
On the Analysis of Mutation Operators in Multiobjective

Cartesian Genetic Programming for Designing Combinational

Logic Circuits

Lucas Augusto Müller de Souza , Heder Soares Bernardino

1 Universidade Federal de Juiz de Fora (UFJF) – Juiz de Fora – MG – Brazil

{lucasmuller,heder}@ice.ufjf.br

Abstract. Approximate Computing is an emerging paradigm that takes advan-

tage of inherently error resilient digital circuits to design circuits with higher

energetic efficiency, lower delay, or a smaller occupied area on the chips. Tra-

ditional approaches do not handle multiple objectives and metaheuristics ap-

pear as a proper alternative. In particular, Multiobjective Cartesian Genetic

Programming (MOCGP) can find good solutions to the design and optimiza-

tion of approximate circuits. The performance of CGP depends on the mutation

adopted, as normally CGP only uses mutation for creating new solutions. How-

ever, to the best of our knowledge, just the traditional point mutation (PM) was

used by the previously proposed MOCGP. Thus, the literature lacks an anal-

ysis of the best mutation operators of MOCGP. We propose here the analysis

of PM and Single Active Mutation(SAM) on the multiobjective optimization of

15 heterogeneous combinational logic circuits from scratch and starting with a

feasible solution. The results indicate that SAM obtained better results than PM.

1. Introduction

Nowadays, electronic systems are present in the daily life of society. These systems base

part of their operation on digital circuits that are usually designed to fully implement the

logic behavior of some specifications (such as the truth table). However, there are some

inherently error resilient applications where some logic behavior can be approximated.

These are part of the Approximate Computing (AC) paradigm, where computational sys-

tems are allowed to tolerate a loss of accuracy so that circuits can be designed with higher

energetic efficiency, a slower response time (i.e. delay), or a lower occupied area on

the chips. The design of ACs is useful in practical situations, such as arithmetic cir-

cuits (e.g. adders and multipliers) [Hrbacek et al. 2016, Lima et al. 2019], multimedia

systems [Oliveira et al. 2015] and, more recently, to improve the accuracy and hardware

efficiency of neural networks [Ansari et al. 2019, Mrazek et al. 2020].

The trade-off between multiple objectives on the design of ACs can be studied

using Evolutionary Algorithms (EAs). This type of technique obtained competitive solu-

tions when compared to traditional approaches for designing combinational logic circuits

(CLCs). Also, EAs solve the optimization problem without the knowledge of specific

rules used by experts by testing combinations that the specialists would not be able to.

The initial efforts aimed to design logical circuits were made in [Koza 1992] using

Genetic Programming. A general form of Genetic Programming called Cartesian Genetic

Programming (CGP) was proposed in [Miller and Thomson 2000]. CGP can encode a

2 CARTESIAN GENETIC PROGRAMMING (CGP) 2

wide range of programs represented as Direct Acyclic Graphs (DAGs) arranged in a 2-

dimensional grid of nodes. Later, an in deep discussion on characteristics, applications,

and variants of CGP can be found in [Miller 2011].

Initially, CGP used a single-objective to design digital circuits. However, the in-

dustry aims to design circuits energetically efficient, smaller, faster, with lower complex-

ity and still have good precision. One can see that these objectives are conflicting. For

instance, the complexity of the circuit may increase to reduce errors. Thus, using Mul-

tiobjective Cartesian Genetic Programming (MOCGP) is a proper alternative. An evolu-

tionary approach to design approximate circuits that starts with fully functional circuits

is proposed in [Hrbacek et al. 2016], where three objectives are considered: error, power

dissipation, and delay. A combination of CGP and the Non-Dominated Sorting Genetic

Algorithm II (NSGA-II) [Deb et al. 2002] is proposed to obtain approximate adders and

multipliers. Although NSGA-II is a widely used technique for solving multiobjective op-

timization, its computational complexity depends on the population size. Therefore, a

technique to design approximate circuits based on CGP with an Adaptive Population Size

(APS) is presented in [Lima et al. 2019]. This technique was used to design and optimize

8-bit adders, 8-bit multipliers, and Arithmetic Logic Units (ALUs). Despite the good

results found using CGP when solving the multiobjective optimization of combinational

logic circuits, the previous studies adopted the standard point mutation.

As the offspring in CGP are usually generated using mutation operators only, the

proper selection of this operator is important to the success of the method. Thus, we

propose here an analysis of PM [Miller 2011] and SAM [Goldman and Punch 2013] on

the design and optimization of approximate circuits. These operators are combined with

NSGA-II and APS to obtain the best approach to design approximate circuits with mul-

tiple objectives. Also, we analyze the initialization of the search technique using the

standard random approach and a feasible candidate design. These techniques are applied

to the design of 15 heterogeneous circuits of a benchmark from [de Souza et al. 2020].

This collection of problems contains a more comprehensive set of circuits than those used

on literature [Hrbacek et al. 2016, Lima et al. 2019].

