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Abstract. Electricity consumption is growing rapidly worldwide. Renewable
energy resources, such as solar energy, play a crucial role in this scenario,
contributing to satisfy demand sustainability. Although the share of
Photovoltaic (PV) power generation has increased in the past years, PV
systems are quite sensitive to climatic and meteorological conditions, leading
to undesirable power production variability. In order to improve energy grid
stability, reliability, and management, accurate forecasting models that relate
operational conditions to power output are needed. In this work we evaluate
the performance of regression methods applied to forecast short term (next
day) energy production of a PV Plant. Specifically, we consider five regression
methods and different configurations of feature sets. Our results suggest that
MLP and SVR provide the best forecasting results, in general. Also, although
features based on different solar irradiance levels play a key role in predicting
power generation, the use of additional features can improve prediction results.

1. Introduction
Electricity demand is growing rapidly. Industries account for a large fraction of
such demand, with consumption figures close to 35.6% of global energy production
in 2017 [IEA 2017]. Technological innovations and improving living standards also
mean more household appliances at homes. In Brazil, specifically, revenues related to
household appliances grew 1.58% from 2018 to 2019 and an increase of 1.56% is expected
in the year 2020 [Statista 2019]. Estimates suggest that, on average, global electricity
demand will grow 2.1% a year until 2040 [IEA 2019]. The growing demand combined
with the necessity to reduce the environmental impact of power generation has led to the
development and adoption of clean energy resources.

The share of solar Photovoltaic (PV) systems in power generation has
increased over the past years worldwide. Specifically, it grew 34.75% from 2016
to 2017 [IEA 2017]. While solar energy is a great source of renewable energy, its
widespread adoption is hampered by its sensitivity to climatic and meteorological



conditions [Pedro and Coimbra 2012]. In fact, critical challenges in the transition to
clean and renewable energy sources are often related to their capacity, availability,
and reliability [Gielen et al. 2019]. These challenges are faced not only by Photovoltaic
systems but other energy sources, such as, wind and tidal power [Inman et al. 2013].

Prior to the deployment of a PV Plant the environmental and climatic
characteristics of the candidate locations should, ideally, be investigated. Ground and
satellite data can be employed in order to quantify factors that directly affect the
performance of a PV System, such as, wind speed, cloud coverage, ambient temperature
and solar radiation [Das et al. 2018, Kaplani and Kaplanis 2014, Malvoni et al. 2017,
Souza-Echer et al. 2006]. These factors will not only help to determine the best
candidate location, but also support design and optimization at a given site during
operation [Nonnenmacher et al. 2014]. Indeed, the variable and sometimes irregular
nature of PV Plants poses substantial challenges for the current operation methods of
energy producers, public companies, independent service operators, and mainly the
concessionaires responsible for energy distribution [Pedro and Coimbra 2012].

In order to optimize grid response, the energy production of a PV
Plant must be predicted as accurately as possible, providing grid managers with
information on how much energy will be available at a given time [Kudo et al. 2009,
Lorenz et al. 2009, Mahtta et al. 2014]. Thus, the accurate forecast of the power
output of a PV Plant can provide security for the entire energy system,
improving stability and reliability, and allowing for a better planning of energy
generation, distribution and economic return [Das et al. 2018, Lo Brano et al. 2014,
Muhammad Ehsan et al. 2017, Raza et al. 2016].

In this work, we evaluate the impact of different regression methods and
feature sets when applied to short term forecasting of power output from a PV Plant.
We consider ground collected data from a solarimetric station spanning the whole year
of 2018. Our goal is to identify configurations that will allow the development of tools to
assist management of PV generation systems and grids.

The remainder of the work is organized as follows. In Section 2, we review
related work on power output forecasting for PV Plants. Experimental setup is presented
in Section 3. First we describe the data, its features, and the pre-processing steps
performed before its actual analysis. We then proceed to present methods and evaluation
metrics. Results from our evaluation are discussed in Section 4. Conclusions an future
work directions are given in Section 5.

2. Related Work

Several studies have focused on the prediction of power output for PV
systems. Comprehensive reviews on the topic are provided by Raza et
al. [Raza et al. 2016] and, more recently, by Das et al. [Das et al. 2018]. Both
works discuss the main aspects related to the problem, such as forecasting horizon,
features (variables), and models. In the following we briefly discuss findings related to
these particular topics.

