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Abstract. This work presents an investigation on how to define Neu-
ral Networks (NN) architectures adopting a data-driven approach using
clustering to create sub-labels to facilitate the learning process and to
discover the number of neurons needed to compose the layers. We also
increase the depth of the model aiming to represent the samples bet-
ter, the more in-depth it flows into the model. We hypothesize that the
clustering process identifies sub-regions in the feature space in which
the samples belonging to the same cluster have strong similarities. We
used seven benchmark datasets to validate our hypothesis using 10-fold
cross validation 3 times. The proposed model increased the performance,
while never decreased it, with statistical significance considering the p-
value < 0.05 in comparison with a Multi-Layer Perceptron with a single
hidden layer with approximately the same number of parameters of the
architectures found by our approach.

Keywords: Neural networks · Data-driven architecture · Sub-labels ·
Clustering · Representation learning.

1 Introduction

Computational Intelligence studies adaptive mechanisms to facilitate intelligent
behavior in complex and dynamic environments. It is often applied in situations
where heuristics are insufficient to solve a problem associated with uncertainty or
stochastic behavior. Machine Learning is a branch of Computational Intelligence
that allows computers to learn by experience (data) without being explicitly pro-
grammed [3]. The research’s attention has grown due to the amount of available
data and the proliferation of technologies, such as Internet of Things and Big
Data [6]. Consequently, we have experienced the proposal of sophisticated models
to learn from datasets with a large number of examples.
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There are several types of Machine Learning algorithms. In Supervised Ma-
chine Learning, the algorithms during the training phase try to process inputs
X and create an association with known outputs Y . One of the most used fam-
ilies of algorithms to perform this task is Artificial Neural Networks (ANN) [5].
Several works investigate the automatic construction of ANN architectures. This
problem is known as Neural Architecture Search (NAS). The NAS approaches
aim to decrease human intervention during the modeling process of an ANN. It
offers mechanisms to propose ANN architecture automatically. However, most
of the strategies presented in the literature does not consider the characteristics
of the data involved in the problem to build the ANN architecture.

Among the strategies for solving the NAS problem, we observed the appli-
cation of global optimizers such as Genetic Algorithms (GA) [11]. We highlight
three works that use Genetic Algorithms and Reinforcement Learning to per-
form this task. The NeuroEvolution of Augmenting Topologies (NEAT) [14, 15]
uses GAs to find the structure and weights of ANNs, encoding these attributes
as part of the individual deployed in the evolutionary process. The strategy of
Reinforcement Learning was used in [16]. Despite the good results, they have
used 800 NVidia K-40 GPUs for 28 days, needing 22,400 GPU hours of pro-
cessing time. The same strategy was proposed in [17]. However, they used the
concept of transferability to allow learning from a simple dataset and applying
it to a more complex dataset. Again, the processing time is a big challenge.
They used 500 NVidia P100 GPUs for four days, totaling 2,000 GPU hours.
In order to explore the architecture space based on the current network and
reusing its weights, a Reinforcement Learning meta-controller was used to grow
the network depth/layer width in [1]. They used 5 GPUs during 2 days, training
450 networks. These methods can achieve reasonable results, but they are often
time-consuming.

In a different branch, we have the work [9] that focuses on searching for the
architecture composition progressively, starting from the simplest candidates to
the more complex ones. This proposal is based on Blocks constructing Cells that
will compose entire Networks. A Binary Particle Swarm Optimization (BPSO)
algorithm was used in [10] to define the architecture of an ANN that has no
regular layers. These proposal are interesting but does not explicitly take into
account the distribution information regarding the dataset. It is important to
observe this information since the model will use samples of the dataset to train
and the neurons should behave plausibly with respect to its inputs. For example,
the neurons should neither explode or vanish its activations for all the dataset
but have specific activation patterns for each label.

