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Abstract. This work proposes a neural network architecture that learns policies
for multiple agent classes in a heterogeneous multi-agent reinforcement setting.
The proposed network uses directed labeled graph representations for states,
encodes feature vectors of different sizes for different entity classes, uses rela-
tional graph convolution layers to model different communication channels be-
tween entity types and learns distinct policies for different agent classes, sharing
parameters wherever possible. Results have shown that specializing the commu-
nication channels between entity classes is a promising step to achieve higher
performance in environments composed of heterogeneous entities.

1. Introduction
In recent years, multi-agent deep reinforcement learning has emerged as an active area
of research. Alongside it, geometric deep learning enables neural networks to per-
form supervised, semi-supervised and unsupervised learning on data structured as graphs
and manifolds. Combining both fields, a new paradigm of multi-agent reinforcement
learning has emerged, in which agents learn to communicate [Sukhbaatar et al. 2016,
Peng et al. 2017] by using graph convolution layers as message passing mechanisms
[Gilmer et al. 2017].

Until now, new work has focused in the approximation of policies for homoge-
neous agents, i.e. agents that share the same action set and policy [Agarwal et al. 2019,
Malysheva et al. 2019, Jiang et al. 2020], or in the specialization of agents for a limited
number of simple actions [Wang et al. 2018a]. However, no work has explicitly studied
the potential of creating neural network architectures for environments with heteroge-
neous agents, capable of specializing the approximated policies according to an agent’s
class or role in the environment. Such environments may contain heterogeneous teams of
agents (e.g. drones and terrestrial robots) or homogeneous teams of agents with the need
for specialized policies (e.g. the RoboCup Soccer Leagues).

In this work, we tackle the challenge of heterogeneous multi-agent reinforcement
learning by proposing a neural network architecture that employs information regarding
the classes of agents and environment entities to model specialized communication mech-
anisms, as well as harvest the information regarding agent classes in a heterogeneous
multi-agent environment to specialize their communication through the use of inter-class
relational graph convolutions.

The text is organized as follows: section 2 presents the theoretical background
in reinforcement learning and graph neural networks; section 3 presents related work;



in section 4, we introduce the heterogeneous multi-agent graph network, our proposed
neural network architecture; sections 5 and 6 present our experiments and results in the
StarCraft Multi-Agent Challenge environments and section 7 concludes the paper.

2. Research Background

Reinforcement learning techniques solve tasks that are formalized as Markov Decision
Processes (MDPs). An MDP is a tuple 〈S,A, P,R〉, where S is the set of possible states,
A the set of actions an agent can perform, P : S×A×S a state transition function, where
P (s, a, s′) maps the probability of an agent observing state s′ after executing action a in
state s. R : S ×A→ R is a reward function and 0 ≤ γ < 1 is a discount factor for future
rewards, compared to present ones.

Many authors [Littman 1994, Bowling and Veloso 2000, Busoniu et al. 2008]
propose the modeling of multi-agent systems as stochastic games, which can be con-
sidered a generalization of MDPs. In a stochastic game, the set of actions becomes
A = A1×A2× . . .×Am from m agents; the transition function becomes conditioned on
the joint action of all agents, P : S × A1 × A2 × . . .× Am × S; and the reward function
may be different for each agent.

Furthermore, earlier works that have represented MDPs as sets of ob-
jects belonging to multiple classes include relational MDPs [Guestrin et al. 2003],
object-oriented MDPs (OO-MDPs) [Wasser et al. 2008] and multi-agent OO-MDPS
[da Silva et al. 2019].

2.1. Graph Neural Networks

In the same way that successful neural network architectures are biased with relation to
the underlying structure of their input data (e.g. convolutional neural networks for data
with spatial relations and recurrent neural networks for sequential data), the existence
of many kinds of data that can be naturally represented as graphs, such as road maps,
academic citations [Kipf and Welling 2017] and molecules [Duvenaud et al. 2015], have
prompted the creation of neural network architectures specialized in dealing with graphs.

