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Abstract. Focal cortical dysplasia (FCD) is a local malformation of the 

cortex, the main cause of refractory epilepsy in childhood and one of the most 

common causes in adults. The surgery decision and planning depend on the 

FCD localization. Although recent studies have successfully detected FCD 

through artificial intelligence, no study investigates the relevance and 

prevalence of cortical features on FCD identification and the performance of 

different machine learning techniques. In this study, the proposed method 

constructed a voxel-based set of features, e.g., texture measure, border 

definition, cortical thickness. 

Resumo. A displasia cortical focal (CDF) é uma malformação local do córtex, 

a principal causa de epilepsia refratária na infância e uma das causas mais 

comuns em adultos. A decisão e o planejamento da cirurgia dependem da 

localização do FCD. Embora estudos recentes tenham detectado com sucesso 

o FCD por meio da inteligência artificial, nenhum estudo investiga a 

relevância e a prevalência de características corticais na identificação do 

FCD e no desempenho de diferentes técnicas de aprendizado de máquina. 

Neste estudo, o método proposto construiu um conjunto de recursos baseados 

em voxel, por exemplo, medida de textura, definição de borda, espessura 

cortical. 

1. Introduction 

Focal cortical dysplasia (FCD) is the prevalent cause of refractory epilepsy in children 

and one of the primary causes of such epilepsy in adults (Krsek et al., 2008). Refractory 

epilepsy is a condition in which the patients are irresponsive to antiepileptic drugs, 

affecting approximately 30% of epilepsy patients. The reoccurrence of seizures may 

cause irreversible damage to brain development and quality of life (Roy et al., 2011; 

Sheppard & Lippé, 2012).  

In the case of FCD epilepsy, the removal or disconnection of the lesion region, 

which originates the abnormal electrical discharges, may prevent or lower the 

occurrence of new epileptic seizures. For that reason, identifying lesion location and its 

extension is essential to guarantee a favorable surgery outcome. 



  

However, this task is often not easy. FCD defines a highly heterogeneous group 

of lesions, with different clinical, histological and medical images characterization, and 

even different surgical responses (Colombo et al., 2003; Fauser et al., 2004; Francione 

et al., 2003; Hildebrandt et al., 2005; Krsek et al., 2008). 

The International League Against Epilepsy (ILAE) has a definition of 

classifications on the various types of FCD (Blümcke, Thom, & Aronica, 2011) and 

guidelines for clinical (Fisher et al., 2014), surgical (Blümcke et al., 2016; Fisher et al., 

2017). However, there are not many quantitative image characterization studies and 

reports. 

FCD localization may be a hard task due to the highly heterogeneous feature, 

often demanding the use of numerous techniques and protocols, i.e., structural and 

functional tomography, scalp, and depth electroencephalogram. In recent years, MRI 

analyses have become an essential factor for clinical decisions (Ramli, Rahmat, Lim, & 

Tan, 2015). The use of automatic methods to assist identification of FCDs show 

promising results (Kini, Gee, & Litt, 2016), but is not yet widespread due to non-

intuitive interfaces and lack of availability of proposed methods (Duncan et al., 2016). 

Several approaches are possible when using automated computational 

algorithms to assist FCD segmentation (Adler et al., 2017; Ahmed et al., 2015; Bergo & 

Falcao, 2008; Cantor-Rivera, Khan, Goubran, Mirsattari, & Peters, 2015; Hong et al., 

2014) or to create maps to enhance the contrast of FCD lesions for manual segmentation 

(Antel et al., 2003; Bernasconi et al., 2001; Huppertz, 2013). In most cases, results from 

these studies are reported without specific quantitative details, open Datasets, or even 

open-source codes provided, handicapping further development and clinical testing of 

proposed methods. 

It is necessary sharing source codes for FCD detection methods over the 

scientific communities to boost the use of automatic methods for assisting treatment in 

epilepsy patients with FCD, and for those methods to be developed and distributed in 

ways that facilitate use by different institutions and professionals (Duncan et al., 2016). 