2. Cartesian Genetic Programming (CGP)

Cartesian Genetic Programming (CGP) [Miller and Thomson 2000] is a type of Genetic

Programming (GP) in which candidate solutions are encoded as Directed Acyclic Graphs

(DAGs) represented as a 2-dimensional grid of nodes. The number of columns (nc) and

number of rows(nr) of this grid are user-defined parameters. Each node has a fixed num-

ber of inputs (Ni) and outputs (No) and contains information on its inputs and function.

These nodes can be connected to a primary input, i.e. input of the program, or another

node in the columns on its left side in the grid. The number of columns allowed to be con-

sidered as input of a given node is also a user-defined parameter denoted by levels-back

(lb). Although the genotype has a fixed-length, the phenotype length is variable according

to the number of active nodes, i.e. those that are connected (even non-directly) to any

output of the program.

The most adopted search technique for Single-objective CGP is (1+λ)-

Evolutionary Strategy [Miller 2011], where λ is the number of offspring generated at

each generation, and the symbol + indicates that the fittest candidate solution between

3 MULTIOBJECTIVE CARTESIAN GENETIC PROGRAMMING (MOCGP) 3

the offspring and the parent is promoted to the next generation. The offspring in CGP

are usually generated using mutation operators and the most common is Point Mutation

(PM) [Miller 2011]. Another operator widely adopted in the literature is Single Active

Mutation (SAM) [Goldman and Punch 2013].

Although CGP presents competitive results [Hrbacek et al. 2016, Miller 2011] for

designing CLCs, there are some gaps between the research field of using EAs and the

needs of the industry [Vasicek 2018]. The scalability is the main issue, as the processing

time for solving the optimization problem depends on the size of the truth table and its

number of rows grows exponentially based on the number of inputs.

2.1. Mutation Operators

As previously discussed, usually the only genetic operator used by CGP to gen-

erate the offspring is the mutation. So, the proper selection of this operator

is important to the success of the method. In the literature, a wide range of

mutation operators were proposed and the most common ones are point mu-

tation [Hrbacek et al. 2016, Lima et al. 2019, Miller 2011, da Silva et al. 2019,

de Souza et al. 2020, Vasicek and Sekanina 2014] and single active muta-

tion [Goldman and Punch 2013, da Silva et al. 2019, de Souza et al. 2020].

The standard mutation operator in CGP is Point Mutation (PM), where a gene

value is randomly changed to another valid one. The modifications can occur in a node’s

input gene (according to the lb defined), a node’s function gene, or an output gene. The

number of genes mutated can be defined by a percentage (µr) of the total number of nodes.

The Single Active Mutation (SAM) [Goldman and Punch 2013] operator also

randomly modifies a gene to another valid value, similar to PM. However, to reduce the

number of wasted evaluations, the chromosome is changed until at least one active node

is changed. This ensures the existence of phenotypic differences.

3. Multiobjective Cartesian Genetic Programming (MOCGP)

Initially, CGP was proposed by Miller et al. [Miller and Thomson 2000] to design digital

circuits considering a single objective. However, the industry needs to optimize circuits

regarding multiple objectives. Thus, several algorithms were proposed to optimize digital

circuits considering more than one objective.

One of the most famous is the Non-Dominated Sorting Genetic Algorithm

II (NSGA-II), proposed by Deb [Deb et al. 2002]. The combination of CGP and

NSGA-II was capable of achieving good results and was proposed by Hrbacek

et al. [Hrbacek et al. 2016]. Whereas, Lima et al. [Lima et al. 2019] proposed another

method with an adaptive population size that obtained better results than CGP-NSGAII.

Despite the good results obtained by these methods, PM was used as a mutation

operator in both cases. We analyze here the use of both PM and SAM as a mutation

operator, as SAM was capable of finding better results than PM in single-objective opti-

mization [Goldman and Punch 2013, de Souza et al. 2020].

3.1. Objective Functions

On the design of digital circuits as multiobjective, there are four objectives often consid-

ered: area, delay, power dissipation, and error. These objectives represent the industries

3 MULTIOBJECTIVE CARTESIAN GENETIC PROGRAMMING (MOCGP) 4

need as they allow us to design smaller thus cheaper circuits, faster ones, with high ener-

getic efficiency and still have good accuracy (i.e. low error rate). Here, we used the same

objectives used by Lima et al. [Lima et al. 2019] and adopted the same definitions.

Error. There are many different metrics to measure the error of a given cir-

cuit when compared to the specified truth table, such as mean absolute error, relative

error, the worst-case error, and hamming distance, with the last one being the most

used [Lima et al. 2019, da Silva et al. 2019, de Souza et al. 2020]. Instead of using a cir-

cuit’s truth table, the hamming distance can be calculated using Binary Decision Diagrams

(BDD). Vasicek et al. [Vasicek and Sekanina 2014] proposed the use of BDD to speed up

the feasibility evaluation of candidate solutions and reduce the scalability issue. BDD is

a DAG containing one root and two terminal nodes that are referred to as 0 and 1. All

the other nodes are called decision nodes or non-terminal. Each one of these nodes is a

Boolean value and has two successors, the low (0) and the high (1) child. Every path on

a BDD lead to one of the terminal nodes and each variable appears at most once. Con-

sidering a candidate circuit (Cc) and a feasible circuit (Fc) with outputs o1, ..., om and

o′1, ..., o
′
m, respectively, BDD can be used to check the equivalency of these circuits. This

equivalency occurs when, for each output i, the result of ri = oi XOR o′i = 0 (false).

