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Abstract. To guarantee a high indoor air quality is an increasingly important
task. Sensors measure pollutants in the air and allow for monitoring and con-
trolling air quality. However, all sensors are susceptible to failures, either per-
manent or transitory, that can yield incorrect readings. Automatically detect-
ing such faulty readings is therefore crucial to guarantee sensors’ reliability.
In this paper we evaluate three Machine Learning algorithms applied to the
task of classifying a single reading from a sensor as faulty or not, comparing
them to standard statistical approaches. We show that all tested machine learn-
ing methods – Multi-layer Perceptron, K-Nearest Neighbor and Random Forest
– outperform their statistical counterparts, both by allowing better separation
boundaries and by allowing for the use of contextual information. We further
show that this result does not depend on the amount of data, but ML methods
are able to continue to improve as more data is made available.

1. Introduction
Air pollution is considered a major environmental health risk in modern days. Excessive
levels of harmful gases and particulate matter present in the air are responsible for about
seven million deaths globally per year [World Health Organization 2020].

Control of a building Heating Ventilation and Air Conditioning (HVAC) systems
enable the intake reduction of air pollutants to help manage the internal air quality that
the building occupants are exposed. To enable such a task, indoor air pollution sensors
are required. Laboratory grade air quality sensors are not practical due to both size and
cost (e.g. [Mead et al. 2013]), where often several units would be required per pollutant
measured at each intake with additional sensors required within the buildings space.

Building managers often make use of more affordable sensor packages for man-
aging Temperature, Humidity and CO2, however few buildings control for air pollutants
(NO2, O3, NO, SO2, PM1, PM2.5, PM10). Electrochemical sensors are typically the most
practical for gas measurements (cost, size, accuracy) and are usually combined with laser
based measurements for particulate matter. Those are often calibrated with respect to lab-
oratory grade equipment and are expected to provide equivalence with respect to exposure
guidelines and legal air quality regulations [Mead et al. 2013].

Electrochemical sensors are nevertheless prone to failures and drift as they de-
grade over their expected lifetime. Drift and degradation can be corrected for, although
non-catastrophic, transient failure can result in erroneous data. Such data should not be
utilised within the building control system as it may lead to increased pollution exposure
to building occupants. Erroneous air quality sensor data must also be excluded when



data is utilised to meet obligations such WHO air quality guidelines or local air quality
legislation [Muller et al. 2018].

To assess their correct operation, sensor validation was conducted. One of its
aspects is detecting when a faulty measurement occurred. As such, it can be seen as a
classification task. While some readings can be easily classified as faulty (e.g. a negative
reading for some pollutant), others may fall within plausible value ranges. Several ap-
proaches try to tackle this issue. A common used method is to use statistical analysis. For
example, one can calculate the mean and standard deviation of readings over a period of
time and then new readings that fall outside two standard deviations are considered errors.
These approaches typically are univariate, working directly on the sensor reading and not
taking into account other contextual variables, such as temperature, which can influence
a reading.

In this paper, we evaluate the use of Machine Learning (ML) techniques to train
models on the task of classifying Indoor Air Quality sensor readings as correct or faulty.
Our expectation is that such models can have two advantages over statistical approaches:
(i) they are able to model more complex decision boundaries between correct and faulty
readings and (ii) they can benefit from the use of contextual information.

In order to do so, we collected a total of 2,151,483 data points from an indoor
air quality sensor network located in a commercial building situated in London, UK.
An expert labeled a large sample of data points and we evaluated three ML algorithms
(Multilayer Perceptron, K Nearest-Neighbors and Random Forests) trained over this data,
comparing to traditional techniques.

We provide three main contributions in this paper:

(i) We show that ML models can outperform standard statistical approaches, includ-
ing the one being currently used with the sensors considered here;

(ii) We show that ML can benefit from contextual information in addition to the
sensors’ main readings, and this is responsible for part of the observed improve-
ments;

(iii) We show that ML models do not require more data than the statistical approaches
to attain similar results, but are able to provide better results given additional
data.

The rest of the paper is organized as follows. Section 2 describes some close
related works and differentiate ours from them. Section 3 details the objectives, goals,
data and methodology used for the experiments. Section 4 shows the obtained results
from the proposed methods, including a comparison of the tested algorithms, and also an
ablation study. Finally, Section 5 offers our conclusions and provide lines for future work.

2. Related Works
Sensor validation has been a topic of research for a long time, and play a role in increasing
the reliability of industrial, environmental and chemical process monitoring [Upadhyaya
and Eryurek 1992]. Also, flight control systems and smart buildings require accurate
sensor monitoring to assure their correct operation [Napolitano et al. 1998].