Furthermore, the creation of a Database with computer extracted features and 

terminology that is accessible to clinicians and specialists is a big step towards the use 

of said methods in clinical environments and has supported advancements in 

identification for other brain lesions such as Multiple Sclerosis and brain tumors (Carass 

et al., 2017; Hatt et al., 2018; Menze et al., 2015). 

In this study, we propose a way of characterizing FCD lesions by using 

automatic preprocessing and feature extraction algorithms and classifying these features 

using machine learning algorithms. The efforts resulted in the creation of a public 

Database and an open-source segmentation algorithm in a 3DSlicer extension. This 

paper is organized as follows: material and methods describing database from patients 

and the methods of both Radiomics features and selected artificial intelligence 

employed, results show findings and discuss them in FCD detection, and finally, 

conclusions comments implications of this study and its limitations.   

2. Materials and Methods 

2.1. Patient group 



  

We selected 15 patients treated at the Center of Surgery of Epilepsy (CIREP – Centro 

de Cirurgia de Epilepsia) of the Clinical Hospital of the Faculty of Medicine of 

Ribeirão Preto (HCFMRP – Hospital das Clínicas da Faculdade de Medicina de 

Ribeirão Preto), in Ribeirão Preto, São Paulo, Brazil, were selected for a study in FCD 

identification. These patients contained both volumetric T1 images and axial FLAIR 

images acquired in the same MRI exam. All patients were MRI positive for FCD type II 

(a or b), and the histological findings confirmed the image report. 

2.2. Control group 

Two groups containing images of asymptomatic subjects were selected to compose the 

control group, one with 30 FLAIR images and one with 40 3DT1 images. We used a 

Philips Achieva 3T Extra Series to acquire both patient and control group images in the 

HCFMRP CCIFM department. 

2.3. Image preprocessing 

All selected images underwent the same preprocessing pipeline. The pipeline involved 

N4 inhomogeneity filtering (ANTs) and skull stripping (FSL), resulting in an image 

containing only brain tissue and Cerebrospinal Fluid (CSF). Then, we normalized 

histogram using one of the control group images (the one with better visual White 

Matter (WM) x Grey Matter (GM) contrast) as a reference using the ImageMath 

algorithm from ANTs. We used the anisotropic diffusion filter (PeronaMalik) in all 

images to enhance Signal Noise Ratio. 

For the patient group, T1 images were registered to the FLAIR images using a rigid + 

affine registration approach (ANTs). For the control groups, all images were registered 

to the MNI152 space, using a rigid + affine + SyN (ANTs) registration approach. 

2.4. Image processing 

For both groups, we used T1 images in three-class tissue segmentation using 

ATROPOS (ANTs) and cortical thickness estimate using DiReCT (ANTs), while we 

used FLAIR images for texture feature extraction. 

We created and used Brain Tissue Characterization for feature extraction and 

mapping, i.e., a 3DSlicer module developed as a command-line interface (CLI) in C++ 

and available at Slicer Extension Manager. This algorithm calculates Haralick features 

for a moving window, resulting in multiple maps in which each voxel contains the value 

of each feature for the neighborhood 3x3 of that position on the original image. We 

calculated co-occurrence matrixes using eight intensity bins, four directions, and only 

for voxels inside the 3x3 neighborhood. The algorithm averages feature values for each 

direction for the final texture mapping result. We used a two-dimension neighborhood 

because input images were acquired in Axial FLAIR protocols, resulting in images with 

poor Z-axis resolution. 

Extracted features are Contrast (Inertia), Cluster Prominence, Cluster Shade, 

Correlation, Energy, Entropy, Haralick Correlation, and Homogeneity (Inverse 

Different Moment). Together with image Intensity and Cortical Thickness, we have ten 

different features characterizing the cortex of each subject. These features are all 

extracted from original images after N4 and skull stripping corrections, and before 

registration avoiding transformation induced distortion is affecting generated maps 



  

exemplified in Figure 1. It is worth noting that the texture mappings were extracted 

from the whole brain and not only GM areas. 

 

Figure 1: Example of texture feature maps extracted from one of the patients. 
One can see at left: Preprocessed image. Right, from top left to bottom right: 
Energy, Entropy, Haralick Correlation, and Contrast feature maps. Since 
features were calculated voxel-wise by considering the voxel neighborhood, it 
is possible to obtain a map with the same resolution of the original image. 

