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Abstract. This work proposes a machine learning model trained from scratch to
classify and detect the presence of pneumonia from a collection of chest X-ray
images. Unlike most works that use deep learning to classify whether the image
is of a lung with pneumonia or not, that is, two classes to achieve a remark-
able classification performance, this model uses Oriented Gradient Histogram
for extra features from a provided chest X-ray image and classify it into three
classes, determining whether or not a person is infected with viral or bacterial
pneumonia. Despite greater complexity and use of traditional machine learn-
ing techniques, the highest accuracy achieved was 91.32% more higher than
works that use deep learning approaches and seeking to solve the same degree
of complexity.

Resumo. Este trabalho propõe um modelo de aprendizado de maquina para
classificar e detectar a presença de pneumonia a partir de uma coleção de
amostras de radiografias do tórax. Ao contrário da maioria dos trabalhos que
utilizam abordagens de aprendizado profundo para classificar se a imagem é de
um pulmão com pneumonia ou não, ou seja, duas classes para assim alcançar
um desempenho de classificação notável, este modelo utiliza Histograma de
Gradientes Orientados para extrair caracterı́sticas de uma determinada im-
agem de raio-X de tórax e classificá-la em três classes, determinando se uma
pessoa está ou não infectada com pneumonia viral ou bacteriana. Apesar de
uma maior complexidade e utilização de modelos tradicionais de aprendizado
de maquina, a maior acurácia alcançada foi de 91.32% superior a de trabalhos
que utilizam redes profundas e buscam resolver o mesmo grau de complexidade.

1. Introduction
Pneumonia is a common disease that remains the leading cause of death for children
in developing countries and elderly people in developed countries. WHO estimates
that more than 4 million premature deaths occur annually from diseases related to air
pollution, including pneumonia [World Health Organization 2018]. More than 150 mil-
lion people are infected with pneumonia annually, especially children under the age
of 5 [Rudan et al. 2004]. In poor regions, the problem may be further aggravated
by the scarcity of medical resources and specialists. For example, in the 57 nations
of Africa, there is a gap of 2.3 million doctors and nurses [Narasimhan et al. 2004],
[Naicker et al. 2009]. For these countries, accurate and rapid diagnosis it is very im-
portant to save time and money.



Neural network models and experiments are conventionally designed and per-
formed by experts in a continuous trial and error method. This process requires a lot
of time, knowledge and resources as most of them use deep learning techniques and dig-
ital image processing. To overcome this problem, a series of new and simpler models
capable of automatically classifying X-ray images were analyzed.

The proposed technique is based on machine learning algorithms, using Ori-
ented Gradient Histogram to extract relevant features from X-ray images. In order to
demonstrate the effectiveness of the proposed method with the minimization of compu-
tational cost as the main point, the best results were compared with the next-generation
dense pneumonia classification networks. In recent times, deep learning algorithms based
on Convolutional Neural Networks (CNN) [Shen et al. 2017] have become the standard
choice for medical image classifications, although such techniques are computationally
expensive, swallowing a ton of processing power. As an alternative, our study proposes to
solve a more complex problem than current studies that seek to classify whether the im-
age is pneumonia or not (2 classes). It was proposed to classify the image into 3 classes,
separating pneumonia into 2 groups, viral and bacterial. Something extremely relevant
for medical decision making when choosing which drug will be used in the treatment.
A conceptually simple but efficient model for dealing with the pneumonia classification
problem shown in Figures 1, 2 and 3.
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Figure 1. X-ray images without pneumonia.
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Figure 2. X-ray images with viral pneumonia.

2. Related Work

Recently, the use of algorithms capable of classifying chest x-ray images has been widely
applied in the literature. These algorithms are increasingly being used for the detec-
tion of pulmonary nodules [Huang et al. 2018] and classification of pulmonary tuber-
culosis [Lakhani and Sundaram 2017] as well as their use for the detection of COVID-
19 [Ali et al. 2021]. The performance of multiple convolutional models on various
human health abnormalities using X-ray images with the publicly available dataset
[Demner-Fushman et al. 2016], it was found that the same deep convolutional network
architecture does not perform well on all abnormalities [Islam et al. 2017].