In terms of forecasting horizon, models fall within three major categories, namely:
short, medium, and long term [Das et al. 2018]. Short term models aim to predict power



output for a few hours ahead, up to seven days. Medium term models consider a broader
horizon, ranging from a week to a month. Models that provide predictions for periods
greater than a month ahead are deemed long term. Some authors [Raza et al. 2016] also
include a fourth category, named very short term forecasting, for predictions made almost
in a real time fashion, considering minutes ahead.

Although solar irradiance plays a central role in PV systems, it is not the only
feature affecting power output. Among the other features with moderate to high influence
on the power output of PV systems, temperature, wind speed/direction, cloud coverage,
humidity, and aerosol index are usually considered [Das et al. 2018]. Different feature
subsets were evaluated by De Giorgi et al. [De Giorgi et al. 2014] and Huang et al.
[Huang et al. 2010]. Both studies obtained better results when combined solar irradiance
data with other features, such as ambient/module temperature, and humidity.

Raza et al. [Raza et al. 2016] observes that better predictions may be obtained
with specialized models built for different weather conditions, e.g., sunny, rainy, or
cloudy. However, results seem to depend on more factors than solely stratification by
weather. Ding et al. [Ding et al. 2011] and Leva et al. [Leva et al. 2017] obtained better
forecasting results for clear days (in which there are no clouds) than for rainy our cloudy
days. With a similar procedure, however, Mellit et al. [Mellit et al. 2014] observed greater
improvements for the model built for cloudy days in comparison to no stratification.

Besides weather, the geographical location of a PV Plant is often regarded as
a key factor in the observed output of the system. Given that the correlations between
meteorological parameters may change according to location, there is recommendation
for their investigation in different application scenarios [Das et al. 2018].

In terms of prediction techniques, Artificial Neural Network (ANN)
based models are amongst the most usual choices in the literature. Albeit a
wide variety of ANN types have been used, Multilayer Perceptrons (MLPs)
seem to prevail [Chow et al. 2012, Lo Brano et al. 2014, Raza et al. 2016,
Muhammad Ehsan et al. 2017, Das et al. 2018]. Other methods, such as k-Nearest
Neighbors (kNN) and Support Vectors Regression (SVR) have also been widely
adopted [Fernandez-Jimenez et al. 2012, Arize and Nogueira Rios 2019]. Das et
al. [Das et al. 2018] suggest, based on their literature review, that ANN models and
Support Vector Regression (SVR) show the best results for the task, in general.

3. Material and Methods
In this section we detail the dataset employed in our study, its features and main
characteristics. Then, we describe the methods used in our experimental section and the
evaluation metrics adopted.

3.1. Data
The dataset considered in this work consists of ground collected data from a solarimetric
station located at the Fotovoltaica/UFSC Solar Energy Research Laboratory, Florianópolis
- SC - Brazil. The PV Plant responsible for generating power output is located at the
same site. The dataset comprehends the energy production for the 2018 year, with a one
minute resolution. Initially, raw data comprehended a total of 545,806 measurements
(pre-processing is described in the following) obtained with a Campbell CR6 Datalogger.



The features collected by the solarimetric station are detailed in Table 1. The target
feature, which corresponds to the power output at a given instant is also shown (this
corresponds to the inverter output).

Table 1. Features from the solarimetric station and the PV Plant output.

Parameter Abbreviation Sensor Unit

Direct Normal Irradiance DNI SHP1 W/m2

Global Horizontal Irradiance GHI SMP22 W/m2

Diffuse Horizontal Irradiance DHI SMP11 W/m2

Ultraviolet Index UV CUV 5 W/m2

Ambient Temperature AT HMP155 oC
Wind Speed WS WindSonic1 m/s
Relative Humidity RH HMP155 %

Power Output PO ABB Uno 2.0 Inverter W

Before performing any analysis we pre-processed the raw data. In order to have
a standard daily schedule we kept for further analysis measurements taken from 07:30
to 17:00. This interval is also employed in the work and analysis of Muhammad et
al. [Muhammad Ehsan et al. 2017] and comprises most of the power generated by the
PV Plant. With a regular daily schedule we proceeded to verify eventual data quality
problems. In this step a few duplicated timestamps were removed. Furthermore, we
identified that in some days the datalogger responsible for data collection went stuck at a
constant value1. Values of these spurious readings were discarded.

