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Abstract. Image classification has been applied to several real problems. How-
ever, getting labeled data is a costly task, since it demands time, resources and
experts. Furthermore, some domains like disease detection suffer from unbal-
anced classes. These scenarios are challenging and degrade the performance
of machine learning algorithms. In these cases, we can use Data Augmentation
(DA) approaches to increase the number of labeled examples in a dataset. The
objective of this work is to analyze the use of Generative Adversarial Networks
(GANs) as DA, which are capable of synthesizing artificial data from the origi-
nal data, under an adversarial process of two neural networks. The GANs are
applied in the classification of unbalanced Covid-19 radiological images. In-
creasing the number of images led to better accuracy for all the GANs tested,
especially in the multi-label dataset, mitigating the bias for unbalanced classes.

1. Introduction
In the “Big Data” era, researches in Artificial Intelligence (AI) and Machine Learn-
ing (ML) have stood out since several algorithms in this area have been success-
ful in pattern recognition, organization, classification, and content recommendation
[Russell and Norvig 2009, Nguyen et al. 2019, Afonso et al. 2019, Sano et al. 2019].
Applications in many areas have made progress for companies, start-ups, research in-
stitutes, and governments. A good AI application results in a positive cycle, as more users
will use the system, thus generating more data that makes it possible to continuously
improve the models.

The development of AI took place mainly in the area of ML, specifically using
Deep Neural Networks [LeCun et al. 2015]. In contrast to expert systems that use infer-
ence from a knowledge base by applying first-order logical rules, neural networks are
characterized as connectionist artificial intelligence, building an internal representation of
the input data. Especially, deep learning is characterized by computing these representa-
tions in terms of the previous ones, composing a function of greater complexity that can
obtain better results.

The Generative Adversarial Networks (GANs) [Goodfellow et al. 2014,
Goodfellow et al. 2016] are deep neural networks composed of two networks that
confront each other intending to learn to imitate some data distribution. They have been
applied in various domains such as images, music, speech, etc. GANs belong to the set
of generative models, which produce new content. While discriminative models classify
data, given a set of attributes they predict a label to which that data belongs.

GANs can also be used for Data Augmentation (DA), which consists of com-
putational techniques in order to increase the number of labeled examples in a dataset



and thus improve the classification results [Fawzi et al. 2016, Antoniou et al. 2017]. One
area that has benefited from GANs and deep neural networks is image classification. In
[Frid-Adar et al. 2018], the authors proposed the use of traditional DA methods and the
application of GANs to generate synthetic data. The tests were performed using a com-
puter tomography database consisting of 182 images of liver lesions. The results showed
a significant improvement. In [Tanaka and Aranha 2019] the authors used the GANs, the
SMOTE, and ADASYN techniques to generate new data. The three datasets used were
not balanced. The accuracy and precision results found with the classifier using balanced
synthetic data from GANs were superior to those found with the original dataset.

In data classification, the algorithm will generally be biased in classifying the
examples according to the class with the highest occurrence. Common methods for deal-
ing with class imbalance are under-sampling and over-sampling, which will decrease the
set of observations with the majority classification, or increase the observations with the
minority classification, respectively [Russell and Norvig 2009]. In this work, we will use
the GANs to perform over-sampling, synthesizing examples with less quantity to equalize
with the ones with greater occurrence. Thus, we aim to investigate the use of GANs for
DA in the treatment of unbalanced classes in Covid-19 images, studying and comparing
different GAN models.

Covid-19 or SARS-Cov-2 spread rapidly in 2020 and has surpassed the number
of deaths compared to SARS-Cov-1[Gandhi et al. 2020, Garcia and Berton 2021]. It has
been cataloged as a worldwide pandemic by the World Health Organization (WHO) since
March 11, 2020. In many places, radiological tests may be more accessible, such as
computed tomography (CT) and chest X-rays, which detect the presence of pulmonary
alterations caused by the disease. We aim to improve the accuracy of results by employing
GANs in classifying these images. In our application, we considered COVID-19 against
normal X-ray images and COVID-19 against other diseases in multi-class classification.