Propagation Delay. The propagation delay of a digital circuit is calculated as the

delay of the longest path as follows Delay(C) = max∀p∈path

∑
ci∈p

td(ci) where td is the

delay of a cell ci.

Power Dissipation. To estimate the power consumption we used the approach

based on its switching component of power(Pswitching), short-circuit component of power

(Pshort−circuit) and the leakage current of power (Pleakage). The power dissipation is calcu-

lated as P = a0→1 ·CL ·fclk ·V
2
dd+Isc ·Vdd+Ileakage ·Vdd, where CL is the load capacitance,

fclk is the clock frequency, Isc is the short-circuit current, Ileakage is the leakage current,

Vdd is the supply voltage and a0→1 is the node activity factor which quantifies the average

number of times a logic gate makes a state transition that dissipates power within a period

of clock and it can be defined as a0→1 = p0 · p1 = p0 · (1− p0).

3.2. Non-Dominated Sorting Genetic Algorithm II (NSGA-II)

NSGA-II [Deb et al. 2002] is one of the most famous Multiobjective Evolutionary Al-

gorithm. It is based on the Pareto dominance idea and the solutions are ranked in non-

dominated fronts. The population Pt of size N and the offspring Qt, generated using

genetic operators, are combined as Rt = Pt ∪ Qt and Rt is organized in non-dominated

fronts. The first front (F0) contains the current non-dominated solutions. The solutions

in F0 are removed from Rt and the second front (F1) is created. This process is repeated

until every solution is assigned to its corresponding front of dominance. A constraint

handling procedure is necessary when the problem contains constraints. In NSGA-II, a

given solution Si dominates another solution Sj if: (i) Si is feasible and Sj is not, (ii) Si

and Sj are both infeasible, but Si has a small overall constraint violation or (iii) Si and Sj

are feasible and Si dominates Sj as previously defined.

The population replacement in NSGA-II finds the smallest i such that |F0 ∪ · · · ∪
Fi| = Mi ≥ N , where | · | denotes the cardinality of a set. Pt+1 = F0 ∪ · · · ∪ Fi when

Mi = N . Otherwise, F0∪ · · · ∪Fi−1 and N −|F0∪ · · · ∪Fi−1| individuals in Fi compose

Pt+1. Those individuals of Fi with the largest crowding distance are selected to the next

4 COMPUTATIONAL EXPERIMENTS 5

(a) NSGA-II (b) APS

Figure 1. Population replacement, where Pt represents the parents of generation
t and Qt is the offspring. The dashed lines represents the population size

or the maximum population size (mps), respectively, for NSGA-II and APS.

generation. The crowding distance of an individual is half of the perimeter of a hypercube

formed by its nearest neighbors, or infinity for the extreme solutions (those with the best

objective function values). The replacement of NSGA-II is illustrated in Figure 1a.

The combination of NSGA-II with CGP to design digital circuits was proposed

in [Hrbacek et al. 2016] and was capable of evolving 8-bit adders and multipliers with

significant power consumption savings. Hence, we used that method on the computational

experiments to study the impact of the mutation operators on the design of digital circuits.

3.3. Adaptive Population Size (APS)

The computational complexity of NSGA-II depends on the population size. So, even if a

larger population increases the coverage of the search space, it also increases the compu-

tational cost of the method. Otherwise, a small population implies a lower computational

cost but it can lead to premature convergence.

To address that problem, APS was proposed in [Lima et al. 2019] to adapt the

population size during the search process. Instead of selecting a fixed number of individ-

uals, that may come from other candidate solutions than the non-dominated ones, APS

selects only the non-dominated individuals. This is important to obtain a wide coverage

of the search space whereas the computational cost remains lower than with fixed popu-

lation size. One can notice that the population (and consequently the computational cost

required in each generation) increases with the number of non-dominated solutions. Thus,

a parameter (maxps) was included in APS to control the maximum population size and to

limit the budget spent in each iteration. This process may result in two situations: (i) the

number of non-dominated solutions in the current population is smaller than or equal to

maxps and, therefore, all these individuals are promoted to the next generation, or (ii) the

crowding distance is calculated for the current non-dominated solutions and those with

the largest values are selected. Figure 1b illustrates this process.

4. Computational Experiments

There are some mutation operators in the literature for the design of combina-

tional logic circuits, such as PM [Miller 2011], GAM [da Silva et al. 2019] and

SAM [Goldman and Punch 2013]. Also, SAM normally achieved results better than these

other approaches when a single objective is considered. Meanwhile, in the new research

4 COMPUTATIONAL EXPERIMENTS 6

Table 1. The selected test-problems, including its name, number of inputs (In.),

number of outputs (Out.), the maximum number of evaluations of the indi-
viduals (Eval.) available to the techniques, the objective function values of

the baseline circuit when seeding the population with conventional archi-
tecture and its functionality.