2.4. Manual FCD segmentation 

For images in the patient group, an expert neurologist manually segmented the FCD 

lesion. This segmentation was performed on FLAIR images using the 3DSlicer label 

editor. For two patients, some abnormalities did not configure an FCD. We also 

segmented these abnormalities with a different label identification. Therefore, resulting 

masks contained an FCD lesion for each patient, with eventual non-FCD lesion 

locations also indicated. 

2.5. Healthy Brain Templates 

By using control group images and the registration transform of each subject to the 

MNI152 space, we were able to create a template containing mean and standard 

deviation for each of the extracted features. With these templates, we can determine 

what values of each feature is expected in each region for a healthy brain, as each voxel 

has descriptive information regarding the value distribution in that region for all control 

group images. 

2.6. Distribution characterization and comparison 

With the defined H-FCD-masks, it is possible to characterize and classify the 

distribution of each feature inside the labels for each patient. For characterization, we 



  

present in three ways: Descriptive statistics of distributions, Statistical analysis with 

Kruskal-Wallis test, and dimensionality analysis.  

2.9. Identification – Data Mining classification 

We used a Random Forest classifier for FCD classification. We tested the classifier 

through a Leave-one-patient-out (LOPO) cross-validation, in which one train the 

classifier in all patients but one, and then tested on the data of that patient alone. This 

type of cross-validation ensures there is no patient-specific bias influencing the results. 

Results obtained the form of a voxel-wise confusion matrix for the classification 

step, with the respective metrics. The confusion matrix indicates the distribution of 

sample classification regarding the real class of the sample and classification output of 

the sample. Hence, it indicates True Positives (TP), False Positives (FP), True Positives 

(TP), and True Negatives (TN). This data represents, quantitatively, how well the 

classifier performed in each training-testing set. 

The metrics that can be extracted from these indicators are: 
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From this step, we obtain the Classification Map. This map consists of a label mask in 

FLAIR image native space for the patient, indicating which samples, or voxels, were 

classified as healthy and which ones were classified as FCD. This data represents, 

qualitatively, which location of the cortex was identified by the classifier as FCD, 

perfectly fitting into the original image, allowing spatial analysis. 

2.10. Tissue classification 

Since the classification step is performed voxel-wise, the resulting Classification Map 

can have isolated FCD classifications outside of the FCD region (FP), as well as H 

classifications inside the FCD region (FN). A post-processing pipeline was developed to 

try and adjust a better way of representing the data visually to account for that. 

For this purpose, a morphologic filter consisting of an opening and a dilation 

operation is used over the FCD classification. With this filter, all isolated FCD-

classified voxels are eliminated, while the clusters of FCD-classified voxels are kept 

intact in the first step and then highlighted in the second step. 

The downside of this step is that the quantitative spatial information of the 

classification loses its robustness, as the dilation step kernel size is arbitrarily chosen, 

and cannot be defined to have an adaptive size to avoid overgrowing the region. With 

this in mind, we can only say that the result of this final post-processing step is a 

qualitative indicator of the location of FCD classified clusters.  

After obtaining the resulting FCD Map, we can extract the final metrics, which 

are measured in the larger scale of the presence or not of FCD volume in the region 

defined by the map. In this metric calculation, we defined the metrics as follows: 



  

•If the region indicated by the map is inside the manually segmented FCD region (50% 

superposition), it configures a TP. 

•If the region indicated by the map is not inside the manually segmented FCD region 

(50% superposition), it configures an FP. 

•If the manually segmented FCD does not have any region indicated by the map inside 

it (50% superposition), it configures an FN. 

•If there are more than one isolated region indicated by the map inside the same isolated 

manually segmented FCD, it will count as only one TP. 

These metrics are presented as the results related to the capability of the 

proposed methodology in detecting FCD tissue automatically, as illustrated in Figure 2.  