Next, in Section 2, some related works are summarized. In Section 3 the ma-
terials and methods used in the work are presented. Section 4 brings the results of the
experiments and finally, Section 5 brings the final considerations.

2. Related work
Some authors summarized the applications of GANs in medical applications. For exam-
ple, [Yi et al. 2019] surveyed 150 articles, most of them explored GANs as data augmen-
tation to alleviate the data scarcity and overfitting problem. Other works performed image
captioning, cross-modality translation, automatic magnetic resonance protocol generation
have also been discussed. [Kazeminia et al. 2020] analyzed 79 innovative GAN-based pa-
pers in medical domains regarding image de-noising, reconstruction, segmentation, data
simulation, detection, or classification.

Regarding Covid-19 applications, some recent papers used GANs in order to in-
crease the training data volumes. [Goel et al. 2021] used the Whale Optimization Algo-
rithm (WOA) to optimize the hyperparameters of GAN’s generator to expand computed
tomography images of Covid-19. The proposed method was tested in datasets consisting
of Covid-19 and non-Covid-19 images. The accuracy considering an InceptionV3 DL
network was 99.22%.

[Loey et al. 2020] employed conditional GAN augmentation to improve the accu-



racy of multi-class classification to identify 4 classes (Covid, normal, bacterial pneumo-
nia, and viral pneumonia). The accuracy was 66.7%, 80.56% and 69.46% using AlexNet,
GoogleNet and ResNet18. Considering a binary classification they achieved 100% of
accuracy.

[Menon et al. 2020] presented a novel Mean Teacher + Transfer GAN (MTT-
GAN), they argue the mean teacher algorithm makes the gradient descent converge more
consistently and to a better global optimum than Adam optimization alone. They em-
ployed transfer learning to both the generator and discriminator from the Kaggle pneumo-
nia X-ray dataset, not ImageNet. The results are better than a baseline GAN. The accuracy
in a multi-class dataset was 83.45% and 84.91% on VGG-19 and AlexNet. Considering a
binary classification they achieved 99.26% of accuracy.

[Quan et al. 2021] proposed the X-ray Projected Generative Adversarial Network
(XPGAN) for projecting 3D CT volumes with golden ground truth labels to generate
more realistic X-ray images. They trained a deep learning model to classify Covid-19
chest X-ray images. In a binary dataset, they achieved 82.3% of f1-score.

Most papers proposed a modification to create their own GAN and did not com-
pare to other models. Here, we aim to compare four GANs models from literature for
data augmentation and evaluate their efficiency for binary and multi-class classification
of Covid-19 X-ray. Although in binary classification our results are lower than reported
in these works, the multi-class results are higher.

3. Material and methods
This section presents the datasets considered, the GANs and CNNs employed and their
parameters settings. We also present the computer environment and the experimental set
up to running the experiments.

3.1. Datasets

The datasets used are radiological images, publicly available on the internet, and are de-
scribed below.

3.1.1. Covid-19 X-ray images

The Covid-19 X-ray images [KAGGLE 2020a] dataset, downloaded for use in October
2020, consisted of 329 X-ray images or CT scans of the chest of patients with Covid-19,
Middle East respiratory syndrome (MERS), Severe acute respiratory syndrome (SARS),
Acute respiratory distress syndrome (ARDS), and Healthy. In addition, information was
given related to the patient’s health status, whether he survived the disease, gender, age
and place where the examination was performed, but this information has been removed
for our experiments.

The class distribution consists of 77% of the data to class Covid-19. Given the
small number of images of the remaining classes, the dataset was re-divided into Covid-
19 and Non-Covid (joining the other classes). Finally, after removing some noise images,
we considered 231 images: 67 of the class Non-Covid and 164 of the class Covid-19.
Some examples of images from both classes are shown in Figures 1 and 2, respectively.



Figure 1. Examples of images labeled as Covid-19 [KAGGLE 2020a].

Figure 2. Examples of images labeled as Non-Covid [KAGGLE 2020a].