Group Name In. Out. Eval.
Baseline

Functionality
Error Delay(ns) Power(mW)

1

C17 5 2 1.20E+7 0.00 11.30 0.188048 Logic

cm42a 4 10 1.28E+7 0.00 13.00 0.960585 Logic

cm82a 5 3 8.00E+6 0.00 28.30 0.811869 Logic

cm138a 6 8 1.92E+7 0.00 16.40 0.730218 Logic

decod 5 16 1.20E+7 0.00 11.30 0.448242 Logic

f51m 8 8 1.92E+7 0.00 50.40 2.63543 Arithmetic

majority 5 1 8.00E+6 0.00 10.20 0.127364 Voter

z4ml 7 4 1.68E+7 0.00 57.20 2.14865 2-bit Adder

2

9symml 9 1 2.16E+7 0.00 157.50 3.39376 Count Ones

alu2 10 6 1.60E+7 0.00 126.90 5.06011 ALU

cm85a 11 3 1.76E+7 0.00 43.60 1.67714 Logic

cm151a 12 2 2.88E+7 0.00 23.20 0.7064 Logic

cm162a 14 5 4.48E+7 0.00 24.90 1.00049 Logic

cu 14 11 4.48E+7 0.00 26.60 0.781757 Logic

x2 10 7 2.40E+7 0.00 21.50 0.878563 Logic

area known as Approximate Computing with Multiobjective CGP, APS and NSGA-II are

methods from the literature able to optimize complex architectures such as Arithmetic

Logic Units, and 8-bits adders and multipliers. However, there is still a lack of analysis

on the impact of the mutation operator in MOCGP as the previous works only used PM.

Thus, we investigate the impact of using SAM and PM with APS and NSGA-II.

To evaluate the association of these mutation and selection approaches, we used

the small (group 1) and medium (group 2) problems from the benchmark proposed

in [de Souza et al. 2020]. This benchmark was created to evaluate single-objective meta-

heuristics in the design of digital circuits and contains a set of heterogeneous problems.

The large problems (group 3) and alu4, which belong to group 2, have been disregarded

due to computational resources limitation.

The circuits can be designed from scratch when the initial solution is randomly

generated (labeled by R). Also, a feasible solution can be used as the initial candidate

circuit, for instance, using ESPRESSO as in [de Souza et al. 2020] (labeled by E). The

computational experiments consider 2 multiobjective approaches (APS and NSGA-II), 2

mutation operators (PM and SAM), and two strategies for generating the initial solution

(R and E). As a result, 8 techniques are analyzed here, and they are labeled according

to these three features: approach-mutation-initialization. The comparative analyses are

initially performed considering the same initialization strategy.

The parameters of CGP are nr = 1, nc = 100 for problems in Group 1, and

nc = 1000 for those in Group 2, and function set Γ = {AND, OR, NOT, NAND, NOR,

XOR,XNOR}, such as in [de Souza et al. 2020], and the levels-back used was lb = nc and

the population size was 50. The parameters td, Vdd and CL (Section 3.1) used to evaluate

the delay and power dissipation are the same used in [Lima et al. 2019]. These values

4 COMPUTATIONAL EXPERIMENTS 7

were obtained from the Nexperia1 manufacturer and the logic gates are: 74LVC1G08

(AND), 74LVC1G32 (OR), 74AHC1G04 (NOT), 74LVC1G00 (NAND), 74LVC1G02

(NOR), 74LVC1G86 (XOR) and HEF4077B (XNOR). The error was calculated using

the BuDDy Package2, which is an implementation of BDD. The feasible circuit used as a

base to be compared with the candidate solution is that provided in [de Souza et al. 2020].

To ensure that only solutions with a low acceptable error is generated, we constrained the

mean relative error to be at most 10% as Hrbacek et al. [Hrbacek et al. 2016]. The source-

code and the raw data of the experiments are available3.

4.1. Performance Assessment

The hypervolume indicator, introduced in [Zitzler and Thiele 1998], is considered a fair

performance measure as solutions (i) closer to the optimal Pareto front and (ii) well-

distributed along the whole front have a higher hypervolume indicator value. This indi-

cator uses the non-dominated solutions and a reference point (usually, the worst values of

the objective functions) to calculate the hypervolume. An improved algorithm to calculate

the hypervolume indicator was proposed in [Fonseca et al. 2006] and its implementation4

was used here to evaluate the performance of the solutions.

Statistical tests were also used to investigate the similarity of the results obtained

by the techniques. The Dunn p-values were calculated using all results obtained for each

problem separately. The null hypothesis is considered rejected here when p-value ≤ 0.05.

4.2. Optimization from scratch

The first considered scenario in the proposed investigation is the design of CLCs from

scratch, i.e. the population is randomly initialized. Tables 2 and 3 present the results

obtained. A star (*) is used to identify the techniques that obtained results that are statisti-

cally different from those that found the best median (highlighted in boldface) according

to Dunn’s test.

Considering the 8 problems in group 1, NSGAII-PM-R and APS-PM-R obtained

the best median hypervolume or are statistically similar to the best ones in all problems,

while NSGAII-SAM-R and APS-SAM-R reached this performance in 5 and 4 problems,

respectively. For the problems in group 2, NSGAII-SAM-R, APS-SAM-R, and NSGAII-

PM-R obtained the best median results or their results are statistically similar to the best

ones, respectively, in 7, 6, and 1 problem. Thus, PM performed better than SAM in the

small problems (those in group 1), whereas SAM performed better than PM in medium

ones (those in group 2).