There are two major approaches to sensor validation [Upadhyaya and Eryurek
1992]: statistical methods and knowledge based systems. Statistical methods are usu-



ally easier to implement and require less computational power, being often implemented
within the sensor’s hardware for self-validation. These include simple analysis of statisti-
cal descriptors (as will be explained later in this paper), but also use of Principal Compo-
nent Analysis and variations when the right type of data is available [Ibarguengoytia et al.
2001, Kerschen et al. 2004, Friswell and Inman 1999]. Our work makes use of common
statistical methods as the baseline for comparison.

Knowledge based systems comprehend methods that make use of heuristic rea-
soning, often requiring historical data, from which they generate the necessary models
for predictions [Henry and Clarke 1993]. Machine Learning (ML) methods are included
in this category. A Machine Learning method fit a complex model to historical data aim-
ing at generalizing to unseen data. Common models include neural networks, support
vector machines and decision trees. For example, in [Upadhyaya and Eryurek 1992,Mat-
tern et al. 1998, Napolitano et al. 1998], neural networks are used for monitoring sensors
in power plants. K-Nearest Neighbors, another ML model, is also used for fault detection
in sensors (e.g. [Yang et al. 2016]). Our work also makes use of common ML models,
but applied to the specific setting of Indoor Air Quality sensors.

More recently, several works propose the usage of Recurrent Neural Networks
or Convolutional Neural Networks to analyse a time-series data to detect faults [Loy-
Benitez et al. 2020, Gupta et al. 2020, Eren 2017], with promising results. These models
are however quite complex, often requiring dedicated hardware for training and inference.
Unlike these works, ours focus on point-wise detection – perform a classification from a
single point of data, instead of a full stream.

3. Objectives, Data and Methods

Our main objective is to evaluate the efficacy of ML models applied to the task of identi-
fying faulty readings from air quality sensors. We establish as our goals:

(i) To compare performance of different ML models to commonly used techniques
based on simple statistics,

(ii) To evaluate the benefit of using contextual data (temperature) in addition to the
main reading, and

(iii) To evaluate how much data is required to achieve adequate results.

3.1. Data

Data was provided by a company responsible for managing information from several sen-
sors in business buildings in the United Kingdom. The provided sample was extracted
from seven pods – a pod is a physical unit enclosing a set of sensors measuring one or
more chemical components from the air as well as weather measurements. The data con-
tains information from four gas concentrations: NO2, O3, CO and SO2 and was collected
every 10 minutes between October and November, 2017.

A data point is composed of a timestamp, a real-valued reading for a specific gas, a
real-valued temperature at the moment of the reading and a categorical variable indicating
the type of gas. A total of 2,151,483 data points were provided. Of those, 56,605 were
provided with labels, 35,034 being faulty (38%), and 21,571 being normal (62%). These
labels were attributed by a human expert and not automatically attributed.



Table 1. Example of labeled data points. Reading is the measurement value
for a specific gas, temperature is the temperature (Celsius) at the time of
the reading, type indicates the gas type and label indicates whether the
reading was considered faulty (1) or normal (0).

Timestamp Reading Temperature Gas Label
2017-09-08 10:20:00 21.80 17.0 O3 0
2017-08-27 02:30:00 -1602.25 20.1 CO 1
2017-11-02 01:40:00 34282.17 12.5 O3 1
2017-08-27 00:00:00 466.63 21.5 NO2 0
2017-11-02 13:20:00 -0.043 13.5 O3 0

Table 2. Number of labeled data points for each type of gas.

Gas Total (%) Normal Faulty Normal (%) Faulty (%)
CO 23.3% 11386 1831 86.1% 13.9%
NO2 18.4% 4940 5496 47.3% 52.7%
O3 40.9% 13803 9350 59.6% 40.4%
SO2 17.3% 4905 4894 50.1% 49.9%
Total 100% 35034 21571 61.9% 38.1%

Fig. 1 and Table 1 show examples of labeled readings. Table 2 describes the data
in detail by gas type and per label. It is possible to observe that except for CO, labels are
quite balanced between classes.

3.2. Models

We evaluate a total of five classifiers - two statistical approaches and three Machine Learn-
ing approaches. Statistical approaches are often used to detect faulty readings and we
include the one currently being used in production and a variation. The ML approaches
were chosen due to being common in the literature while having simple implementations,
often a requirement for deployment.

Mean: this method calculates the mean µ and standard deviation σ from the train-
ing set, using only readings labeled as normal. New data i is standardized by the Z-Score
(xi − µ)/σ and if its magnitude is above 2σ it is classified as faulty. Only sensors read-
ings are used. This is the method currently being used for fault detection for the sensors
considered in this study.