3.1.2. Chest X-ray (Covid-19 & Pneumonia)

The Chest X-ray (Covid-19 & Pneumonia) [KAGGLE 2020b] dataset is composed of
6,432 X-ray images separated in two folders (test and training) that are subdivided into
three others (PNEUMONIA, Covid-19, NORMAL). The test folder consists of 20% of
the images. However, for the experiments in this work, 300, 300, and 500 random images
of the PNEUMONIA, Covid-19, and NORMAL classes were selected in order to train
the GANs in smaller slightly unbalanced datasets. For the evaluation, we considered 300
images of the Pneumonia, 300 images of Normal, and 116 images of the Covid. Some
examples of images of the three classes are shown in Figures 3, 4 and 5, respectively.

Figure 3. Examples of images labeled as Covid-19 [KAGGLE 2020b].

Figure 4. Examples of images labeled as NORMAL [KAGGLE 2020b].

3.2. GAN parameters
1. DCGAN: The implementation used was based on the DCGAN demonstrated by

Tensorflow1, with the following parameters:
1https://www.tensorflow.org/tutorials/generative/dcgan



Figure 5. Examples of images labeled as PNEUMONIA [KAGGLE 2020b].

• Batch: 50
• Epochs: 8,000 to 15,000
• Generator:

– 1 Dense Layer;
– 5 sequences of Conv2DTranspose (stride 2.2), LeakyReLu and BatchNormal-

ization
– 1 Conv2DTranspose with TanH activation

• Discriminator:
– 2 Sequences of Conv2D, LeakyReLu and Dropout (0.3)
– 1 Flatten
– 1 Dense

2. HyperGAN: The default configuration implemented in the library was used, the
layers considered are those shown in the HyperGAN github2:

• Epochs: 30,000 to 35,000
• Batch: 16
• Generator:

– 1 identity layer (name = z)
– 1 latent layer
– 1 split layer Uma28 0
– 1 layer multi head attention with ReLu activation and size 256
– 1 identity layer (name = w)
– 1 layer Z
– 1 Latent layer
– 1 Split layer 128 1
– 2 layers multi head attention with Relu activation and size 256 and 25,600 re-

spectively
– 1 reshape layer for 10*10*256 with Relu activation
– On output 1 layer of resizable stack with HardTanH activation

• Discriminator:
– 5 Convolution Layers with 64, 128, 256, 512 and 512 filters, with ReLu activa-

tion and stride=2
– 2 Layers “Linear” with ReLu activation and 1024 and 128 outputs, respectively
– 1 Multi Layer Atention Head and size 1

3. CycleGAN: A version of the network used and demonstrated in the article
[Welander et al. 2018] was used:

• Epochs: 150 to 200
• Batch: 10

– 1 Conv2D layer, with kernel 7 and stride 1 and 32 filters with ReLU activation
– 2 Conv2D Layers with kernel 3 and stride 2, 64 and 128 filters and ReLU acti-

vation
– 9 Blocks composed of two layers Conv2D of kernel three and stride 1 of size

128 and the first with ReLU activation
– 2 Conv2DTranspose Layers of stride 2, kernel 3, 64 and 32 filters and ReLU

activation;

2https://github.com/HyperGAN



– 1 ReflectionPadding2D Layer
– 1 Conv2D layer of kernel 7 and stride 1 with TanH activation

• Discriminator:
– 1 Conv2D layer with input data size and 64 stride=2 and LeakyReLU filters
– 3 layers of Conv2D with 128, 256 and 512, strides=(2,2,1), normalization and

activation LeakyReLU
– 1 Conv2D layer with 1 filter, kernel 4 stride 1

4. UNIT: A version of the same network presented in the article
[Welander et al. 2018] was used:

• Epochs: 150 to 200
• Batch: 10

– 3 Blocks composed of Two Conv2D with BatchNormalization, the first with
ReLU activation and the second with 50% Dropout, each with 256 filters

– 2 Layers of Conv2DTranspose with 3 stride 2 kernel and LeakyReLU activation,
with 128 and 64 filters

– 1 Conv2DTranspose layer with kernel and stride 1 and TanH activation
• Discriminator:

– 4 Conv2D Layers of kernel 3 and stride 2, of sizes 64, 128, 256 and 512 and
LeakyReLU activation

– 1 Conv2D layer with a single kernel filter and stride 1 with Sigmoid activation

3.3. CNNs Parameters
The ResNET503, VGG16, VGG194, and Xception5 generated by the Keras func-
tion were used without considering the predefined Imagenet weights. The follow-
ing set up was adopted.