NSGAII-SAM-R obtained SR = 100% in all problems (i.e. at least one solution

does not violate the constraint in any independent run), whereas APS-SAM-R, NSGAII-

PM-R, and APS-PM-R obtained SR = 96.00%, SR = 72.00% and SR = 76.00%
respectively, for 1 problem. In general, the techniques using SAM obtained a higher

success rate than those using PM, and the best performing search technique is NSGAII-

SAM-R due to its best median hypervolume values in 12 of 15 problems and obtained

SR = 100% in all problems.

1https://www.nexperia.com/
2https://sourceforge.net/projects/buddy
3https://github.com/ciml/eniac2020_mocgp
4http://lopez-ibanez.eu/hypervolume

4 COMPUTATIONAL EXPERIMENTS 8

Table 2. Results obtained when starting with a random population – group 1.

Problem Method Best Median Worst Mean Std SR(%)

C17

NSGAII-PM-R 0.6622 0.6339 0.6106 0.056 0.4758 100.0

NSGAII-SAM-R+ 0.6626 0.6449 0.6219 0.0615 0.418 100.0

APS-PM-R 0.6579 0.6253 0.601 0.0707 0.4088 100.0

APS-SAM-R 0.662 0.6289 0.5979 0.0809 0.4271 100.0

cm42a

NSGAII-PM-R 0.7396 0.6884 0.6931 0.0246 0.638 100.0

NSGAII-SAM-R* 0.7364 0.6776 0.6785 0.0329 0.5871 100.0

APS-PM-R 0.7701 0.7068 0.6993 0.0342 0.6306 100.0

APS-SAM-R* 0.7456 0.6892 0.6823 0.0321 0.6261 100.0

cm82a

NSGAII-PM-R 0.6566 0.5906 0.5788 0.0676 0.3802 100.0

NSGAII-SAM-R+ 0.7081 0.5839 0.578 0.0975 0.1987 100.0

APS-PM-R 0.6743 0.5888 0.5765 0.0614 0.447 100.0

APS-SAM-R 0.7036 0.5489 0.5492 0.0892 0.3127 100.0

cm138a

NSGAII-PM-R 0.8319 0.8009 0.802 0.0188 0.7769 100.0

NSGAII-SAM-R*+ 0.8231 0.7798 0.7893 0.0183 0.757 100.0

APS-PM-R 0.8293 0.7966 0.774 0.1267 0.1742 100.0

APS-SAM-R 0.8381 0.7831 0.7936 0.0204 0.7706 100.0

decod

NSGAII-PM-R 0.7668 0.7507 0.7427 0.0174 0.7089 100.0

NSGAII-SAM-R+ 0.7625 0.7347 0.7333 0.0207 0.6902 100.0

APS-PM-R 0.7847 0.7468 0.7418 0.0252 0.69 100.0

APS-SAM-R* 0.7877 0.7227 0.7273 0.023 0.6896 100.0

f51m

NSGAII-PM-R 0.6002 0.3544 0.3486 0.1057 0.0374 100.0

NSGAII-SAM-R+ 0.5295 0.3478 0.348 0.0957 0.1535 100.0

APS-PM-R 0.4542 0.3619 0.3277 0.0972 0.1204 100.0

APS-SAM-R 0.5222 0.3214 0.3249 0.0927 0.1612 100.0

majority

NSGAII-PM-R 0.7293 0.6214 0.6034 0.0779 0.4331 100.0

NSGAII-SAM-R*+ 0.7537 0.4989 0.5154 0.1179 0.3233 100.0

APS-PM-R 0.7846 0.631 0.6335 0.085 0.4548 100.0

APS-SAM-R* 0.7685 0.5094 0.5413 0.1183 0.3457 100.0

z4ml

NSGAII-PM-R 0.8931 0.8 0.7492 0.1311 0.4067 100.0

NSGAII-SAM-R 0.8965 0.7624 0.7323 0.1568 0.3436 100.0

APS-PM-R 0.8878 0.8435 0.7825 0.1445 0.2434 100.0

APS-SAM-R* 0.9057 0.6715 0.6477 0.2506 0.0046 100.0

4.3. Optimization using a feasible circuit

The second scenario is the optimization of CLCs with a feasible circuit in the initial popu-

lation, as in [de Souza et al. 2020]. Tables 4 and 5 present the results obtained by the tech-

niques, where a star (*) indicates the statistical differences with respect to the best median

results and the best values are highlighted using boldface. In this scenario, the techniques

using SAM (NSGAII-SAM-E and APS-SAM-E) obtained the best median hypervolume

results or are statistically similar to the best ones, respectively, in 8 and 7 problems of

the 8 problems in group 1. On the other hand, the methods with PM (NSGAII-PM-E and

APS-PM-E) obtained the best results in 5 and 3 problems, respectively. Considering the

7 problems in group 2, NSGAII-SAM-E and APS-SAM-E obtained the best results or are

statistically similar to the best ones in all of them. NSGAII-PM-E and APS-PM-E reached

no result statistically similar to the best ones. All techniques obtained SR = 100.00% in

all problems considered here.