The solarimetric station and PV Plant from which the data came from are located
at a laboratory. When maintenance or personal training is carried out the power inverter
is turned off, for safety reasons. Such events result in misleading readings, given that data
from the solarimetric station is correctly captured, while power output is fixed at zero,
since the power inverter is not operating. Such events were also identified and removed
from the dataset.

In order to reduce the size of the dataset we aggregated its timestamps
considering 30 minutes intervals, thus resulting in a total of 20 observations per day with
half an hour intervals (07:30, 08:00, ..., 16:30, 17:00). Each one of the 20 aggregated
values was obtained by averaging the values within ±15 minutes of its specified time.
Such transformation was performed in order to allow us to evaluate the performance of
the methods through the whole year period. After such pre-processing steps, we obtained
a total of 5,375 observations (timestamps).

To give a glimpse on how daily profiles may vary through the year, we depict
in Figure 1 illustrative examples of average daily profiles for the months of January and
June (20 points per line). One can see that the daily power output is, on average, higher
in January than in June (Figure 1a). The average daily profile considering irradiance
components (GHI, DNI, and DHI) for these two months are depicted in Figure 1b and
Figure 1c, considering the aggregates previously described. As expected, irradiance
values rise sharply in the morning and decay at noon.

1The person responsible for data collection confirmed these as spurious readings.
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(b) Irradiance (Jan.).
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(c) Irradiance (June).

Figure 1. Daily average profile curves for January and June.

We consider five different Feature Sets (FS) in our evaluation, namely: FS 1 (GHI,
DNI, DHI, UV, RH, AT and WS), FS 2 (GHI, DNI, DHI, UV and RH), FS 3 (UV, RH,
AT and WS), FS 4 (GHI, DNI and DHI) and FS 5 (GHI). The first set is composed by
all the measurements available from the solarimetric station. The second set is composed
by all the irradiance components alongside the two features with highest correlation with
Power Output. The third and fourth Feature Sets are built considering solely climatic and
irradiance information, respectively. The fifth set, which we adopt as a baseline, is based
solely on GHI data, which has the highest overall correlation with Power Output.

3.2. Methods

In this section we review the regression methods employed in the study. All methods,
except for MLP, were trained and evaluated using scikit-learn [Pedregosa et al. 2011].

MLP is a well-known feed-forward neural network [Haykin 1998]. It has the
ability to map non-linear relationships between input features and target. We employ
MLPs with a single hidden layer and different activation functions for the neurons on this
layer. Specifically, we considered {3, 5, 7, 9, 11} neurons in the hidden layer and Rectified
Linear Unit (ReLU) and Hyperbolic Tangent (tanh) as activation functions. Thus, we
obtained 10 configurations of MLPs for evaluation. Models were trained with the Adam
optimizer [Kingma and Ba 2014] with default parameters on Keras [Chollet et al. 2015].

The Support Vector Regression (SVR) method [Vapnik 1998] is a statistical
Machine Learning technique, which can be used to solve regression problems. We
considered different settings for the parameters C and kernel. The former is the
regularization parameter, for which we considered the values {1, 10, 50, 100, 1000}. For
the latter, we used the Radial Basis Function, Polynomial, and Linear kernels. Both
parameters have substantial impact on the model’s accuracy. For ε we considered its
default value (0.01). In total, 15 SVR configurations were evaluated.

k-Nearest Neighbors (kNN) is one of the simplest Machine Learning methods. We
used kNN with Euclidean distance, considered features normalized to have mean zero and
standard deviation one (z-score normalization). We considered different values of k, i.e.,
the number of neighbors: {3, 5, 7, 9, 11}, thus resulting in five different configurations for
evaluation. In order to obtain predictions, we consider the unweighted arithmetic average
of the neighbors target value.



Decision Trees (DTs) can be applied for both regression and classification
problems [Breiman et al. 1984]. In our experiments we adopted the Mean Squared
Error (MSE) as splitting criterion. Regarding its parameters, we assessed for the minimum
number of samples in a leaf node, for which we considered the values 5 and 10. This
parameter indirectly controls the depth of the final tree.

Linear Regression (LR) is the most conventional regression algorithm and we
adopt it here as a baseline for comparison. We employ LR in its most basic form,
i.e., without regularization or basis expansion. Since our dataset is composed of a
small number of features most of the commom problems encountered with vanilla linear
regression are avoided.