• Batch: 64
• Epochs: 50 for Chest X-ray (Covid-19 & Pneumonia) and 35 for Covid-19 X-ray images

3.4. Computer environment
All tests were performed on Google Colab6, a computational environment for run-
ning notebooks in Python through GPUs offered by Google. Every time a run time
environment is requested, Google Colab provides access to a random computer.

3.5. Experimental set up
In order to train the GANs, it was necessary to adapt the Chest X-ray (Covid-19
& Pneumonia) and Covid-19 X-ray images datasets, as the size of the images was
different. We use the function resize from the CV2 library, offered by OpenCV, to
normalize the data to the size 256× 256, in RGB format. Then, the hold out was
applied and the images were randomly distributed, using the sklearn library into
70% for training and 30% for testing. The training images were used for training
the GANs models HyperGAN, DCGAN, CycleGAN, and UNIT, which were used
to generate the images that would be used in the Data Augmentation.

The tests were performed varying the CNNs to extract features from the
images. The ResNet50, VGG16, VGG19, and Xception models were consid-
ered. The tests performed to compare the accuracy of the models: i) without using
GANs as DA in the data; ii) applying over-sampling through GANs only in the
minority class; iii) expanding all dataset classes through GANs. Tables 1 and 2

3https://keras.io/api/applications/resnet/resnet50-function
4https://keras.io/api/applications/vgg/vgg16-function
5https://keras.io/api/applications/xception
6https://colab.research.google.com/



show the distribution of examples by class considering the three test cases. The
test set has only original images (no DA).

It is noteworthy that when comparing the performance of the same CNN
with two different training sets, with or without DA for example, before the model
is created the same seed is started, so that both have the same initial weights,
changing only the training data.

Covid-19 X-ray images
Normal Covid-19 Total

No DA 47 164 211
Balanced 167 164 331
Expanded 267 264 531
Test set 20 71 91

Table 1. The amount of images used in the experiments performed with the
dataset Covid-19 X-ray images.

Chest X-ray (Covid-19 & Pneumonia)
Normal Covid-19 Pneumonia Total

No DA 500 300 300 1100
Balanced 500 500 500 1500
Expanded 600 600 600 1800
Test set 300 116 300 716

Table 2. The amount of images used in the experiments performed with the
dataset Chest X-ray (Covid-19 & Pneumonia).

4. Results

4.1. Accuracy comparing GANs

Table 3 presents the classification accuracy in the test set comparing the use of
HyperGAN, DCGAN, CycleGAN, and UNIT and the four CNNs (ResNet50,
VGG16, VGG19, and Xception) for extracting features from the images.

For the Covid-19 X-ray dataset applying the GANs, there was improve-
ment in the ResNet50, VGG16 and VGG19 classification and no significant
change in the Xception. This is a small dataset with a very unequal data distri-
bution that did not favor the training of the generative network.

In the Chest X-ray (Covid-19 & Pneumonia) dataset, there was an in-
crease in the performance of all CNNs, in VGG16 and VGG19 the accuracy in-
creases around 3%. On the other hand, ResNet and Xception had a lower per-
formance without DA and achieved a significant increase in some of the tests,
especially where the DA was performed using DCGAN.

Comparing the CNNs results, VGG16 and VGG19 achieved greater ac-
curacy and consistent results in both Chest X-ray (Covid-19 & Pneumonia) and
Covid-19 X-ray datasets for all GANs applied.



Table 3. Classification accuracy in Covid-19 X-ray images and Chest X-ray (Covid-
19 & Pneumonia) datasets, considering HyperGAN, DCGAN, CycleGAN
and UNIT for data increase and different CNNs for features extraction.