4 COMPUTATIONAL EXPERIMENTS 9

Table 3. Results obtained when starting with a random population – group 2.

Problem Method Best Median Worst Mean Std SR(%)

9symml

NSGAII-PM-R* 0.6444 0.3871 0.3988 0.1066 0.2228 100.0

NSGAII-SAM-R 0.7709 0.5864 0.5548 0.1216 0.2828 100.0

APS-PM-R* 0.6324 0.4436 0.473 0.1016 0.3166 100.0

APS-SAM-R* 0.6828 0.4717 0.4607 0.1593 0.0459 100.0

alu2

NSGAII-PM-R* 0.184 0.0752 0.0706 0.0613 0.0 72.0

NSGAII-SAM-R+ 0.327 0.2062 0.2068 0.0628 0.1011 100.0

APS-PM-R* 0.1636 0.0558 0.0612 0.0534 0.0 76.0

APS-SAM-R 0.3425 0.1753 0.189 0.1022 0.0 96.0

cm85a

NSGAII-PM-R 0.7849 0.6974 0.6957 0.0398 0.6115 100.0

NSGAII-SAM-R+ 0.7747 0.7049 0.7026 0.0369 0.6283 100.0

APS-PM-R* 0.7438 0.6771 0.6789 0.038 0.5722 100.0

APS-SAM-R 0.8029 0.6903 0.6943 0.0408 0.6288 100.0

cm151a

NSGAII-PM-R* 0.8392 0.6653 0.6443 0.1199 0.4008 100.0

NSGAII-SAM-R 0.8991 0.7749 0.7694 0.0946 0.5574 100.0

APS-PM-R* 0.8284 0.6749 0.6708 0.084 0.4841 100.0

APS-SAM-R 0.8973 0.8225 0.7911 0.0879 0.561 100.0

cm162a

NSGAII-PM-R* 0.8192 0.7243 0.7095 0.0801 0.5611 100.0

NSGAII-SAM-R 0.8648 0.7899 0.7632 0.0755 0.6164 100.0

APS-PM-R* 0.8365 0.7209 0.7233 0.0691 0.5849 100.0

APS-SAM-R 0.8733 0.7871 0.7715 0.0586 0.6101 100.0

cu

NSGAII-PM-R* 0.8904 0.8697 0.855 0.0404 0.7595 100.0

NSGAII-SAM-R+ 0.9166 0.8919 0.8769 0.0356 0.769 100.0

APS-PM-R* 0.8914 0.869 0.8323 0.0602 0.7084 100.0

APS-SAM-R 0.9199 0.8903 0.8718 0.0484 0.7595 100.0

x2

NSGAII-PM-R* 0.7677 0.7129 0.7094 0.0424 0.5944 100.0

NSGAII-SAM-R+ 0.7869 0.7582 0.7458 0.0384 0.6763 100.0

APS-PM-R* 0.7705 0.722 0.7213 0.0329 0.6566 100.0

APS-SAM-R 0.7898 0.7509 0.7455 0.0325 0.6706 100.0

In general, the techniques using SAM are statistically better than those using PM

for problems in both groups considered. The best performing approach is NSGAII-SAM-

E, due to its best median hypervolume values in all problems.

4.4. Analysis of the Results of NSGAII-SAM-R and NSGAII-SAM-E

Here we compare the results obtained by the best technique in each scenario, namely

NSGAII-SAM-R (solutions are optimized from scratch) and NSGAII-SAM-E (the initial

population contains a feasible solution). The median hypervolume values obtained by

these techniques were used in the comparisons. Also, the Dunn-test was performed for

all problems and a (+) is used to highlight the method that is statistically different from

the best one, between the results obtained by NSGAII-SAM-R and NSGAII-SAM-E.

Considering the problems in group 1, NSGAII-SAM-E and NSGAII-SAM-R ob-

tained the best result or its results are statistically similar to the best ones in 7 and 2

problems, respectively. Also, NSGAII-SAM-E obtained the best results or its results are

statistically similar to the best ones in all the 7 problems in group 2, while NSGAII-SAM-

R reached such performance only in 3 problems. Thus, as NSGAII-SAM-E obtained the

5 CONCLUDING REMARKS AND FUTURE WORKS 10

Table 4. Results obtained when starting with a feasible population – group 1.

