A Parallel Strategy for a Genetic Algorithm in Routing
Wavelength Assignment Problem Using GPU with CUDA

Esdras La-Roque!, Cassio T. Batista!, Josivaldo de S. Araijo!

nstitute of Exact and Natural Sciences
Federal University of Pard — Belém — Brazil

{esdras, cassiotb, josivaldo}@ufpa.br

Abstract. This paper presents a parallel strategy with a heuristic approach to
reduce the execution time bottleneck of a routing and wavelength assignment
problem in wavelength-division multiplexing networks of a previous work that
uses a sequential genetic algorithm. As the parallelization solution, the GPU
hardware processing on CUDA architecture and CUDA C programming lan-
guage were adopted. The results achieved were between 35 and 40 times faster
than the sequential version of the genetic algorithm.

1. Introduction

Genetic algorithms [Silva and Gabriel 2019] have increasingly gained prominence
to solve Routing and Wavelength Assignment problems (RWA) in WDM networks
(Wavelength-Division Multiplexing), demonstrating satisfactory results regarding request
blocking probability when compared to classical algorithms as Dijkstra and Bellman-Ford
for the routing subproblem, as well as first-fit, random-fit, for example, for the wavelength
assignment subproblem [Teixeira et al. 2017]. However, genetic algorithms take too much
time to process [Canti-Paz 1998], which makes it unfeasible for real world applications.
In addition, this limitation makes advances in research difficult for huge WDM networks
due to their huge number of nodes and connections.

This article explores the possibility of adopting a parallel execution strategy for a
RWA-GA simulation environment by using a GPGPU (General Purpose Graphic Process-
ing Unit) approach with NVIDIA cards which are able to run CUDA programs. Further,
this paper discusses the process and strategy used to turn the simulation code originally
written in Python language [Teixeira et al. 2017] into C-99 for sequential execution, but
still running at the CPU side (no GPU involved), then turn the C-99 code into CUDA
C language for running the simulation at the GPU side in a CUDA parallel architecture.
A performance evaluation was carried out focusing on processing time of the three im-
plementation codes (Python, C-99, and CUDA C) as well as on the GA correctness for
the three code versions, demonstrating that CUDA GPU environment is a feasible paral-
lelization solution for the context of the RWA-GA problems. The simulation experiments
were run using NSFNET, the U.S. National Science Foundation (NSF) network topol-
ogy [Frazer et al. 1996], which contains 14 routing nodes.

2. RWA Problem in WDM Networks

In WDM networks, a number of optical carriers is multiplexed into a single optical fiber
using various different wavelengths. For transparent WDM networks, also called all-
optical networks, two intrinsic constraints arise: the wavelength-continuity constraint,

which states that the same wavelength must be used on each and every physical fiber
link of a traversed path [Zang and Jue 2000]; and the distinct wavelength constraint,
which says that two connections must not use the same wavelength on the same fiber
link [Randhawa and Sohal 2010].

Both constraints occur because of the absence of opto-electro-opto converters on
the nodes of all-optical networks, which means the signal remains in the optical domain
throughout all communications. Analogously, those restrictions are not considered on
opaque networks because, unlike transparent networks, its intermediate nodes do perform
optoelectronic conversion before forwarding packets [Ellinas et al. 2004].

The routing and the wavelength assignment subproblems, together, compose the
RWA problem in WDM networks. Given a fixed number of wavelengths per link and a
set of connection requests, an RWA algorithm for static traffic must maximize the number
of optical connections established on the network [Zang and Jue 2000] while attempting
to minimize the total number of wavelengths used [Varela and Sinclair 1999].

2.1. Routing

The routing subproblem itself can be classified into three types: fixed routing, fixed-
alternate routing, and adaptive routing [Wason and Kaler 2007].

* Fixed routing: given a source-destination pair of nodes, the same predetermined
route, typically the shortest one, is always chosen. Dijkstra’s algorithm is the main
example of the fixed routing approach.

 Fixed-alternate routing: a set of routes is kept in a routing table instead of a single
route for each SD pair. Yen’s algorithm, also known as K-shortest path algorithm,
is an example of fixed-alternate routing.