ResNet50 VGG16 VGG19 Xception
Covid-19 X-ray images

No DA 0.7472 0.7582 0.7472 0.7802
Balanced with HyperGAN 0.8131 0.7692 0.7802 0.7802
Expanded with HyperGAN 0.7582 0.7692 0.7582 0.6813

Balanced with DCGAN 0.6483 0.7362 0.7802 0.7802
Expanded with DCGAN 0.6813 0.7582 0.7252 0.7582

Balanced with CycleGAN 0.2197 0.7802 0.7802 0.2197
Expanded with CycleGAN 0.7802 0.6923 0.7802 0.7802

Balanced with UNIT 0.7802 0.7802 0.7802 0.2197
Expanded with UNIT 0.2197 0.7252 0.7802 0.7802

Chest X-ray (Covid-19 & Pneumonia)
No DA 0.5572 0.9189 0.9287 0.2108

Balanced with HyperGAN 0.7863 0.9357 0.9148 0.8924
Expanded with HyperGAN 0.9050 0.9231 0.9217 0.9078

Balanced with DCGAN 0.9329 0.9329 0.9329 0.7779
Expanded with DCGAN 0.9106 0.9399 0.9427 0.9329

Balanced with CycleGAN 0.5027 0.9203 0.9315 0.2220
Expanded with CycleGAN 0.4483 0.9441 0.9259 0.5279

Balanced with UNIT 0.4189 0.9273 0.9427 0.8840
Expanded with UNIT 0.3868 0.9301 0.9385 0.5642

4.2. F1 score analysis
As accuracy can mask the results having a bias for the majority class, the results of
the measures precision, recall and F1 of each class are presented below for Hyper-
GAN. Tables 4 and 5 present the measures precision, recall and f1 for the dataset
Covid-19 X-ray images. In Table 4 DA was not applied, in Table 5 HyperGAN
was applied to: i) expanding only the minority class and ii) expanding all classes.

From the tested data we observe that in some cases without the use of
DA, the CNNs are biased to classify all instances in the majority class, causing
a small F1 for Non-Covid, including zero for Xception resulting in a division by
0 in the calculation of some measures statistics, represented as n/a in the tables.
However, increasing the number of images in all the classes led to better results
for all CNNs, increasing the F1 of Non-Covid class.

Tables 6 and 7 present the measures precision, recall and F1 for the
dataset Chest X-ray (Covid-19 & Pneumonia). In Table 6 DA was not applied,
in Table 7 HyperGAN was applied to: i) expanding only the minority class and ii)
to expanding all classes.

In this dataset when no DA is used the Normal class are not recognized
by some CNNs, while using GANs to expand the number of images for all classes
lead to better F1 scores.

Figure 6 presents examples of images generated by HyperGAN, DC-
GAN, CycleGAN, and UNIT, respectively, in the dataset Covid-19 X-ray im-
ages. GAN-generated Covid-19 X-rays can have the presence of fuzzy bound-
aries, mainly because of insufficient data volumes of Covid-19 images used for
training. Nevertheless, these fake images still can improve classification accuracy
as shown by the previous results.



Table 4. CNNs results in identifying the 2 classes extracted from the Covid-19 X-
ray dataset without the use of DA (using only the 211 original images that
are distributed between 47 Non-Covid and 164 Covid).

Patology Precision Recall F1 measure
ResNet-50
Non-Covid 0.40 0.30 0.34
Covid-19 0.82 0.87 0.84
VGG16

Non-Covid 0.43 0.30 0.35
Covid-19 0.82 0.89 0.85
VGG19

Non-Covid 0.40 0.30 0.34
Covid-19 0.82 0.87 0.84
Xception

Non-Covid n/a 0.0 n/a
Covid-19 0.78 1 0.88

Table 5. CNNs results in identifying the 2 classes extracted from the Covid-19
X-ray dataset using HyperGAN in order to: i) balance the dataset, adding
120 images in the Non-Covid class (totaling 331 images and making the
dataset more balanced with 164 Covid and 167 Non-Covid); ii) balance and
expand the dataset, adding 220 Non-Covid images and 100 Covid images
(totaling 531 images, with 267 Non-Covid and 264 Covid).