A graph G is composed of a non-empty set of nodes or vertices, denoted as V,
and a set of edges, denoted as E. Each edge e ∈ E connects a pair of (not necessarily
distinct) nodes [Bondy and Murty 2008]. When dealing with graphs for the purposes of
machine learning, each node, edge and the graph itself may possess features, stored in
vectors [Battaglia et al. 2018]. ~vi, ~ej and ~u are the attribute vectors of node i, edge j and
graph G, respectively.

For this work, a graph is defined as a tuple G = (V,E), where vertices in V have
features vectors and E is a set of arcs (directed edges) which do not have features.

In its most essential form [Gori et al. 2005, Scarselli et al. 2009a,
Scarselli et al. 2009b], a graph neural network allows each node i ∈ V in an input
graph to aggregate information from its in-neighbors N−(i), an operation called message
passing. Message passing can be expressed generically as

~ui = Aggj∈N−
(i)

(
f (l)

(
~v

(l−1)
i , ~v

(l−1)
j , ~e(j,i)

))
,



where ~v (l−1)
i is the feature vector of node i in layer l−1 of the network, ~e(j,i) is the feature

vector of edge e(i,j), f is a parametric transition function that takes into account the state
of node i and its in-neighbors, and Agg is a permutation-invariant aggregation function,
such as average, max or sum.

After the message passing step, the vector of aggregated information ~ui is used to
generate the output of node i for layer l using a parameterized update or output function
g,

~v
(l)
i = g(l)

(
~v

(l−1)
i , ~ui

)
.

Although each node only aggregates information from its in-neighbors, its output
can still be influenced by nodes at greater distances by incorporating multiple layers with
the aforementioned steps, achieving what can be compared to multi-hop communication.

3. Related Work

Works that directly represent multi-agent systems as graphs of agents include DGN
[Jiang et al. 2020], MAGNet [Malysheva et al. 2019], NerveNet [Wang et al. 2018b] and
[Agarwal 2019]. DGN [Jiang et al. 2020] introduced the use of graph convolutional lay-
ers for inter-agent communication, as well techniques to stabilize training when using
these convolutions in RL tasks. The work of [Agarwal 2019] was the first to add non-
agent entities to graphs. MAGNet introduces a graph generation layer, which generates
the adjacency matrix between agents. NerveNet [Wang et al. 2018a] is the first work that
tackles the problem of agents of multiple types but, since they work with graphs of fixed
sizes and all agents have a single real action, the network does not specialize to these
different types of agents.

Preceding work that can be viewed as inter-agent communication with GNNs in-
clude CommNet [Sukhbaatar et al. 2016] and BiCNet [Peng et al. 2017]. More recent
work that also focuses on modulating when agents communicate with each other include
ATOC [Jiang and Lu 2018] and TarMAC [Das et al. 2019].

This work differs from previous ones by making use of node class information
both as a means to specialize communication between node classes as well as for learning
a centralized policy for multiple agents of the same class.

4. Heterogeneous Multi-agent Graph Q-Network

In this work, states are represented as directed labeled graphs, in which nodes repre-
sent either agents or environment entities; arcs represent communication channels ei-
ther among agents or between an agent and an environment entity; node labels represent
agents/entities classes and edge labels represent specialized communication channels. In
practical settings, the existence of an arc between a node v and an agent z may be related
to the z’s capability of observing v and an arc from agent z1 to agent z2 indicate an open
communication line from z1 to z2.

For a graph G, each node v ∈ V(G) is associated with a node class c ∈ C, whereC
is the set of node classes. The class of a node v can be accessed through a function C(v).
A subset Z of C contains agent classes, i.e. classes pertaining solely to agent nodes.
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Figure 1. A multi-agent system represented as a graph.

The class of a node determines the number of state variables used to describe that
node. Furthermore, the class of an agent z determines its action set AC(z), as well as its
policy πC(z). In our work, arcs are used to encode relations between node classes. More
specifically, an arc labeled (n,m) represents a relation between an agent of class n with
another node of class m.

Figure 1 exemplifies a graph with three agents and five environment entities, in
which agent nodes aggregate information from their neighbors. In the figure, v(j)i repre-
sents node v with index i and class j. Darker nodes represent agents, while lighter nodes
represent other environment objects encoded in the graph state.