Convolutional Neural Networks (CNNs) have an advantage over deep neural net-
work (DNNs) in that they have a human-equivalent visual processing scheme and an
extremely optimized structure for handling 2D and 3D images and Shapes, as well as the
ability to extract abstract 2D features through learning. Most importantly, gradient-based
learning algorithms are employed in training CNNs and are less prone to decreasing gra-
dient problems. Since the gradient-based algorithm is responsible for training the entire
network to directly lower the error criterion, highly optimized weights can be produced
by CNNs. Knowing this, it is common to observe the use of gradient-based algorithms to
classify X-ray images [Hamadi 2021], [Ali et al. 2021], [Sirazitdinov et al. 2019].

Among the studies that seek to classify pneumonia using X-ray images, the vast
majority are concerned with classifying the problem into two classes. The work of Gu
and Pan [Gu et al. 2018] sought to classify X-ray images of children into three classes
(Normal, Viral Pneumonia and Bacterial Pneumonia). For this, a CNN was used to extract
characteristics from the images and classification. This work obtained an accuracy of
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Figure 3. X-ray images with bacterial pneumonia.

0.8048± 0.0202.

3. Histogram of Oriented Gradients

Objects in images have shape, color and texture. Such features can usually be grouped
into scalar arrays, called image descriptors. In this sense, if we consider that each ob-
ject is represented by a point in a space, where each point has a total of n character-
istics, it is desirable that the array that describes this point is invariant to transforma-
tions (rotation, scale, luminosity). The Oriented Gradients Histogram (HOG) algorithm
[Dalal and Triggs 2005] is a descriptor that calculates the histogram of the gradients ori-
entation in the image. The final descriptor is an array of histograms extracted from the
image. The algorithm is based on the idea that the shape and appearance of an object can
often be described by the intensity of the gradients or the direction of the edges, without
prior knowledge of the position of such edges. The method initially consists of normaliz-
ing the image according to the lighting. Next, the gradients are computed.

Next, the image is divided into small spatial regions called cells. For each cell,
a local histogram of the cell pixel orientations is calculated. Cells can be rectangular or
radial in shape. After the histograms are computed, they are normalized. Normalization
is done by an accumulation of local histograms in slightly larger spatial regions called
blocks. The accumulated histograms are then used to normalize all cells in that block.
After normalization, a detection window is collected on the generated histograms, which
consists of the output of the HOG descriptor. The HOG descriptor uses the array of
gradient orientations to describe the shape of the analyzed image. Such description is
invariant to the position of the gradient



4. Materials and Methods

All experiments were based on a chest X-ray image dataset proposed in
[Stephen et al. 2019]. We used the OpenCV library [Bradski 2000] to extract the char-
acteristics of the images and the Weka framework [Hall et al. 2009] to execute the classi-
fication algorithms. All experiments were run on a desktop with 16GB of ram and Intel
Xeon processor e5 2620 v3.

4.1. Database

The original dataset [Jaeger et al. 2013] consists of three main folders (Training, Testing,
and Validation) and two sub folders containing pneumonia and normal chest X-ray im-
ages. Altogether the database has a total of 5856 X-ray images of the anterior-posterior
chest chosen from retrospective pediatric patients between 1 and 5 years old.

All data has been reorganized into a one set only. The pneumonia image group
was separated into two, viral and bacterial pneumonia, this information was contained in
the image metadata file. Our dataset has a total of 5216 images, where 1341 images were
normal, 2530 bacterial pneumonia and 1345 viral pneumonia.