Even though the NAS has good results, these methods try several architec-
tures to find which one is the best through a search algorithm, often using several
GPUs for several hours. Differently from NAS approaches, in this work we inves-
tigate how to design a data-driven ANN Architecture using clustering to discover
the number of neurons of a given layer and iteratively increase the depth of this
ANN without the need to initializing and training many different architectures.
We only start with the inputs and apply our strategy to create the subsequent
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hidden and output layers. The layer that will be created is based on the current
data representation that this layer will have as inputs. We use the dataset distri-
bution in order to start with weights that activates more to specific labels and
less to all the other labels. We have focused on tabular datasets since several
real-world applications share this data representation. To investigate this prob-
lem, We have used benchmark datasets to evaluate our hypothesis. Our goals
are to infer (i) the width (number of neurons) through clustering of the feature
space to find sub-labels that share strong similarities, creating specific neurons
that activate to specific sub-labels; and (ii) the depth (number of layers) of an
ANN regarding the specificity of each dataset. The main idea concerns on each
layer representing the samples in a more straightforward manner to the next
ones. We aim to disentangle the representations into a space that is easier for
the classifier on the last layers of the model to recognize the patterns. We name
this process as Clustering for Data-driven Unraveling (DDU) Artificial Neural
Networks.

The remainder of this work was organized as follows. We present the back-
ground information in Section 2. We describe the proposed methodology to
data-driven evolve a ANN architecture in Section 3. We show the experimental
arrangement and the results in Section 4. Finally, we present the discussion,
conclusions, and future works in Section 5.

2 Our proposal

In this section, we present the proposal’s details, comprising the creation of
sub-labels and the definition of the layers.

Since some samples of a specific label can lay near the same region while
other samples of the same label may be in other regions, it may harm the learn-
ing process. We have used clustering techniques to find the essential regions of
interest. The clustering process aims to create sub-labels based on the proposal
presented in [4]. The primary goal is to enhance the learning process. We use the
clusters to map each one of the sub-labels to a single neuron in the forward layer
and compose the entire layer. We add layers composed of neurons from cluster-
ing in an iterative manner. Fig. 1 presents an example of a possible data-driven
defined architecture of a ANN through the processing of our proposal.

The width of each layer is defined by the number of neurons that compose a
specific layer. We find the number of layers by applying the clustering process. On
the other hand, the depth of the DDU ANN is the number of layers. The number
of layers is also determined automatically in the appending new layers process.
The appending process is applied iteratively until we reach a stop criterion. Fig. 2
shows the steps that compose our proposal.

Given the inputs xi ∈ X and the outputs yi ∈ Y , we use GMMs (Gaussian
Mixture Models) clustering algorithm to create sub-labels as shown in [4] using
the X as inputs. This process create the clusters regarding each label separately
and apply the prediction of each created cluster to all the data in order to
calculate the scores discussed in the next paragraph. We generate GMMs with
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Fig. 1. Example of architecture found by the Data-driven Unraveling technique. The
inputs are the features of the samples, while the outputs are its labels.
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Fig. 2. Diagram of the proposed methodology.

the number of clusters in [2, 3, 4, 5] repeating the process for 2 times, totaling 8
GMMs generation. We decided to deploy the GMM technique since it presented
the highest Calinski-Harabasz score [2] when compared to Silhouette Score for
related. We also expect that the samples of the same label could converge to the
same spatial region as the samples are processed by layers and we believe that
it could be approximated by Gaussian distributions due to the Central Limit
Theorem.

We defined purity and belongingness metrics, combining them into a single
score assigned to each cluster. Since each cluster is assigned to a specific label
or sub-label (responsible label), the score is related to that specific responsible
label inside the cluster found. Purity is defined as the percentage of a specific
label regarding all the elements inside this cluster. Belongingness is the percent-
age of a specific label within the cluster regarding all samples of this label. For
each responsible label, we assign the cluster with maximum score. The rationale
relies on the idea that the maximum score value returns all the samples of a sin-
gle label (belongingness=100%) in a cohesive region without other labels inside
(purity=100%). The score is minimum when it has a low number of an assigned
label inside this cluster, regarding all the feature space (low belongingness), and
the cluster has a significant number of samples not belonging to the assigned
responsible label (low purity). As we need to define a single indicator in our
methodology to assess the clustering process, we decided to combine these two
metrics as follows:

score = kappa ∗ purity + (1− kappa) ∗ belongingness (1)

kappa is automatically calculated using the following strategy to give the same
importance to the two metrics:
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kappa = kp (2)

kb = (1− kp) (3)

kp ∗ p = kb ∗ b (4)

where kp is the kappa regarding the purity and kb is the kappa regarding the
belongingness, b is the average belongingness and p is the average purity for each
label.