» Adaptive routing: the route for a SD pair is calculated dynamically based on the
current configuration of all connections in progress on the network. An example
of this technique is the least-congested routing algorithm, which picks the path
with more wavelengths available per link [Chatterjee et al. 2015].

2.2. Wavelength Assignment

The wavelength assignment subproblem can be solved through many approaches, such
as greedy coloring, first-fit, random-fit, most-used, least-used, etc. [Zang and Jue 2000].
This section addresses only the first two algorithms aforesaid, since both were used on
the simulations.

* Greedy coloring: the same wavelength (color) is assigned to as many lightpaths
as possible before moving to the next wavelength. This can be done by a sequen-
tial graph-coloring algorithm, which is normally preceded by a vertex ordering
strategy, such as largest-first or smallest-last.

* First-fit: the wavelengths are sorted by weight in ascending order and then the
first available one is picked. First-fit requires no global information and has a
low computational overhead since it does not need to search the entire space if a
low-weighted wavelength is ready to be used.

3. Genetic Algorithm

Genetic algorithms [Goldberg 1989] are generalized methods of search and optimization
inspired by Darwin’s Evolution Theory. Within this context, a population of individuals,
also called chromosomes, is created as potential solutions to the problem. Each chromo-
some is submitted to genetic operators, such as selection, crossover and mutation, which
either modify the current individuals or generate new ones into the population. The main
idea behind GAs is to apply a fitness function to each chromosome in order to evaluate
them for finally choosing, after some number of generations, among the fittest individu-
als — which have higher chances to be the best ones, since they have survived along the
process —, the most suitable solution to the problem.

The GA in use for this work was proposed on [Teixeira et al. 2017]. The chro-
mosome encoding and genetic operators such as selection, mutation and crossover are
explained below briefly. The evaluation step itself, exclusively, is mostly based on [Car-
doso et al. 2010].

3.1. Chromosome

Each chromosome is created randomly based on a greedy algorithm [Teixeira et al. 2017],
and represents a valid route in the network, as can be seen in Figure 1, where 3 routes from
node 0 to node 8 are illustrated. Thus, the routing subproblem, which is to find alternative
routes between two points, is solved. Each gene stores an index that represents a router in
the network. The alleles are positive integers ranging from O up to the maximum number
of routers in the network topology. Three chromosomes C;, C, and C3 would then belong
to the population if the respective routes Ry, R, and Rg are valid paths in the network.
They are coded as lists, as shown below:

Ci=R1=<0 2 8>
Cy=Ry=<0 5 6 7 8>
C3=R3=<0 1 3 4 9 8>

3.2. Evaluation

The first step of the evaluation routine is about the wavelength assignment problem un-
der the wavelength-continuity and the distinct wavelength constraints (as discussed on
Section 2). Both conditions are met by using a general objective function (GOF) [Car-
doso et al. 2010], which was developed considering only static traffic. This function,
shown in Equation 1, ensures a communication with minimal restrictions in static-traffic,
wavelength-multiplexed networks by not taking power, physical distance and optoelec-
tronic conversion constraints into consideration.

Z(wxm)i
L(Rj, \s) = =———
’LUAI Z ll

i=1

According to [Cardoso et al. 2010], GOF defines a label L for the light-path
defined by a route R; when a wavelength)\, is used. When L = 1, the wavelength is
available over all links [of the route, which means that no wavelength converters must
be used to establish a connection from a source node to a destination node. Any value

Il
—

o))

L < 1, however, means at least one A converter must be used on that light-path in order to
communicate the SD pair. Notice that lower wavelength indexes have lower weights w)
as well, 1.e., wy, , < w,, . The number of iterations to calculate links and wavelength
weights in links is defined by n and ¢ identifies the number of links at a route.

A simulation of the computation of the labels for hypothetical, previously shown
routes Ry, Ry and Ry is shown in Figure 1. The NSFNET topology is assumed to have
four channels or wavelengths on each link, represented by A;, Ao, A3 and A\;. A missing
wavelength on a specific link means that it is being used in another light-path.

Figure 1. Hypothetical routes R, Ry and R3 over NSFNET.