Median: this method calculates the median µ and interquartile range IQR of the
training set, also only using readings labeled as normal. New data that falls below Q1 −
2IQR or above Q3 + 2IQR is classified as faulty. Only sensors readings are used. This
was included due to being a common technique for outlier detection.

Multi-Layer Perceptron (MLP) [Kubat 1999]: a feedforward hierarchical artifi-
cial neural network composed of H hidden layers each with nh neurons. The input layer
is composed of three neurons, receiving as input the type of gas, the sensor reading (x)
and the temperature (T ). Output is a single logistic unit indicating whether the reading is
faulty or not.



Figure 1. Sample of 10,129 data points retrieved from the pod Roof A, for the
Carbon Monoxide sensor, from October of 2017 until November of 2017.

K-Nearest Neighbor (KNN) [Goldberger et al. 2005]: a lazy learning approach
where the training data is stored and new data is attributed the class of the majority of its
K nearest examples. A distance metric is used to determine the neighborhood.

Random Forest [Ho 1995]: an ensemble method that outputs the majority voting
among D decision trees. Each decision tree is trained on a random sample taken from the
training set in order to reduce overfitting.

3.3. Experiments

In order to evaluate and compare the chosen methods, we use the area under the Receiver
Operating Characteristic (ROC) curve - AUC - as the metric of choice. This metric was
chosen because it provides a simple way to rank the models’ performance regardless of
the class distribution, being invariant to prior class probabilities [Bradley 1997].

We use stratified k-fold cross validation [Blum et al. 1999] with k = 20. This
procedure partitions the data into k equally sized folds, and then train k independent
models using data from k− 1 folds, testing on the remaining fold. We report on the mean
and standard deviation of the measured AUC on the k folds. Folds are stratified by label
(faulty or not) so that each partition matches the observed label distribution across the
whole dataset.

For the statistical approaches, separate models were trained for each gas type and
we present the average results. This is necessary since readings’ values vary considerably
across gases and these techniques do not allow for the type of gas to be specified as an
input. For the ML approaches, two experiments were conducted: (i) we trained one model
per gas type and (ii) we trained a single model for all gas types, adding an extra input to
the model specifying the gas type. The latter approach was conducted in order to test
the ability of models to multi-task. Having a single model consume less resources, an
important feature especially for embedded systems.



Table 3. Comparison of classification AUC of the presented algorithms using
k-fold cross validation with k = 20.

Classifier O3 NO2 SO2 CO Avg AUC σ Multitask AUC
Mean 0.92 0.87 0.81 0.95 0.89 0.062 N/A
Median 0.94 0.91 0.91 0.96 0.93 0.028 N/A
MLP 0.97 0.94 0.97 0.97 0.96 0.013 0.93
KNN 0.97 0.96 0.97 0.97 0.97 0.007 0.96
RF 0.97 0.96 0.97 0.98 0.97 0.008 0.97

In another experiment, we trained ML models both with and without the inclusion
of Temperature in the input. Again, the statistical approaches do not allow for extra inputs
in a straightforward way and we aim at testing if the extra context added leads to better
performance.

As a last experiment, we varied the amount of data available to the classifiers. We
randomly sample the dataset for each given size, which varied from 10 to 40,000 data
points. For each size, 20 independent executions were conducted in order to compute the
average AUC.

All hyper-parameters for ML models were set to the default values in the scikit-
learn Python library (version 0.23.1) [Pedregosa et al. 2011]. The MLP uses a single
hidden layer with 100 ReLu units, ADAM optimizer, initial learning rate of 0.001 and
mini-batches of size 200 and 200 epochs. KNN uses Euclidean distance, K = 5 and
uniform weight. Random Forest uses Gini coefficient for splits and 100 trees.

4. Results

Table 3 shows the results of training one model per gas type, with ML models receiv-
ing not only gas concentrations but also the temperature at the time of reading. We can
observe that all ML algorithms outperformed the traditional methods by a reasonable mar-
gin, regardless of what gas was being analysed. Even in the case of CO, where statistical
approaches achieved comparable scores, all ML methods still performed better.

ML algorithms not only outperformed their statistical counterparts, but also dis-
played more consistent results across all gas types, with lower standard deviations. Over-
all, all ML models performed very similarly, with MLP being less consistent, with a
higher standard deviation due to a slightly poorer performance on NO2.

The last column from Table 3 shows the multitask results – training a single model
for all gas types – with only the average over all gas types being shown. Random Forest
displays the same performance as observed when training individual models, while we
observe a small drop in performance for KNN and a significant drop for MLP.

4.1. Contextual Information

To measure the value of adding contextual information (Temperature, in our case), we
show the results of training the models with different input attributes (Table 4). The sta-
tistical methods do not have a straightforward way to use additional information, therefore
some results are omitted.