It is easy to observe that Eq. (4) can be rewritten as

kappa = 1− 1

( b
p + 1)

(5)

After defining the sub-labels, we evaluate if the sublabeled scenario is better
than the original one. For each sub-label, we evaluate if the average score regard-
ing the clusters with this responsible sub-label has increased compared to the
averaged score of the clusters responsible for its original label that derived the
sub-label. In this process, we may have chosen some, all, or none of the created
sub-labels.

If we have chosen some sub-labels, we adjust the Y to use the proposed sub-
labels, treating them as different labels because it has shown different features
to be considered for the same class. By doing this, we believe we can create more
concise groups of samples, facilitating the classifier’s learning process.

After the generation of possible sub-labels, we apply the GMMs clustering
algorithm with the number of clusters in [L,L + 1, L + 2, ...L + 7] for 2 times,
totaling 16 GMMs generation. We analyze each one of the clusters independently
of the GMM generation process. We calculate their scores and assign their re-
sponsible labels. Then, we sort them, for each label, from the highest to lowest
score. After this, for each label (or sub-label), we select the clusters until the
intersection of the elements of the responsible label inside the specific cluster -
we save the indexes of the responsible labels handled by each cluster - is less
than 85% of the union of the responsible labels already retained by the clusters
already chosen for this specific label (or sub-label).

Each one of the retained clusters is mapped into a neuron and pre-trained
for 5 epochs with a higher learning rate of 0.01 trying to activate 1 for the re-
sponsible label elements inside this cluster and 0 otherwise. Our goal is to make
this neuron trigger specifically for activations of this label (or sub-label) when
the model processes a sample near that region of clustering. So we applied a
traditional SGD training with this modified outputs. This process finishes with
a layer created based on the clusters and the weights pre-trained to activate in
the responsible labels. We append this layer with a SELU [8] function activation
since it appears to self-normalize the network, into the model, and append a tem-
porary output layer with the number of labels of the original problem together
with a LogSoftmax activation.
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We train the model for 300 epochs and select the model with the lowest
validation loss. If the global loss in this validation set decreases, we reset the
patience parameter and do the same process to add another layer using the
activations of the last layer (before the temporary output) as inputs to the new
layer. If the loss increases, we increment the patience counter and stops the depth
growing when the patience counter reaches 3.

We present the pseudo-code describing the algorithm to perform the DDU
method in Algorithm 1.

Algorithm 1 Algorithm for DDU

Require: X, Y
1: C = []
2: patience = 0
3: while patience < 3 do
4: current y = Y
5: Y subs = generate sublabels(X)
6: if better performance(Y subs) then
7: current y = Y subs
8: end if
9: clusters = create GMMs(X)

10: calculate scores(clusters, Y subs)
11: sort(clusters) // from highest to lowest score
12: for label in labels: do
13: for cluster in clusters[label]: do
14: if responsible label intersection < 85% then
15: C.append(cluster)
16: end if
17: end for
18: end for
19: Pretrain neurons regarding C
20: Append temporary output
21: Train entire model for 300 epochs
22: loss = model(validation split)
23: if loss decreased then
24: best model = model
25: patience = 0
26: else
27: patience++
28: end if
29: X = model.represent(X)
30: end while
31: return best model.
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3 Experiments and Results

We select seven benchmark datasets to validate our proposal. We present the
datasets in Table 1.

Table 1. Datasets used as benchmarks

Dataset # Instances # Features # Labels

Glass 214 9 6

Ionosphere 315 34 2

Iris 150 4 3

Pima 768 8 2

Satimage 6430 36 6

Tic-tac-toe 958 9 2

Vehicle 846 18 4

We have used a Stratified 10-Fold and repeated it three times, resulting in
30 trials. In the process of the Stratified 10-fold, we divided the entire dataset
into ten mutually exclusive splits. We maintained the proportion of labels in
each subset. The first run uses the first split for test, whereas the other nine
are used for Train/Validation. In the second run, the split number 2 is used
for test, whereas the other nine are used for train/Validation. We repeat the
process until the last run uses the split number 10 for test and the first nine
splits are used for train/Validation. We also have saved the indexes that were
presented in each fold to be used during the comparison with a different model:
Multilayer Perceptrons (MLPs) with only one hidden layer with the number of
weights approximately the same of the architecture generated by our proposal,
regarding the samples presented in that arrangement.

