) [Jeub et al. 2009,
Kinoshita et al. 2013, Ko et al. 2017, Nakamura et al. 2000, Scheibler et al. 2018], MP3
codec simulation (encoding-decoding), band-pass filtering, and volume perturbation.

4.3. DNN architectures and variations

Our neural networks are similar to the LSTM plus pooling setup in
[Mirsamadi et al. 2017], although we vary the block of layers before Local Atten-
tion. We also vary the statistical aggregation of the pooling layer by testing aggregation
by weighted mean and variance besides just weighted mean. The LSTM layers have
hidden dimension of 128 and the dimension of the hidden linear layer is 512 (the same
as in the TDNN setup). Dropout rate is 0.5 for all configurations and there is dropout
after the recurrent layers. Without considering the difference in the last layer between the
unified and multi-task setup (the multi-task setup has one classification “head” for each
dataset, each one having the same input from the shared part of the network), we test
the six combinations of temporal block and statistical pooling. We define all the neural
network steps, from pre-processing to temporal blocks, aggregation, and classification in
figures 1 to 5 in this order. Note that the temporal blocks are not used together, but each
one in its configuration.



4.3.1. Pooling with Local Attention

A key part of the statistical pooling are the attentional scores given to each time-step by
the Local Attention layer [Mirsamadi et al. 2017]:

Raw wave input

Log STFT

t x r samples

Figure 1. Pre-processing block that feeds all of the DNNs presented. ¢ is the time
duration in seconds and r is the sample rate. 7' is the resulting time-related
dimension of the spectral representation.
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Figure 2. “Preparation” block inside the temporal blocks with LSTM and BLSTM.
The temporal block with TDNN instead does not have this component, as
its input comes directly from the pre-processing block. 7' denotes the time
dimension. D and D’ are the input and output dimensions of the time
“slices”.

Temporal block with LSTM or BLSTM.

Input LSTM (or LSTM (or Output
feature PREPARATION| | PREPARATION | | BjsTM) | BLSTM) | |—feature map
map (T x D) (TxD’)

Figure 3. “Temporal” recurrent blocks that receive input from the pre-processing
and whose output feed the Local Attention plus aggregation layer.
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where «; is the score for instant ¢, u is a vector of parameters, and x; is the in-
put feature map at instant ¢ coming from the previous layer. We then interpret « as
a probability distribution over the time-steps and we can reformulate Equation 2 from
[Mirsamadi et al. 2017] as the expected value of x with respect to the attention weights:

T
EX] =) a.x, 2)
T=1

Temporal block with TDNN instead of recurrent layer.
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Figure 4. “Temporal” TDNN block with the same purpose of the recurrent ones.
{-1, 0, 1} denotes the context window of the TDNN sliding filters, that is the
same context window for the 6 TDNN layers in this block.
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Figure 5. Temporal block followed by local attention aggregation and then by the
classification “heads”, that can be just one or as much as the number of
datasets depending on the task type. The Local Attention with aggregation
block is defined as in equations 1, 2, and 3.



and the variance is derived as follows:

VIX] =E[X?] - E[X] =) 0, = () arx,)? 3)

In this formulation, the original Local Attention is composed only by the expec-
tation of the previous layer. The variance is an added novelty to which we compare the
original in the our experiments.

4.4. Training

The training is based on mini-batch gradient descent iterations, where the updates
with the mini-batches of each dataset are alternated. We apply gradient clipping of
10 and weight decay [Krogh and Hertz 1992] as regularization. The optimizer Adam
[Kingma and Ba 2014] with initial learning rate 3e—4. The criterion for stop training
is patience of 20 epochs of 100 steps for improvement of at least 0.2% in the loss, that is
the cross-entropy weighted by the number of examples in each class (one set of weights
for each dataset).

We had 14 different dataset combinations which, when combined with the 12 dif-
ferent meta-parameter configurations (3 temporal block types, 2 aggregation layer types
and 2 task setups) resulted in 168 experiments in total. Experiments that combined more
than one dataset with a test set (that is, excluding the TESS dataset) generated results for
all test sets, which means the 168 experiments resulted in actually 288 results, summa-
rized in Section 5.

5. Results

In this section, we present the results for each dataset in terms of weighted accuracy (WA)
and unweighted accuracy (UA). We analyse how they are affected by each set of meta-
parameters that define the neural network, and by the combination of datasets. Due to the
aforementioned large amount of experiments, we generate summaries with the proportion
of cases in which each network configuration or dataset combination had the best result.

5.1. Best results by dataset

We show the best configuration given target dataset in Table 2 according to WA and
UA separately. The gain for CustomerPTBR from its best configuration with respect
to the best isolated training is notably substantial, being 8.3% in WA and 18.8% in UA.
In the case of RAVDESS, this gain is more modest, but still exists for both WA and UA.
IEMOCAP did not improve from its best single model.