Table 4. Comparison of classification AUC of the presented algorithms using
different input attributes.

Classifier Reading Temperature Reading & Temp
Mean 0.89 0.54 N/A
Median 0.93 0.56 N/A
MLP 0.93 0.68 0.93
KNN 0.94 0.66 0.96
RF 0.93 0.71 0.97

Using Temperature alone leads to a very poor performance, as expected. Nonethe-
less, all ML models performed better than random choice. We believe this is due to the
Temperature sensor also presenting faulty behavior that is correlated to the sensors’ main
reading – e.g. when a pod as a whole is subject to damaging situations, all sensors within
are affected.

Using gas concentration only, all ML models still perform better than the statistical
counterparts. Performances between ML models in this case are again very similar, with
a slight advantage for KNN. It is clear that Random Forest made the best use of the extra
data, showing the largest improvement when adding Temperature information.

Temperature is known to influence a sensor’s readings and this influence is part
of specification of any given sensor [Mead et al. 2013]. However, the performance gains
observed when adding temperature as an input show that there are significant correlations
between temperature and failures. Nonetheless, the statistical methods, trained only on
Temperature, were largely unable to make use of this correlation, producing results close
to random chance.

These results show that the gains obtained by ML models are both from being
able to build more complex boundaries between examples and using extra contextual
information that may have a correlation with faulty readings.

4.2. Dataset Size

To investigate how the algorithms perform given limited data, we evaluated the AUC by
varying the dataset size available for training.

The results are shown in Fig. 2. As it can be observed, classifiers’ ranking is some-
what stable except for very small data samples. Diminishing returns are observed after
about 500 data points, but both Random Forest and KNN are still showing improvements
even after the full dataset was made available, suggesting that larger datasets could further
improve the observed performances for these classifiers.

On the other hand, Mean, Median and MLP show no improvement beyond a cer-
tain size. Moreover, MLP shows a high variance across sizes and is the only ML model to
underperform the statistical methods for smaller datasets – neural networks in general are
know to require a large amount of training data [Alwosheel et al. 2018], although Fig. 2
shows no evidence that the MLP would benefit from larger samples.



Figure 2. Average AUC for different dataset sizes.

5. Conclusions

In this paper we conducted extensive experiments on the application of machine learning
models to the problem of detecting faulty readings in indoor air quality sensors. Lever-
aging a large dataset of 56,605 labeled readings from gas concentration sensors, we com-
pared a Multilayer Perceptron, K-Neareast Neighbors and Random Forests models to two
common statistical approaches, one of them currently being used for fault detection on
data from the sensors used here.

We showed that all ML methods outperform their statistical counterparts, both
when only using sensor readings and when adding contextual information in the form of
the temperature at the time of the reading. The best ML provided a 4% gain on AUC over
the best statistical method and 9% over the currently implemented method. Tying to our
first specific goal of the paper we conclude that ML methods can perform fault detection
significantly better than standard statistical approaches.

When allowed to use temperature data, ML models, in particular Random Forests,
were able to use this extra information to deliver improved performance - up to about 4%
gain was observed. Regarding our second specific goal, we conclude that adding contex-
tual information is indeed beneficial and the seamless way that ML models integrate this
information is a major benefit of such models.

Finally, we showed that the amount of data available for training impacts, as ex-
pected, the performance of all classifiers. For all of them, diminishing returns were ob-
served after about 500 data points are used. KNN and RF outperformed statistical meth-
ods for all tested sizes, while MLP required larger datasets to achieve the same result.
Notably, we provided evidence that both KNN and RF could benefit from even larger
datasets than we had available, while MLP did not show such a tendency. Tying to our
third and last specific goal of the paper we conclude that the evaluated ML models require
approximately 1,000 data points to perform adequately but that larger amounts can lead



to better performances, albeit diminishing ones.

Throughout the paper we made an attempt not to fine-tune the models to the prob-
lem, in particular regarding hyper-parameters tuning, so as not to overfit the models to the
data. It is expected that by doing so, improved performance can be attained, in particular
for neural networks. However, the observed performances were already close to perfect
classification, making further efforts to improve performance less enticing. Nonetheless,
future work includes fine-tuning the models to the problem, along with testing other more
complex models, such as deep neural networks (e.g. [Eren 2017]).

Another line of future work is to compare point-wise detection as done here, where
a single data point must be classified, to temporal classification, where a series of data
points is passed to the model (e.g. [Loy-Benitez et al. 2020] and [Gupta et al. 2020]). The
latter requires larger models and can introduce lag to the detection, which is a trade-off
that can impact its usefulness in embedded and real-time settings.
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