We have used the PyTorch [12] and Scikit-Learn [13] libraries to implement
our proposal. We have chosen the ADAM optimizer [7] with a learning rate of
0.001 for the training of the entire model with the Negative Log-likelihood loss
and 0.1 for the pre-training of each neuron given their related clusters with the
Mean Squared Error loss.

Table 2 compares the results of the proposed technique (DDU) and MLPs
with only one hidden layer with the number of weights - and not the number of
neurons - approximately equal to each one of the architectures created by the
DDU. We have used this strategy to compare the neuron arrangement’s impor-
tance in different layers, with approximately the same number of parameters. For
each dataset, the average accuracy of 30 runs for each set (train, validation, and
test) is given, and its standard deviation appears between parenthesis. We also
have applied the Wilcoxon statistical test between the two techniques comparing
the same dataset, highlighting the text where it presented a p− value < 0.05.

We split the data into Train, Validation and Test sets, and we expect these
three splits to share the same sample distribution. The Validation Set is often
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Table 2. Results in Train, Validation and Test sets regarding DDU and MLP models
for each dataset

Model Dataset Train Validation Test

DDU pima 77.99 (0.01) + 78.48 (0.02) 76.74 (0.03)

MLP pima 78.07 (0.01) 76.71 (0.03) 76.39 (0.02)

DDU vehicle + 84.12 (0.02) + 80.98 (0.03) + 80.90 (0.04)

MLP vehicle 82.81 (0.01) 79.34 (0.02) 79.40 (0.03)

DDU glass 66.88 (0.05) + 65.01 (0.05) 62.16 (0.10)

MLP glass 66.09 (0.03) 60.83 (0.06) 62.33 (0.09)

DDU tic-tac-toe 82.33 (0.06) 77.89 (0.06) 67.14 (0.11)

MLP tic-tac-toe 82.46 (0.04) 77.98 (0.05) 70.79 (0.10)

DDU iris 96.04 (0.02) 97.16 (0.03) 95.33 (0.06)

MLP iris + 97.36 (0.01) 95.98 (0.03) 95.56 (0.06)

DDU satimage + 91.16 (0.01) + 89.52 (0.01) + 88.86 (0.02)

MLP satimage 89.58 (0.01) 88.17 (0.01) 88.06 (0.01)

DDU ionosphere 93.50 (0.02) + 89.37 (0.03) 84.82 (0.08)

MLP ionosphere 93.70 (0.01) 88.06 (0.03) 85.96 (0.08)

used as a proxy to decide when to stop the learning process of a model because
we assume that it would share the distribution/behavior of the unseen test data.
Our technique presented better accuracies in the Validation Set, which was not
necessarily reflected in the Test Set. It maybe has occurred due to our process
of K-Fold splitting. As we have used the Stratified K-Fold, we expected that
the train, validation and test splits should have approximately the same fea-
ture distribution. Still, it probably has not happened since it guarantees the
same percentage of labels in each split, but each split may still not be statisti-
cally equivalent in the feature space distribution. Also, the split was based on
the original labels. That probably could generate completely different sub-labels
during the process once the feature space distribution information was not used
at the splitting process, as it is based solely on the output labels. Considering
that in each trial, the same indexes were presented to both techniques, the DDU
appears to have a better knowledge extraction since the validation accuracy im-
proved and is statistically significant, and the training accuracy not necessarily
accompanied. Maybe a better way to split the data should be a stratification
based in regions that each sample occupies in the feature space. In this way,
inside the same region/cluster, we should stratify the samples into the K splits.

As one can see in Table 3, the DDU generated some architectures, including
ones with more than one hidden layer, that show better accuracies in different
splits. It is worth remembering that the number of neurons of the MLPs was
calculated to match the number of parameters (weights) found by DDU in each
run. As it shows, meaning that not only the learning capacity (stored in weights)
matters but also the arrangement of neurons in different layers influences the
results.
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The architectures with the minimum, median, and maximum number of neu-
rons/layers generated for each dataset by the DDU are presented in Table 3.
The column Architecture shows the complete NN architecture starting from
the input layer to the output layer. The column Weights presents the number
of weights existent in that specific architecture. The columns Train, Val. and
Test show the accuracy for each split.