4.1. Neural Network Architecture

The proposed neural network architecture, denominated Heterogeneous Multi-Agent
Graph Q-Network (HMAGQ-Net), is composed of three modules: an encoding module,
a communication module and an action selection module. The modules are applied in
sequence to the input data and the model is capable of being trained end-to-end. The full
network architecture is presented in figure 2 and explained below.

4.1.1. Encoding

In order to deal with the varying number and meaning of state variables that compose
each node class, we introduce an encoding function φc for each c ∈ C, which receives
as input the vector ~v ∈ RdC(v) containing a node’s description, and outputs an encoded
vector φc(~v) ∈ Rm, where m is a common output size for the encoding functions of all
classes. In this work, we explore using multi-layer perceptrons as implementations of φ.

4.1.2. Communication

In the communication layer, each agent node z aggregates information from its set of
in-neighbors nodes N−(z). In HMAGQ-Net, we employ relational graph convolutions
(RGCN) [Schlichtkrull et al. 2018] to allow for specialization of the message passing



mechanism. In an RGCN layer, the feature vector of node i in layer l + 1 is given by
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where r represents the index of a relation between nodes i and j. In this work, the set of
relations is defined as all possible pairs (c1, c2), c1 ∈ Z, c2 ∈ C (see arc labels in figure
1).

Regularization in RGCN is achieved by decomposing parameter matrix W
(l)
r into

B basis transformations V and coefficient vectors a,

W (l)
r =

B∑
b=1

~a
(l)
rb V

(l)
b .

In this way, all relations r ∈ R share the same set of basis matrices, while coefficient
vectors depend on r. In our work, the number of relations is |R| = |Z| × |C|, as each
agent class models a specialized communication channel with all other node classes.

4.1.3. Action selection

AfterK layers of graph convolutions, the final feature vectors of the agent nodes are taken
as their individual observations of the graph. We introduce a function Qc for each agent
class c ∈ Z, which receives the observation oz of an agent z of class c as input and outputs
a vector of size |Ac|, corresponding to the observation-action values for agent z.

Optionally, the concatenation of the feature vectors generated by all graph convo-
lution layers may be taken as the final observation for each agent [Jiang et al. 2020], an
alternative named in the experiments as “full receptive field” and displayed as red arrows
in figure 2.

4.2. Training stabilization
We employ both a policy network and a target network, with the same topology. The
target network is responsible for generating stable targets and is updated with a copy of
the parameters of the policy network after a fixed number of time steps. The parameters
of the policy network are optimized during every step of the environment with a batch of
transitions sampled from a replay buffer.

To speed up training, proportional prioritized experience replay
[Schaul et al. 2015] was implemented, in which each transition of the replay buffer
maintains a tuple 〈s,~a, s′, ~r〉, where s and s′ are states represented as graphs, ~a are the
actions selected by all agents and ~r are the rewards observed by each agent.

The loss function is given by

J(θ) =
∑
c∈Z

1

|Z|
∑
z∈c

(ri + γmax
a′

Qc(s, o
′
z; θ
−)−Qc(oz, az; θ))

2,

where Z represents all agent classes, z is a single agent, θ are the parameters of the policy
network and θ− are the parameters of the target network.
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Table 1. Hyperparameters used in the training setting

Training steps 106

θ̂ update interval 250
Network learning rate 2.5 ∗ 10−4

L2 regularization coef. 10−5

TRR coef. 0.01
RL discount factor γ 0.99

εmax 0.95
εmin 0.1

Proportional PER α 0.6
Proportional PER β 0.4

5. Experiments

The proposed model was tested in the StarCraft Multi-Agent Challenge (SMAC) domain
[Samvelyan et al. 2019], a collection of maps for the StarCraft II Learning Environment
focused in multi-agent tasks. In the maps, n units from the player team are individually
controlled in order to achieve victory in a battle scenario against m units from the ad-
versary team. Each unit belongs to one of multiple classes, which may be described by
different state variables and have different action sets and optimal policies. In each of the
maps, each node class possesses between 4 and 6 features. Agent classes have 4 move-
ment actions, m attack actions and 1 no-op action for incapacitated units (all discrete).
Since units have different behavior (movement speed, attack range) it is expected that
learning different policies for each unit type will be beneficial for the player team.