Problem Method Best Median Worst Mean Std SR(%)

C17

NSGAII-PM-E 0.6564 0.5696 0.5431 0.0851 0.4263 100.0

NSGAII-SAM-E+ 0.6613 0.605 0.5539 0.1005 0.4156 100.0

APS-PM-E 0.6605 0.6245 0.5837 0.0765 0.4309 100.0

APS-SAM-E 0.6608 0.5748 0.5546 0.0866 0.4149 100.0

cm42a

NSGAII-PM-E 0.7921 0.7174 0.7182 0.0298 0.6637 100.0

NSGAII-SAM-E 0.7691 0.7168 0.7226 0.023 0.6895 100.0

APS-PM-E* 0.7625 0.7058 0.7048 0.0308 0.6463 100.0

APS-SAM-E 0.7504 0.7252 0.7228 0.0147 0.6827 100.0

cm82a

NSGAII-PM-E 0.7326 0.6412 0.6355 0.0478 0.5367 100.0

NSGAII-SAM-E 0.7122 0.6599 0.6482 0.0449 0.5318 100.0

APS-PM-E* 0.6722 0.6306 0.6249 0.0387 0.5366 100.0

APS-SAM-E 0.7337 0.6397 0.6387 0.0664 0.4523 100.0

cm138a

NSGAII-PM-E 0.8329 0.805 0.8081 0.0118 0.7919 100.0

NSGAII-SAM-E 0.8267 0.8105 0.8124 0.0069 0.7975 100.0

APS-PM-E* 0.8313 0.8049 0.8046 0.0096 0.7877 100.0

APS-SAM-E 0.8422 0.8118 0.8132 0.0097 0.7932 100.0

decod

NSGAII-PM-E* 0.8357 0.8224 0.8197 0.0109 0.7981 100.0

NSGAII-SAM-E 0.8437 0.8272 0.8258 0.0098 0.7969 100.0

APS-PM-E 0.8322 0.8249 0.822 0.0104 0.7837 100.0

APS-SAM-E 0.8372 0.8261 0.825 0.0085 0.8006 100.0

f51m

NSGAII-PM-E* 0.3719 0.2993 0.3022 0.0248 0.26 100.0

NSGAII-SAM-E 0.7638 0.7109 0.7138 0.021 0.6812 100.0

APS-PM-E* 0.3781 0.3156 0.3189 0.0212 0.2785 100.0

APS-SAM-E 0.8003 0.7148 0.7161 0.0234 0.6679 100.0

majority

NSGAII-PM-E 0.6683 0.5928 0.5991 0.0278 0.5295 100.0

NSGAII-SAM-E 0.7094 0.6021 0.5974 0.0346 0.5159 100.0

APS-PM-E 0.6342 0.6078 0.6051 0.0221 0.5759 100.0

APS-SAM-E* 0.6325 0.5836 0.5873 0.0264 0.5309 100.0

z4ml

NSGAII-PM-E* 0.6779 0.3496 0.3756 0.0772 0.3151 100.0

NSGAII-SAM-E 0.9003 0.7873 0.8043 0.0591 0.7053 100.0

APS-PM-E* 0.7987 0.3509 0.4229 0.15 0.3036 100.0

APS-SAM-E 0.9011 0.7775 0.7897 0.0485 0.7006 100.0

best results in most of the problems considered here (14 of 15) when designing ACs.

5. Concluding Remarks and Future Works

We analyzed the use of both Point Mutation (PM) and Single Active Mutation (SAM)

on the design of approximate circuits with Cartesian Genetic Programming (CGP). These

operators were combined with NSGA-II and APS, an adaptive population size approach.

The techniques were used to design 15 heterogeneous circuits in two scenarios, where the

search process is initialized (i) from scratch and (ii) with a fully functional circuit.

In the first scenario, NSGAII-SAM-R obtained the best median results and, in the

second one, NSGAII-SAM-E found the best median results. In both scenarios, SAM ob-

tained better results than PM, as in single-objective optimization problems. Using CGP

with SAM, the replacement strategy of NSGA-II, and a feasible circuit in the initial popu-

REFERENCES 11

Table 5. Results obtained when starting with a feasible population – group 2.

Problem Method Best Median Worst Mean Std SR(%)