Balanced Expanded
Patology Precision Recall F1 measure Precision Recall F1 measure

ResNet-50
Non-Covid 0.71 0.25 0.37 0.44 0.35 0.39
Covid-19 0.82 0.97 0.89 0.83 0.87 0.85
VGG16

Non-Covid 0.46 0.30 0.36 0.47 0.35 0.40
Covid-19 0.82 0.90 0.86 0.83 0.89 0.86
VGG19

Non-Covid 0.50 0.45 0.47 0.44 0.35 0.39
Covid-19 0.85 0.87 0.86 0.83 0.87 0.85
Xception

Non-Covid n/a 0.0 n/a 0.20 0.15 0.17
Covid-19 0.78 1 0.88 0.78 0.83 0.80

5. Conclusion
This work analyzed techniques of deep neural networks such as Generative Ad-
versarial Networks (GANs) for the generation of artificial data to be used in the
problem of unbalanced classes. We tested the models in challenging scenarios
such as medical imaging with few labeled data.

The GANs HyperGAN, DCGAN, CycleGAN and UNIT were tested in
two datasets related to thoracic images of patients suffering from Covid-19 and
pneumonia. We noted that overall GANs have increased the accuracy of the clas-
sification. In the tests without DA, the classifier tends to classify all images as
being of the majority class, generating a biased classifier. Employing the GANs
this problem was reduced. In general, the use of GANs for data augmentation
brought improvements to the experiments, especially for ResNet-50 and Xcep-



Table 6. Results of CNNs in identifying the 3 classes of the dataset Chest X-ray
(Covid-19 & Pneumonia) without the use of DA, thus the Normal, Covid-19,
and Pneumonia classes maintained respectively 500, 300, 300 images.

Patology Precision Recall F1 measure
ResNet-50

Normal n/a 0.0 n/a
Covid-19 0.84 0.92 0.88

Pneumonia 0.50 0.97 0.66
VGG16
Normal 0.88 0.97 0.92

Covid-19 0.91 0.96 0.93
Pneumonia 0.98 0.85 0.91

VGG19
Normal 0.93 0.92 0.92

Covid-19 0.96 0.96 0.96
Pneumonia 0.92 0.93 0.93
Xception
Normal n/a 0.0 n/a

Covid-19 0.17 1 0.29
Pneumonia 0.97 0.12 0.21

Table 7. Results of the CNNs in identifying the 3 classes extracted from the Chest
X-ray (Covid-19 & Pneumonia) datasets with the use of DA by the Hyper-
GAN in order to: i) balance the datasets (200 images were added in the
Covid-19 and Pneumonia classes, totaling 1500 images); ii) expand and
balance the dataset (adding 100, 300 and 300 images in the Normal, Covid-
19, and Pneumonia classes respectively, making a total of 1800 images).

Balanced Expanded
Patology Precision Recall F1 measure Precision Recall F1 measure

ResNet-50
Normal 0.99 0.52 0.68 0.88 0.91 0.90

Covid-19 0.75 0.96 0.84 0.93 0.95 0.94
Pneumonia 0.72 0.98 0.83 0.92 0.88 0.90

VGG16
Normal 0.91 0.95 0.93 0.90 0.95 0.92

Covid-19 1 0.94 0.97 0.95 0.91 0.93
Pneumonia 0.94 0.92 0.93 0.94 0.90 0.92

VGG19
Normal 0.91 0.93 0.92 0.91 0.95 0.93

Covid-19 0.92 0.91 0.91 0.86 0.92 0.89
Pneumonia 0.92 0.91 0.91 0.96 0.89 0.92
Xception
Normal 0.95 0.80 0.87 0.90 0.89 0.90

Covid-19 0.86 1 0.92 0.86 0.98 0.92
Pneumonia 0.87 0.94 0.90 0.94 0.89 0.91

tion classifiers that obtained a high increase in accuracy/F1 in almost all the tests
performed.

One limitation we face using GANs is the high computational cost to train
the models and the need for a large set of labeled data. For future work, we can
enrich the results by improving these limitations. Moreover, for an intervention in



Figure 6. Examples of images generated by HyperGAN, DCGAN, CycleGAN and
UNIT (two of each model), from the dataset Covid-19 X-ray images.

public health, further analyses are required.
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