 

Figure 2. Full study pipeline. We performed the image acquisition step 
retrospectively using an image from the DICOM servers from HCFMRP. 
Preprocessing steps were performed using ANTs and FSL packages. Feature 
extraction was performed in both patient and control groups, and control 
groups feature images were used to create a template in MNI152 space. 
Automatic tissue segmentation and automatic segmentation were used to 
determine Healthy and FCD Cortex distributions of each feature. These 
distributions were used in the analysis steps to produce many quantitative 
values to characterize and identify FCD tissue. 
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3. Results and Discussion 

3.2. Classification – voxel-wise analysis 

 

The results for this section are presented in the form of a confusion matrix for all 

classifications and classification metrics from each patient. 

 

Figure 3: Illustration of preprocessing and segmentation pipeline steps. A) 
Original FLAIR image of a patient. B) Same FLAIR image after BET, Histogram 
normalization, and Perona Malik filtering. C) Automatic tissue segmentation 
obtained from the 3DT1 image registered to FLAIR space. D) Manual 
segmentation of FCD lesion made by a specialist. E) Analysis mask containing 
both automatic GM segmentation and manual FCD segmentation for the same 
patient. F) Analysis mask for the same patient registered to MNI152 space. 

We proceeded the voxel to voxel classification, taking into account the features 

extracted from the neighborhood of each voxel that are passed to the classifier. Figure 3 

illustrates a typical result of such classification showing the FCD voxels found by the 

classifier in green or light blue. 

Table 1. Confusion Matrix for voxel-wise classification of Healthy Cortex and 
FCD tissue. This table includes all samples from each of the classifications 
performed for the LOPO cross-validation. These results show that 91% of the 
samples classified as DCF were correct, while only 16% of the DCF samples 
were classified as so. Because of the low coverage of the voxel-wise 
classification, the post-processing step was needed. 



  

  Classifier    

  HC FCD Precision Recall Samples 

Real 
HC 9370256 3787 0.98 1.00 9374043 

FCD 207447 40206 0.91 0.16 247653 

Table 2. Individual metrics for voxel-wise classification of Healthy Cortex and 
FCD tissue. This table includes the Precision and Recall metrics for the 
classification of each patient. It is clear that the precision score for most 
patients is high (>0.9 on 10 out of 15 patients, >0.6 on 12 out of 15 patients), but 
the recall score is usually low (<0.2 on 9 out of 15 patients, <0.4 on 14 out of 15 
patients). 

Patient Precision Recall 

100 0,39 0,12 

101 0,99 0,11 

104 0,97 0,05 

107 0,92 0,2 

108 1 0,16 

111 0,98 0,12 

127 0,46 0,02 

128 0,81 0,26 

201 0,96 0,24 

202 0,68 0 

203 0,37 0,08 

205 0,99 0,6 

206 0,99 0,33 

207 0,96 0,14 

208 0,93 0,57 

 

Tables 1 and 2 evidence that the precision of the constructed automatic classifier 

is high (average of 0.91 for FCD classification), but the recall is low (average of 0.16 

for FCD classification). The high specificity and low sensitivity indicate that, by using 

this method, the coverage of the resulting FCD lesion mask when compared with the 

ground-truth manual segmentation is low. On the other hand, if a region is classified as 

FCD in the resulting lesion mask, there is a high chance of it being a real FCD region. 

When compared with recent results, this voxel-wise analysis is by the results 

obtained. Ahmed and collaborators proposed a Machine Learning classifier for T1 

images by using morphological features and GM to WM contrast (Ahmed et al., 2015), 

with lesions correctly identified in 6 out of 7 patients with positive and 14 out of 28 

patients with negative MRI FCD reports. The average volume coverage reported was 



  

20.14% for positive and 2.47% for negative MRI, and the false-positive rates were 2.4% 

and 1.04%, respectively. 

In comparison with our method, the texture feature approach is close to the 

morphologic approach regarding results, and with much simpler computational methods 

and less computational time required.  

4. Conclusion 

We developed a classifier capable of identifying type II DCF in axial FLAIR MRI 

images of a patient with this type of lesion. The proposed method obtained specificity 

0.81 and sensitivity 0.87 in the tested individuals. 

Comparisons with state-of-the-art methods show that there is still no clinical tool 

capable of satisfying the necessary conditions for extensive use. Existing studies have 

limitations ranging from non-standardized image acquisition protocols to dependence 

on automatic methods of image preprocessing without complete effectiveness. 
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