By analyzing the labels computed by the general objective function for the route
R; =<0 2 8>, we can notice that)\, is the only wavelength available on all links of the
path, which agrees with the label L(R;, A\2) = 1. On the other hand, it can be seen at the
second route R, =<0 5 6 7 8> that none of the wavelengths is available on all links
of the path, which is confirmed by the labels L(R, A\;) < 1, Va. All the calculations for
routes Ry and R, are provided as follows.

0+1 0+1+1+4+0
L(R1,\1) = —— =0.50 L(Ra,\)=——""T" =050
1x2 (F2, M) 1 x4
2+2 0+0+2+42
L(R1,A2) = -— =1.00" L(R2,M2) = ————— = =10.50
2% 2 (B2, A2) 2% 4
0+3 3+34+040
L(R1,A3) = -—— = 0.50 L(Ra,X3)=""""—"T1" =050
3x2 (Rz2,A3) 3 x4
L(R1 M) = 2 — 0,50 L(Roag) = 2F0HAH 05
’ 4%2 2,) = 44 -

Conversely, the route B3 =<0 1 3 4 9 8> has two wavelengths available on
all links along the path: A; and A3, as confirmed by GOF calculations below. In cases
when more than one wavelength is available per link, the proposed genetic algorithm
chooses the one with lower weight, which is based on the first-fit procedure. In other
words, \; would be chosen over A3 in this case because w,, < w,,.

1+14+1+1+1

L(Ra,\1) = ——— 1 = 1.00 ¢
gy SEEEOEED
Mgy~ EEEEBEES
L(R3,\1) = O+d4+4+0+0 _ 0.40

4x5

In addition to the label defined by the general objective function, two more pa-
rameters are used for choosing the best chromosome. Those criteria will be detailed at
Section 3.3.

3.3. Selection

The selection operator defines which individuals must reproduce. The tournament selec-
tion technique was used on the simulation, where % individuals are randomly chosen from
the population and the one with higher fitness value is picked as the first parent chromo-
some. The same process is repeated for choosing the second parent. The crossover rate
P, defines the percentage of individuals that are selected to reproduce.

In the simulations of Section 3.2, both routes R; and R3 have available wavelengths
over all links of their respective paths. The genetic algorithm would consider, however,
Rs as being better than Ry, since R3 has two wavelengths available, while R; has just
one. In other words, even though Rj is longer than R, the former is still least congested
than the latter, which agrees with the adaptive routing concept. In case of a tie in the
congestion criteria (let’s say R; had two wavelengths available on each link, as well as
R3), the selection step would choose the route with lowest wavelength-available weight
w,. An insertion sort algorithm was configured to sort the chromosomes according to
the criteria. Given that the routes/chromosomes have at least one channel free, which
is verified by the GOF algorithm: (1) Sort them on descending order by the number of
wavelengths available on the entire path. In other words, the least congested path comes
first; (2) If there is a tie on the number of)\ available, the selection follows the first-fit
procedure by choosing the route whose channel has lower weight w,; (3) In case of a
second tie, now on the weight of the A available, the route with the least number of hops
is chosen, which means the GA gives priority to the shortest path. If a third tie happens
here, the GA then chooses any route randomly.

3.4. Crossover

Crossover is the process of exchanging genes between individuals. It is expected that, at
each new generation, the offspring adapts to the environment as well as or even better than
its parents. A one-point crossover was used, in which a common router (gene) between
two parent routes Cparent, and Cparent, 1S chosen as crossover point. Two offsprings
Cors, and Cogr, are then generated, each one receiving parts from both parents. The
following example illustrates the crossover operation between two routes from source 0
to destination 12. Given that 8 is the parents’ common router chosen as crossover point:

Cparent1:<o 5 6 7 § 9*12>
Cparent, =<0 2 8 9"11 10 12>

Cofr, =<0 5 6 7 8 9 11 10 12>
Coff2=<0 2 8 9 12>.

If there is more than one common router (such as the index 9”in the example
above), the crossover point is randomly chosen, with equal probability, among all the
common routers. On the other hand, if there is no common router between the parents, the
chromosomes do not cross and no offspring is generated. An offspring is also discarded
if it has the same router index on both parts received from each of their parents, since it
would produce a loop in the path.