9symml

NSGAII-PM-E* 0.5974 0.4011 0.3317 0.2057 0.0095 100.0

NSGAII-SAM-E 0.6661 0.5813 0.592 0.0306 0.5399 100.0

APS-PM-E* 0.0299 0.0208 0.0203 0.004 0.0151 100.0

APS-SAM-E 0.6804 0.5858 0.5906 0.0463 0.4565 100.0

alu2

NSGAII-PM-E* 0.2841 0.2385 0.2392 0.0139 0.2112 100.0

NSGAII-SAM-E 0.6989 0.6606 0.6578 0.0225 0.5955 100.0

APS-PM-E* 0.2879 0.2492 0.2489 0.019 0.2181 100.0

APS-SAM-E 0.6984 0.6585 0.6587 0.025 0.6109 100.0

cm85a

NSGAII-PM-E* 0.7801 0.7554 0.755 0.0104 0.7312 100.0

NSGAII-SAM-E 0.8915 0.8788 0.8774 0.0084 0.8551 100.0

APS-PM-E* 0.7743 0.7516 0.7513 0.0112 0.7253 100.0

APS-SAM-E 0.8882 0.8804 0.8786 0.0066 0.8631 100.0

cm151a

NSGAII-PM-E* 0.8322 0.7762 0.7488 0.0665 0.6192 100.0

NSGAII-SAM-E 0.8945 0.8229 0.8202 0.0555 0.6913 100.0

APS-PM-E* 0.8407 0.752 0.7336 0.0728 0.6012 100.0

APS-SAM-E 0.906 0.8227 0.8188 0.0547 0.7042 100.0

cm162a

NSGAII-PM-E* 0.7454 0.702 0.6941 0.0289 0.6163 100.0

NSGAII-SAM-E 0.8212 0.7557 0.7624 0.0263 0.7168 100.0

APS-PM-E* 0.7462 0.6856 0.6896 0.0337 0.6059 100.0

APS-SAM-E 0.8181 0.7761 0.7775 0.0214 0.7335 100.0

cu

NSGAII-PM-E* 0.8847 0.8603 0.8545 0.0279 0.757 100.0

NSGAII-SAM-E 0.9269 0.9172 0.9166 0.0067 0.8915 100.0

APS-PM-E* 0.8944 0.8707 0.8611 0.0252 0.7884 100.0

APS-SAM-E 0.9261 0.9183 0.9153 0.0139 0.8522 100.0

x2

NSGAII-PM-E* 0.781 0.7476 0.7375 0.0369 0.6464 100.0

NSGAII-SAM-E 0.8432 0.7884 0.7858 0.0271 0.73 100.0

APS-PM-E* 0.7987 0.7494 0.7431 0.0396 0.647 100.0

APS-SAM-E 0.8414 0.7882 0.7879 0.0227 0.7418 100.0

lation is the combination that reached the best results in most problems of both scenarios

considered here.

The combination of NSGA-II and SAM to design other approximate circuits, such

as adders, multipliers, and ALUs is an interesting research avenue. Also, we intend to

include the number of transistors as an objective.

Acknowledgments

The authors thank the financial support provided by CNPq (312682/2018-2), FAPEMIG

(APQ-00337-18), and UFJF. Also, this work has been supported by UFJF’s High-Speed

Integrated Research Network (RePesq).

References

Ansari, M. S., Mrazek, V., Cockburn, B. F., Sekanina, L., Vasicek, Z., and Han, J. (2019).

Improving the accuracy and hardware efficiency of neural networks using approximate

multipliers. IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

REFERENCES 12

da Silva, J. E. H., de Souza, L. A., and Bernardino, H. S. (2019). Cartesian genetic

programming with guided and single active mutations for designing combinational

logic circuits. In International Conference on Machine Learning, Optimization, and

Data Science, pages 396–408. Springer.

de Souza, L. A. M., da Silva, J. E. H., Chaves, L. J., and Bernardino, H. S. (2020). A

benchmark suite for designing combinational logic circuits via metaheuristics. Applied

Soft Computing, page 106246.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multiobjec-

tive genetic algorithm: NSGA-II. IEEE Trans. on Evol. Computation, 6(2):182–197.

Fonseca, C. M., Paquete, L., and López-Ibánez, M. (2006). An improved dimension-

sweep algorithm for the hypervolume indicator. In 2006 IEEE international conference

on evolutionary computation, pages 1157–1163. IEEE.

Goldman, B. W. and Punch, W. F. (2013). Reducing wasted evaluations in cartesian

genetic programming. In European Conference on Genetic Programming, pages 61–

72. Springer.

Hrbacek, R., Mrazek, V., and Vasicek, Z. (2016). Automatic design of approximate cir-

cuits by means of multi-objective evolutionary algorithms. In Intl. Conf. on Design

and Technology of Integrated Systems in Nanoscale Era (DTIS), pages 1–6. IEEE.

Koza, J. R. (1992). Genetic programming: on the programming of computers by means

of natural selection, volume 1. MIT press.

Lima, L. S., Bernardino, H. S., and Barbosa, H. J. (2019). Designing combinational

circuits using a multi-objective cartesian genetic programming with adaptive popula-

tion size. In International Conference on Machine Learning, Optimization, and Data

Science, pages 592–604. Springer.

Miller, J. F. (2011). Cartesian genetic programming. In Cartesian Genetic Programming,

pages 17–34. Springer.

Miller, J. F. and Thomson, P. (2000). Cartesian genetic programming. Proc. of EuroGP

2000, 1802:121–132.

Mrazek, V., Sekanina, L., and Vasicek, Z. (2020). Using libraries of approximate circuits

in design of hardware accelerators of deep neural networks. In Proc. of the Intl. Conf.

on Artificial Intelligence Circuits and Systems (AICAS), pages 243–247. IEEE.

Oliveira, J. R., Soares, L. B., Costa, E., and Bampi, S. (2015). Energy-efficient gaussian

filter for image processing using approximate adder circuits. In 2015 IEEE Inter-

national Conference on Electronics, Circuits, and Systems (ICECS), pages 450–453.

IEEE.

Vasicek, Z. (2018). Bridging the gap between evolvable hardware and industry using

cartesian genetic programming. In Inspired by Nature, pages 39–55. Springer.

Vasicek, Z. and Sekanina, L. (2014). How to evolve complex combinational circuits from

scratch? In Proc. of the Intl. Conf. on Evolvable Systems, pages 133–140. IEEE.

Zitzler, E. and Thiele, L. (1998). Multiobjective optimization using evolutionary algo-

rithms—a comparative case study. In International conference on parallel problem

solving from nature, pages 292–301. Springer.