3.3. Methodology
In this work we take into account short term forecasting, more specifically,
we are interested in next day forecasting, which is a common goal in the
literature [Das et al. 2018, Raza et al. 2016]. In order to estimate the generalization
capability of each model, we adopt a non-anchored walk-forward validation
procedure [Kirkpatrick and Dahlquist 2006], that is, we perform training on a fixed size
window, then predict power output of the next day. The fixed size window then moves
one day ahead and the procedure is repeated until the end of the year (data) is reached.
With this approach models are built solely on past observations, which is a realistic
scenario. Moreover, given that the training window is not anchored (i.e., it has always
the same size) models can adapt and reflect seasonal changes. In our experiments, we
consider roughly 30 days for training (a fixed size window of 600 timestamps — 30 days
× 20 timestamps per day) then predicted the power output of the following day which, in
turn, is comprised of another 20 timestamps.

To assess the quality of the methods we used two well known regression error
metrics. Specifically, the Root Mean Square Error (RMSE) — Eq. (1) — and the
Coefficient of Determination also known as R2 — Eq. (2). In the aforementioned
equations yi accounts for the observed value of power production (power output) of the
i-th observation, ŷi is the predicted power production of the i-th observation, and y is the
average of power production considering all observations.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (1) R2 = 1−

n∑
i=1

(yi − ŷi)2

n∑
i=1

(yi − y)2
(2)

4. Results and Discussion
As we discussed in the previous section, different parameter configurations were
considered for each one of the methods under evaluation. In total 33 different
configurations (10 MLPs, 15 SVRs, 5 kNNs, 2 DT, and 1 LR) were evaluated within each
one of the 5 Feature Sets (FSs). Given the number of configurations under evaluation we
report the best results of each method in a particular Feature Set (according to its overall
RMSE). These results are presented in Table 2.

In the case of MLP, across all FSs, the best results were observed with 9 neurons
in the hidden layer and the tanh activation function. For SVR, in terms of kernel there was



no consensus among FSs, whereas for the regularization parameter, C = 1000, led to the
best results in all cases. Regarding kNN, the best results were achieved with k equal 7, 5,
9, 5, 11 for FSs 1 through 5, in that order. Finally, for DTs the best results were achieved
with minimum number of samples equal to 5 in FSs 1, 2, and 4 and 10 in the remaining.

Table 2. Best results obtained for each model within Feature Sets.

Model
FS 1 FS 2 FS 3 FS 4 FS 5

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

MLP 45.92 0.99 49.43 0.99 107.68 0.96 53.19 0.99 66.17 0.99
SVR 52.20 0.99 52.63 0.99 112.69 0.96 56.78 0.99 88.61 0.98
kNN 94.95 0.97 76.65 0.98 155.42 0.92 71.68 0.98 87.33 0.98
DT 65.47 0.99 64.81 0.99 122.47 0.95 63.31 0.99 89.93 0.98
LR 59.03 0.99 60.42 0.99 112.35 0.96 63.33 0.99 87.82 0.98

We highlight in bold the best overall results in terms of RMSE (which allows for a
better discrimination of the methods than R2) within each one of the FSs. In general, the
best results were obtained with MLP, followed by SVR. These results are in accordance
with Das et al. [Das et al. 2018]. Indeed, the best overall result was achieved with MLP,
when all features are taken into account (FS 1). In most of the cases, LR showed better
results than both kNN and DT. Regarding these two particular models, the former has the
worst results across most of the FSs.

In terms of Feature Sets, specifically, one can observe that the worst results were
obtained with FS 3, which is composed by UV, RH, AT, and WS. Although UV is clearly
correlated with output, this is the only Feature Set that does not includes any irradiance
feature in its composition (i.e., GHI, DHI, and DNI). Given that solar irradiance is one
of the main factors in photovoltaic generation, this seems to be a plausible/possible cause
for such a behavior. Indeed, for all the remaining FSs the errors are quite lower than for
FS 3. When considering the results obtained with MLP, SVR, and LR, the best results
were obtained with FS 1. Although FS 5 is composed solely by GHI (Global Horizontal
Irradiance), the highest correlated feature with output, improvements are observed when
additional features are taken into account in other Feature Sets.