Table 3. Minimum, Median and Maximum number of weights in found Architectures

Dataset Architecture Weights Train Val. Test

glass [9 9 6] 216 64,58 60,42 50,00

glass [9 12 12 6] 405 67,36 65,31 71,43

glass [9 11 14 16 13 13 10 6] 1125 72,92 73,47 71,43

ionosphere [34 2 3 2] 1236 92,83 88,61 80,00

ionosphere [34 5 4 2] 1354 92,41 88,61 94,29

ionosphere [34 5 8 6 2 6 3 5 2] 1481 96,20 89,87 82,86

iris [4 3 3] 37 97,03 97,06 93,33

iris [4 4 5 3] 67 96,04 97,06 100,00

iris [4 9 6 7 6 5 3] 235 97,03 100,00 100,00

pima [8 2 2] 84 77,22 78,61 76,62

pima [8 5 3 4 3 5 2] 168 77,22 76,88 79,22

pima [8 6 7 5 5 2 7 5 3 4 2] 308 76,88 79,77 77,63

satimage [36 10 11 6] 1832 89,91 88,80 88,02

satimage [36 13 12 15 6] 2190 90,90 89,15 88,18

satimage [36 11 12 15 13 14 18 13 13 12 13 12 13 12 11 6] 4014 93,32 90,81 90,67

tic-tac-toe [9 5 8 2] 182 73,99 75,00 71,88

tic-tac-toe [9 7 6 6 5 7 3 2] 314 87,62 82,41 72,92

tic-tac-toe [9 8 8 3 3 5 5 5 5 3 4 4 4 3 4 2] 431 88,08 86,57 47,92

vehicle [18 12 4] 588 79,82 78,53 78,82

vehicle [18 13 12 4] 762 82,84 81,15 86,90

vehicle [18 12 15 9 8 4] 959 83,19 81,15 89,29

We highlight that the generated architectures do not necessarily create shapes
that always increase or decrease the number of hidden neurons. It might increase,
decrease, and increase again if the representation became locally worse at a given
depth. The layers near the output tend to have a low number of hidden neurons,
probably indicating that less resource is needed to treat the problem at that
depth. It happens since representations of the samples were facilitated by the
possible disentanglement of the feature space done by all the previous layers.

Regarding the Validation split, the accuracy increased as the architecture
used more weights and/or layers in most cases. It occurs since the samples
are processed through the layers, thus probably creating better representations
which the final output layer can classify with fewer efforts. On the other hand,
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the layers near the input tend to have a larger number of neurons due to the
high entanglement of the features at the early stages.

4 Conclusions

In this paper, we presented a preliminary study on how to define a Data-Driven
Neural Network Architecture without creating several Networks. To assess this,
we have used GMMs clustering to define each layer’s width and iteratively ap-
pending layers, increasing depth, aiming to find better and possibly disentangled
representations, easing the model learning process.

As presented in Table 2, the performance has increased statistically (Wilcoxon
significance test with alpha = 0.05) on two occasions in the Test split while never
decreased it. It also corroborates with our initial hypothesis that clustering the
feature space may reveal the number of necessary neurons representing the sam-
ples in a more organized way. The quantity of neurons seems correlated with
the high non-linearity entanglement at the first layers and with the possible low
entanglement at the last layers of the model. If we consider the Validation split,
that is considered as a proxy to the accuracy in Test split, our approach was
better in 5 cases out of 7.

Our proposal has shown some exciting results, and our hypothesis could be
evaluated in these initial experiments. For future works, we intend to assess
the technique in more benchmark datasets and adapt the method to work with
datasets usually used in Deep Learning tasks such as MNIST and CIFAR10. We
also want to perform more evaluations using the data-driven found architectures
to evaluate if a pruning process would perform successfully or if it would fail,
leading us to believe that the DDU is capable of creating effective architectures
with a small number of useless neurons/weights. Another valid investigation is to
split the data stratified by region and by labels inside each region. The evaluation
of other Clustering Techniques and strategies to retain the cluster may impact
the performances. Also, more tests on hyperparameters values need to be done
to have more robust conclusions about its impact on the learning process. We
also plan to compare the technique with other approaches, such as the NEAT.
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