3.5. Mutation

The mutation operator is applied in order to keep the diversity of the population and
to prevent premature convergence. Based on a mutation probability value F,,, a random
gene g 1s chosen from a chromosome C,i4ina1 @ a single mutation point, and a new fresh
route is created from ¢ to the destination node, producing a new chromosome C, ¢ 4teq
as well. In the following example, g = 7 is the router index chosen as mutation point,
and a new route from 7 to the destination 12 is created, which is composed by the router
indexes 1, 79, ..., Tp.

Corigina1=<0 5 6 7 8 9 12>

Crutated=<0 56 7 ry r9 ... 7, 12>

If there is no way to build a new fresh route, the mutation is not performed and
the chromosome C,i4ina1 returns to the population.

4. Proposed Parallel Strategy

This section presents a parallelization strategy for the problem of slowness in the se-
quential version of the GA simulation. This is done by means of parallelizing the whole
simulation by offloading the GA execution to the CUDA device, which greatly reduces
the processing time. The work proposed here is an evolution of the previous one [Teixeira
et al. 2017] and the simulation presented here assumes the same execution flux of that
work.

In general, genetic algorithms demand too much processing time [Lim et al. 2017]
to return the fittest solution because it requires the computation of the generations one
by one when a sequential processing is in use, which makes their utilization practically
unfeasible for huge topologies, like mesh topology, for example. In [Canti-Paz 1998]
some techniques were studied in order to make GA applications run in parallel architec-
tures, where three main types of parallel GAs are highlighted: (1) global single-population
master-slave GAs, (2) single-population fine-grained, and (3) multiple-population coarse
grained GAs. However, this parallel strategy maintains the sequential GA but turns the
simulation environment parallel in order to make future GA researches as to routing prob-
lems for huge networks feasible.

4.1. Simulation Description

As the NSFNET are not very large, the minimum number of generations of the GA was set
to 35 and the maximum to 80, two values that ensure a good convergence and also allow
GA’s execution to finish quicker. The same reason can be used to explain the population
size set to 30: the diversity of the population does not increase for greater values since
the number of different paths from source to destination is relatively small. Mutation and
crossover rates were set to P, = 0.02 and P, = 0.50, respectively.

The load Lg on the network was increased from 1 up to 64 Erlangs. The amount
of traffic was modeled by a Poisson distribution. The source and destination nodes were
kept fixed for all connection requests across the simulation. Based on the number of
hops, two distant nodes were chosen to compose the source-destination pairs (SD-pair).
The inter-arrival times between connections are exponentially distributed, as well as the
time a connection occupies the network resources (holding time), which inspite of being

rather simplistic, are good from the theoretical point of view. Given a load L, in Erlangs,
the average blocking probability B, can be computed as the arithmetic mean of the ratio
between the number of blocked calls V. and the number of calls arrived N,,, as shown
in (2):

- 1 al Nye(LE)i

A total of N, = 30 simulations were executed, each one with the number of it-
erations set to 150. The NSFNET topology, a 14-node network with bidirectional links,
previously shown in Figure 1 was adopted in simulation. The SD-pair is 0 and 12, re-
spectively. The number of A\ channels on each fiber link was set to 4 and 8 for analysis
with both in results section. Since only wavelength-continuity and distinct wavelength
constraints were considered, the distance between optical nodes was not taken into con-
sideration.

4.2. Parallelization

In order to turn a sequential simulation into parallel, firstly it is necessary to understand
the main idea behind the sequential version shown in the pseudocode: Algorithm 1. Ba-
sically, there are three nested main loops that control: 1) the network load (in Erlangs),
which requires update times and channels availability on each iteration, located at line
2 in the pseudocode by erlang variable; ii) the number of iterations per connection
request as required for A\, which hides a queue subproblem, as shown at line 3 by the
ConnectionRequest variable; iii) and the GA generation loop (line 5), where the
GOF function is executed at line 6 as well as the NSFNET and the GA population struc-
tures (NSFNET and P) are passed as arguments. Only NSFNET data (network load and
holding time) are maintained after each outer loop iteration. Now, it is just a matter of
adapting the simulation program to the chosen parallel architecture which, in this case, is
CUDA.