Aside for the multi-task setup, which dominates the best scenarios over unified,
those best results do not indicate a clear best set of meta-parameters.
5.2. By model meta-parameters

Due to the limitations in analysing the meta-parameters in Table 2, we present in Table 3
the proportion of best results for each meta-parameter configuration when applied over all
the dataset combinations for each of the 3 target test sets. Both for WA and UA the TDNN



Table 2. Best configuration by target dataset according to WA and UA. When
identifying the combinations, | stands for IEMOCAP, T for TESS, R for
RAVDESS, and C for CustomerPTBR.

Test Target Comb. Task Temp. Pooling Best Single
IEMOCAP I - BLSTM  uo? 58.8% -
WA RAVDESS TR multi BLSTM  po?  81.3% -
CustomerPTBR IT,C multi TDNN 1 60.4% -
IEMOCAP LT ~multi TDNN po?  59.4% -
UA RAVDESS TR multi BLSTM  po?  81.9% -
CustomerPTBR TR,C multi TDNN 1 83.5% -
IEMOCAP - - BLSTM  puo? - 58.8%
WA RAVDESS - - BLSTM  puo? - 79.2%
CustomerPTBR - - BLSTM  puo? - 52.1%
IEMOCAP - - BLSTM  puo? - 57.7%
UA RAVDESS - - TDNN  y; po? - 79.2%
CustomerPTBR - - BLSTM U - 647%

Table 3. Proportion of cases where each network was superior given the task
type and metric (WA or UA).

LSTM BLSTM TDNN
Task Setup o o 2
I no I no I no
Unified 0% 12.50% 4.17% 4.17% 0% 8.33%
Multi-task 0% 12.50% 16.67% 4.17% 12.50% 25.00%

Unified 4.17% 4.17% 4.17% 0% 0% 16.67%
Multi-task 4.17% 8.33% 12.50% 0%  8.33% 37.50%

WA

UA

temporal block with po? pooling and multi-task setup had the biggest share of cases with
best results,

In Table 4, instead of counting for all 12 meta-parameter permutations, we com-
pare each one individually. Initially, it corroborates the previous analysis, though it seems
to indicate that the pooling type and the task setup are more consistent in terms of gains.
This helps explaining why in Table 2 there are more BLSTM best results than TDNN.
Both the p0? pooling and the multi-task setup incur in more parameters to the trained
model, though training and inference times had no significant difference. A final interest-
ing thing to notice is that BLSTMs did not show consistent superior performance to their
unidirectional counterpart, even though there are no best LSTM results in Table 2.

5.3. By dataset combination

In Table 5, we count how many times a dataset was used (column) in the best result of
a test set (row). Each of the 12 possible meta-parameter permutations had a best result
with a certain combination of datasets, from which we derive the percentage of each cell.



Table 4. Proportion of cases where each meta-parameter was superior for each
metric.

By temporal block By pooling type By task setup
LSTM BLSTM TDNN\ n po? \ uni multi

WA 29.17% 25.00% 45.83% |20.83% 79.17% |29.17% 70.83%
UA 16.67% 20.83% 62.50% | 16.67% 83.33% |29.17% 70.83%

Table 5. Proportion of cases where each dataset was present in the best mix for
each metric.

Test Target CustomerPTBR IEMOCAP RAVDESS TESS

CustomerPTBR - 58.3% 41.7% 66.7 %

WA IEMOCAP 0% - 41.7 % 16.7%
RAVDESS 0% 0% - 50,0%

All 0% 29.2% 41.7% 44.4%
CustomerPTBR - 25.0% 50.0% 58.3%

UA IEMOCAP 16.7% - 58.3% 41.7%
RAVDESS 0% 0% - 50.0%

All 8.3% 12.5% 54.2% 50.0%

Since the usage of each dataset in the columns is non-exclusive, values in each cell may
range from 0% to 100%. Roughly, we may interpret that, if the value from a certain cell
is above 50%, the column dataset helps the row dataset in its classification task.

Against our initial intuition, the dataset which appears more frequently in the best
results for other datasets is the TESS dataset, which is the smallest and comprised of
very restricted examples. We believed that, due to its size and higher variability, the
IEMOCAP dataset would help other datasets the most, but it is still surpassed by the
RAVDESS dataset in this regard.

Our custom dataset helped others the least, possibly due to its language mis-
match, but since the IEMOCAP dataset also struggles to ameliorate the accuracy of other
datasets, we also hypothesize that the supposed domain variability from both datasets
actually hinders the ability to combine them. This may again be due to the inherent sub-
jective nature of the SER task.

6. Conclusion

We experimented with multiple emotional speech datasets applying different neural net-
work topologies, generating results with multiple recombination of the former and meta-
parameters of the latter. We showed that not always more data results in better models
in SER, probably due to its inherent subjective nature. An extension of this study would
include more corpora. It could narrow the search of meta-parameters to the best ones high-
lighted in this work. This would help us focus on the inter-affection between datasets. We
could also explore more elements of Deep Neural Networks like Self-attention and NiN



layers, or other feature extractors. Also, it would be interesting to explore more datasets
that are biased, small, and from different domains in order to check the robustness of
shared representations.
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