In Figure 2 we depict individual errors obtained for each one of the best methods
within each Feature Set (these are the individual errors — per timestamp — summarized
in Table 2). One can observe that the final RMSE value is affected by outliers in all cases.
A careful analysis of the outliers revealed that some of them occur within days related with
reading problems (days that the datalogger went stuck at a particular value). Although the
spurious stuck at readings were removed (as discussed in Section 3.1), we believe that a
few adjacent readings may also be inaccurate, thus leading to these particular errors.

Overall, kNN was the method that produced the largest number of outliers. In
terms of variance, the best results were obtained with MLP and SVR in all Feature Sets,
but FS 3. Linear regression (LR) and Decision Tree (DT) produced fewer outliers than the
remaining methods, however, their 75th percentile was greater than those observed with
MLP and SVR in all cases.

In the sequel, we analyze the behavior of the different methods in more detail,
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Figure 2. Boxplots depicting the individual errors for each method and FS.

considering the best Feature Set in general, FS 1. First, we select the predictions from
four months: April, July, August, and December. For each month, we present expected
values and predictions for selected days in Figure 3. One can note that the lowest values
of Power Output occur at morning and evening. In December these values are higher than
April, given that in the Summer the sun rises earlier than in the Fall.

For April and December, all models obtained predictions close to the expected
values. For July and August the same does not hold, as most models had difficulties
predicting the power generated around noon. Considering July, LR was able to predict
correct values at this time, but suffered from bad predictions in the remaining of the
afternoon. These considerably bad predictions can be explained by the presence of clouds
and rain, which affect the measurements obtained by some of the sensors. In August, we
observe a similar phenomenon. The quantity of power generated around noon was the
hardest period to predict. As in the case of July, kNN was the method that had the worst
prediction errors at this period. This is frequent for kNN, the worst method overall.

To better understand the difficulties of all algorithms in predicting the power
output around noon on July 11 (upper right plot in Figure 3), we present in Figure 4
the values of each feature at that day (for all timestamps). One can note that, close
to 11:30, DNI values were zeroed due to a sensor measurement problem, which is
only reestablished after 15:30. Thus, all models that have their predictions influenced
by DNI had worst performance at this period, with kNN and SVR being the most
affected ones. Such an example shows the importance of robust methods for power output
forecasting in PV systems.
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Figure 3. Expected and predicted values for power output on different days.
Clockwise from top left corner: 18-04-27, 18-07-11, 18-12-12, and 18-08-28.

0

200

400

600

800

W
/m

²

GHI
DNI

DHI
UV

60

70

80

%

RH

07
:30

08
:30

09
:30

10
:30

11
:30

12
:30

13
:30

14
:30

15
:30

16
:30

1

2

3

4

m
/s

WS

07
:30

08
:30

09
:30

10
:30

11
:30

12
:30

13
:30

14
:30

15
:30

16
:30

10

12

14

16

18

°C

AT

Figure 4. Feature values (FS 1) for all timestamps of 18-07-11.



5. Conclusions

We presented a comparison of different regression methods for predicting the power
output of a Photovoltaic plant, considering only climatic and meteorological features.
All features were obtained by a solarimetric station located at the same site of the PV
plant. Given that we considered raw collected data, in a first step we performed pre-
processing to remove records with clear spurious measurements due to problems with the
datalogger. Our analysis considered daily data with aggregated in 30 minute intervals.
Models were built considering windows of past data spanning through 30 days and
evaluated for next day prediction.

Regarding methods, we assessed MLP, SVR, kNN, DT, and LR. The most
important parameters of each method were tuned, and the best result for each one was
selected for further evaluation. Our empirical analysis suggests that MLP and SVR are the
best methods for this prediction task. Despite the significant correlation observed between
a couple of features and Power Output, considerable improvements were obtained by
MLP and SVR over LR. Meanwhile, kNN and DT suffered most with the noisy nature of
the data from the sensors.

Considering the different feature sets, even though Global Horizontal
Irradiance (GHI) is highly correlated with power output, the use of additional features
demonstrated its value. Specifically, by using MLP with all features we obtained a
reduction of 30% on RMSE. This result indicates that a potential future line of work is the
aggregation of more meteorological/climate data to improve prediction. We also intend
to employ/investigate different models according to particular weather conditions (clean,
rainy, or cloudy) and seasons of the year.
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