Algorithm 1 Sequential implementation
1: NSFNET < InitializeNetwork ()

2: for erlang < 0 to 63 do
3: for Connection Request < 0 to 149 do

4: P <+ GeneratePopulation ()
5: for generation < 0 to 34 do
6: GeneticAlgorithm (NSFNET, P)
7: end for
8: end for
9: UpdateNetwork (NSFNET)
10: end for

CUDA is a GPU architecture designed by NVIDIA Corporation [Corporation
2019] as a model of GPGPU (General Purpose Graphics Processing Unit) to execute
a lightweight function [Sanders and Kandrot 2011] (called kernel function) in terms of
threads through a grid configuration for one, two or three dimensions defined in a easy
way by the programmer via CUDA API [Kirk and mei W. Hwu 2010] when the kernel

function is launched at the CPU side. The grid is basically represented by the total num-
ber of threads organized in blocks and, depending on the problem dimension, how these
threads are identified in their specific blocks in a global execution scope [Cheng et al.
2014]. All threads are launched at the same time theoretically speaking, but in reality,
this depends on GPU device used for that purpose, because of the CUDA concept called
warp [Corporation 2019]. Warp has a fixed size equals to 32 and that is a maximum num-
ber of threads that can be staggered per streaming multiprocessors (SM) [Cheng et al.
2014] in CUDA Fermi architecture, and that architecture was used for the simulation ex-
periments. Table 1 shows the CUDA device for that purpose. So, as seen in the table, the
used device was capable of staggering 64 threads at the same time, which is also called
the number of active threads.

Table 1. CUDA Experiment Environment

Description Value

Device 1x GeForce GT 630
CUDA Capability | 2.1

Global Memory 4026 MBytes
CUDA Cores 96 (48/SM)
Multiprocessors 2

All those information is crucial to define what is the best strategy in order to
parallelize the proposed solution, because parallel applications are very dependent on the
architecture features. Having said that, the simulation presented in this paper was modeled
in just one dimension, as shown in Figure 2. The grid was set to 150 blocks which is the
total number of blocks where each block has 64 threads. The pseudocode in Algorithm 2
shows these settings according to the lines 2, 3, and 4, where the implementation calls the
CUDA kernel at the CPU side.

The main idea behind these settings is to convert two of the three nested main
loops from sequential simulation into blocks and threads which will run in parallel, thus
improving the simulation performance. The blocks will manage connection requests per
A and the threads will manage the network load (in Erlangs), keeping the GA’s generation
loop in the kernel function which will be run for each thread. Blocks and threads are
identified by blockIdx.x and threadIdx.x, respectively, as shown in Figure 2.
With these settings, CUDA kernel will prepare 9600 CUDA threads.

CPU GPU
Algorithm 2 *NSFNET ~ Algorithm3
I . CudakKemel

_‘I‘_i

| gridpim.x = 150
|
|

threadIdx. x threadIdx.x threadIdx.x

011|2]3]...|63f|0[1[2|3]...|63]--- | 63

[—

blockIdx.x = © blockIdx.x = 1 blockIdx.x

Figure 2. Grid configuration for parallelized simulation in one dimension.

In this parallel execution model (Figure 2), the simulation can handle the whole
experiment using the same logic as the sequential version by implementing a queue of
connection requests for blocks, that is, block with 0-index (blockIdx.x = 0) pro-
cessing the GOF function in all 64 threads with the load value equals to the thread’s index
plus one, and the same request index, which is the block index. Thus, all link information
that were updated in this block will be preserved to be read at the next block. CUDA ar-
chitecture doesn’t provide thread coordination and doesn’t exchange data among threads
in the same block [Cheng et al. 2014], but synchronized characteristic around \ availabil-
ity evaluation is very important to make analysis in terms of block probability likewise
that studied in the sequential versions. Because of that, the number of Erlangs was set to
64, keeping the two available SMs occupied with all threads in a block, in terms of warp,
thus ensuring the sequential behavior among all CUDA blocks.