In all tests, each network φ in the encoding layer was an MLP with two hidden lay-
ers of 128 neurons and an output encoding of 64 values. The communication module was
composed of 4 relational layers, with the first layer having an input vector of 64 values,
the last layer having an output vector of 64 values, and all hidden connections being com-
posed of vectors of 128 values. The relational module was tested against an attentional
communication module composed of graph attention layers [Veličković et al. 2018]. The
attention layers worked with 4 attention heads, whose output was concatenated at the end
of each layer. Finally, the Q networks for agent classes were MLPs with 64 values in the
input layer, two hidden layers with 128 neurons and output vector size equal to the num-
ber of actions of each agent class. For all modules, the sigmoid nonlinearity was used, as
well as the Adam optimizer. Hyperparameters are provided in table 1.

Additional experiments were performed to evaluate the performance of using the
full receptive field (FRF) as the final agent observations; giving the agents the ability to
communicate by creating arcs between them, regardless of distance (full agent communi-
cation, FAC) and the use of temporal relation regularization in the attentional model our
proposal was tested against (TRR, [Jiang et al. 2020]).

Experiments were performed in a mix hardware environment, a computer
equipped with an Nvidia GTX 1070 and a server equipped with an Nvidia V100. Each
run took an average time of 70 hours to complete.



Table 2. Results of applying HMAGQ-Net on the 2s3z map of the SMAC domain
under different configurations. FRF = full receptive field. FAC = full agent
communication. TRR = temporal relation regularization.

Mean n. steps Mean reward
Comms module FRF FAC TRR All Last 10% All Last 10%

RGCN X X 77.66 82.18 4.69 4.79
RGCN X 78.65 83.62 3.82 3.77
RGCN 76.85 81.93 4.24 4.30
GAT X X X 70.63 75.10 3.85 3.86
GAT X X 77.20 82.13 3.53 3.47
GAT X X 79.41 84.59 3.97 3.99
GAT 77.21 82.29 3.98 3.99

Random baseline 52.155 2.222

6. Results
Table 2 displays the results of the different trained models. Two values were taken as
measures of performance for the agent team: final episode reward and number of steps
the agent team remained alive. In the SMAC environments, agents with larger rewards
were able to deal more damage to the opponent teams, while longer episodes indicate
agents that were able to survive for longer.

When tested against a random baseline (a group of agents which only take random
actions), all the trained models had superior performance in both measures. The two
models that accumulated the most average reward by episode employed RGCN layers,
while the model that remained alive for the most number of steps was a GAT model.

Overall, networks that employed full-agent communication (FAC) achieved a
higher reward than networks that did not. However, it is hard to observe better perfor-
mance of agents that received the full receptive field (FRF) of the communication layers
as their observations or used TRR in their loss function. This may be due to the fact that
these techniques were first proposed to solve the simpler predator-prey environment, with
homogeneous agents [Jiang et al. 2020].

Figure 3 presents the same measures throughout the training. Since the measures
were noisy, we employed exponential smoothing to better visualize the trend lines. It can
be seen from the top graph that all models tended to converge to the same number of
steps alive, while achieving different final rewards. It can also be seen that the two RGCN
models that accumulated the most reward dominated all other models in that measure
through most of the training time.

7. Conclusion
This work presented the Heterogeneous Multi-agent Graph Q-Network, a neural network
architecture that processes environment states represented as directed labeled graphs and
employs relational graph convolution layers to achieve specialized communication be-
tween agents of heterogeneous classes, as well as multiple encoding networks to normal-
ize entity representation and multiple action networks to learn individual policies for each
agent class.
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Results have shown that specializing the communication channels between entity
classes is a promising step to achieve higher performance in environments composed
of heterogeneous entities. In future work, we intend to test HMAGQ-Net on multiple
environments with different number of agents and agent classes; isolate the contribution
of learning policies for agent classes by testing variants which learn a single policy for all
agents and individual policies for each agent; and propose an action module trained via
policy gradient.
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