For a more complete understanding of the parallel execution, please refer to Figure
2, where the pseudocode Algorithm 2 shows the CPU side execution as well as Algorithm
3 shows the GPU side execution. The following 5 steps describe the parallel execution
flux:

1. Initialize NSENET structures and parameters at CPU side, as shown Algorithm 2,
line 1;

2. Initialize network load (in Erlangs) at CPU side so that the first block can be
processed at GPU side;

3. Prepare GPU memory and pointers for receiving NSFNET data from CPU side;

4. Call CUDA kernel function (line 4 in Algorithm 2), passing NSFNET data point-
ers obtained in step 3;

5. CUDA device executes GA for all threads block by block, returning the fittest
solution (Algorithm 3);

Algorithm 2 Parallel implementation (Main)

1: NSFNET <« InitializeNetwork ()

2: nBlocks <+ 64

3: nThreads < 150

4: CudaKernel < nThreads, nBlocks >(NSFNFET)

Algorithm 3 Parallel implementation (CudaKernel)

1: P < GeneratePopulation (NSFNET)
2: for generation = 0 to 34 do

3: GeneticAlgorithm (NSFNET, P)
4. end for

5: UpdateNetwork (NSFNET)

5. Results

The results show that the simulation execution time had a significant improvement due to
the adoption of the CUDA parallel architecture (CUDA C) when compared to the Python
and C-99 sequential codes. Also, it must to be highlighted that the expected overlap-
ping trend in the curves of Figure 3 (Fitness per implementation) and Figure 4 (Blocking
Probability per implementation) was not verified due to the adoption of three different ver-
sions of the random number generation libraries as well as three different programming

languages. The Python version uses NumPy module, C-99 version uses the rand ()
function from the standard libraries, and CUDA C version uses cuRAND library [Cheng
et al. 2014].

5.1. Fitness

As shown in Figure 3, the behavior of the parallel curve (GA_RWA _CU) follows the same
trend of the sequential curves (GA_RWA_C and GA_RWA PY) showing that the parallel
algorithm runs correctly at the GPU. Note that Python language has shown to be unstable
at the GA convergence when compared to C-99 and CUDA C languages. The average
behavior of the three programming languages shows a linear trend. Also, from generation
25 on (out of 35 generations), CUDA C presented the best fitness convergence peak. It
is worth noting that after the 24th generation, the number of individuals with available A
reached the average behavior of convergence due to saturation of the possible free network
paths.

g
2T #0-¢

—8—GA RWA C
GA_RWA_PY
------GA_RWA_CU

Number of individuals with A available

123456 7 8 910111213141516 171819 2021 22 23 24 25 26 27 28 29 3031 32 33 34 35

Generation

Figure 3. Fitness per implementation.

5.2. Blocking Probability

Figures 4a and 4b show that the blocking probability increases as the network load (in Er-
langs) also increases, whose curves follow a trend of exponential average behavior, which
allows to be stated that the parallel version (GA_RWA_CU) follows the same trend as the
sequential versions (GA_RWA _C and GA_RWA_PY), thus validating the effectiveness of
the adopted parallelization strategy. In addition, from 40 erlangs of network load on, the
CUDA C version presented the least blocking probability for both 4 and 8 channels. It is
important to note that the Python version presented the worst blocking probability and the
parallel version presented instabilities. The blocking probability results demonstrates that
the parallel version fulfilled its main objective, which is to work similarly as the sequential
versions, but with better processing time.

5.3. Processing Time

The main result of this work, which is the improvement of the simulation processing
time, is shown in Figure 5, which shows the performance of the three languages studied
(GA_RWA _C, GA_RWA _PY, and GA_RWA _CU) both for 4 and 8 channels. The results
shows that the proposed parallel version of the CUDA simulation obtained the best per-
formance when compared to the sequential versions. The parallelization for the 4-channel

Blocking Probability (%)
Blocking Probability (%)
&
B)

—8— GA_RWA_C
GA_RWA_PY
- ==~ GA_RWA_CU

GA_RWA_PY
- = %= = GA_RWA_CU

e
1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Load (Erlangs) Load (Erlangs)

(a) Blocking probability with 64 Erlangs over a 4- (b) Blocking probability with 64 Erlangs over a 8-
channel network. channel network.

Figure 4. Blocking probability per implementation.

network had its execution time 40 times faster than the Python sequential version, as well
as, 4 times faster than the C-99 sequential version, approximately. Further, in experiments
with the 8-channel network (contrasting with the 4-channel network), the CUDA C pro-
cessing time reached 35 times faster than the Python version and 4.5 times faster than
C-99 version, approximately.

250

| 4chi |
-channel 207.88
M 8-channel
200 4

Seconds
g g
L !

26,2

15,17

3,98 5.8

GA_RWA_CU GA RWA_C GA_RWA_PY

Figure 5. Processing time for 4-channel and 8-channel networks.

6. Conclusion

This paper presented a parallel strategy at GPU level on the CUDA architecture, aiming to
reduce the execution time bottleneck found in routing and wavelength assignment (RWA)
problems in wavelenght-routed (WDM) networks when genetic algorithm is used. The
proposed solution was the creation of a heuristic program to parallelize the problem via
hardware, using CUDA architecture and CUDA C programming language in order to
improve the execution time of the sequential version of the GA. The proposed heuristic
solution presented a performance improvement which was between 35 and 40 times faster
than the sequential version in experiments carried out using a NSFNET topology, based
on the execution time metric. The results were validated by discrete simulation, using
programs developed by the authors in Python and C-99 programming language for the
sequential algorithms and CUDA C programming language for the parallel algorithm.

References

Cantu-Paz, E. (1998). A survey of parallel genetic algorithms. CALCULATEURS PAR-
ALLELES, 10.

Cardoso, A. J. E,, Costa, J. C. W. A., and Francés, C. R. L. (2010). A new proposal of an
efficient algorithm for routing and wavelength assignment in optical networks. Journal
of Communication and Information Systems, 25(1):11-18.

Chatterjee, B. C., Sarma, N., and Oki, E. (2015). Routing and spectrum allocation in elas-
tic optical networks: A tutorial. IEEE Communications Surveys Tutorials, 17(3):1776—
1800.

Cheng, J., Grossman, M., and McKercher, T. (2014). Professional CUDA C Program-
ming. John Wiley & Sons, Inc.

Corporation, N. (2019). Cuda ¢ programming guide.

Ellinas, G., Labourdette, J. F., Walker, J. A., Chaudhuri, S., Lin, L., Goldstein, E., and
Bala, K. (2004). Network control and management challenges in opaque networks
utilizing transparent optical switches. IEEE Communications Magazine, 42(2):S16—
S24.

Frazer, K., Inc., M. N., and (U.S.), N. S. F. (1996). NSFNET: A Partnership for High-
speed Networking : Final Report, 1987-1995. Merit Network.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition.

Kirk, D. B. and mei W. Hwu, W. (2010). Progamming Massively Parallel Processors.
Elsevier.

Lim, S. M., Sultan, A. B. M., Sulaiman, M. N., Mustapha, A., and Leong, K. (2017).
Crossover and mutation operators of genetic algorithms. International Journal of Ma-
chine Learning and Computing, 7(1):9-12.

Randhawa, R. and Sohal, J. S. (2010). Static and dynamic routing and wavelength assign-
ment algorithms for future transport networks. Optik - International Journal for Light
and Electron Optics, 121(8):702 — 710.

Sanders, J. and Kandrot, E. (2011). CUDA by Example: An Introduction to General-
Purpose GPU Programming. Addison-Wesley.

Silva, E. and Gabriel, P. (2019). Genetic algorithms and multiprocessor task scheduling:
A systematic literature review. In Anais do XVI Encontro Nacional de Inteligéncia
Artificial e Computacional, pages 250-261, Porto Alegre, RS, Brasil. SBC.

Teixeira, D. B. A., Batista, C. T., Cardoso, A. J. E., and Aragjo, J. d. S. (2017). A genetic
algorithm approach for static routing and wavelength assignment in all-optical wdm
networks. In Oliveira, E., Gama, J., Vale, Z., and Lopes Cardoso, H., editors, Progress
in Artificial Intelligence, pages 421-432, Cham. Springer International Publishing.

Varela, G. N. and Sinclair, M. C. (1999). Ant colony optimisation for virtual-wavelength-
path routing and wavelength allocation. In Proceedings of the 1999 Congress on Evo-
lutionary Computation-CEC99 (Cat. No. 99TH8406), volume 3, pages 1809-1816.

Wason, A. and Kaler, R. S. (2007). Wavelength assignment problem in optical wdm
networks. In IJCSNS International Journal of Computer Science and Network Security.

Zang, H. and Jue, J. P. (2000). A review of routing and wavelength assignment approaches
for wavelength-routed optical wdm networks. Optical Networks Magazine, 1:47—60.