In order to train the machine learning model, the used dataset represents the ra-
diographic images where each instance represents an image, each attribute represents the
response of the HOG descriptor and the class labeled according to the metadata of the
original dataset. As a way to reduce the resulting HOG’s array each image was resized
to 512 × 512 . The cell size used was 8 × 8. Thus, the generated base, which is called
Original Base, now has 5216 Instances (total number of images) and 1765 attributes (size
of the generated HOG descriptor response for each resized image).

4.2. Pre-processing the original database

Three other datasets were created in order to reduce and investigate the behavior of the
analysed classifiers, since the original base had too many instances and attributes. The
first reduction (Reduced Base 1) occurred using the Resample technique, thus balancing
the number of classes since the number of instances with the bacterial pneumonia class
was greater. This process reduced the original base by 1046 instances. The second reduc-
tion (Reduced Base 2) was using a feature selection method, Correlation-based Feature
Selection (CFS) [Hall 1999] with the best-first-search heuristic. This process reduced the
number of attributes to 123. The third reduction (Reduced Base 3) in the original database
was the use of Principal Component Analysis (PCA) [Wold et al. 1987]. This process ex-
tracted 572 attributes from the original base. Table 1 shows number of instances and
attributes for each base.

Dataset Number of Instances Number of Attributes

Original Base 5216 1765
Reduced Base 1 4170 1765
Reduced Base 2 5216 123
Reduced Base 3 5216 572

Table 1. Number of attributes and instances for each dataset.



5. Results
In order to evaluate and to validate the effectiveness of this proposal, two groups of clas-
sifiers were defined, a group containing supervised learning classifiers and a group with
ensemble systems. Several results were obtained, however, for simplicity reasons, this
study reports only the most important ones. All results shown are mean accuracy of
3× 10-fold cross-validation.

5.1. Supervised Learning
From the experiments performed with supervised learning techniques, 4 algorithms were
used: k-NN, Naive Bayes, Decision Tree (J48) and the neural network Multilayer Per-
ceptron (MLP) [Faceli et al. 2021]. The experiment with k-NN used a k ranging from 1,
3, 5 and 10. The best results were with k equal to 1. The decision tree was executed
with and without pruning, the bests results were with pruning. For the experiment with
neural networks, several combined parameters were used. The amount of network in-
teractions at 100, 500 and 1000. The learning rate ranged between 0.1, 0.01 and 0.001.
In addition number of neurons also varied in number of attributes+classes/2, number of
attributes+classes and number of classes. Table 2 shows the mean accuracy for each clas-
sifier.

Dataset k-NN J48 Naive Bayes MLP

Original Base 66.10 55.83 57.51 67.33
Reduced Base 1 80.44 76.16 55.15 80.93
Reduced Base 2 65.64 56.19 60.16 63.21
Reduced Base 3 34.85 50.36 53.31 56.25

Table 2. Performance of classifiers for all datasets.

In the k-NN method to Original Base it was possible to observe that the higher
the value of k, more accurate the algorithm was. The Reduced Base 1 obtained the best
results for this experiment. The value of K as it increased, decreasing the accuracy of the
algorithm, with the best value of K being equal to 1. In one of the 3 × 10-fold cross-
validation executions, the algorithm had an accuracy of 83.21%. The Reduced Base 2,
as the original, it was observed that the higher the value of K, the more accurate the
algorithm was. Reduced Base 3 was imprecise in all runs.

In the Decision Tree method, the Reduced Base 3 it was not bad in relation to the
other bases as k-NN. Furthermore, it was possible to observe that the reduction of bases
was beneficial (disregarding the Reduced Base 3).

In the Naive Bayes classifier the Reduced Base 2 obtained the best results due to
its smaller amount of attributes. However the MLP and the others classifiers the order of
the best accuracy were to Reduced Base 1, Original Base, Reduced Base 2 and finally the
Reduced Base 3.

5.2. Classifier Ensembles
Still aiming to investigate the behavior of traditional machine learning methods, experi-
ments with classifier ensembles were also performed. The AdaBoost, Bagging and Stack-
ing techniques were performed using the same classifiers presented in Subsection 5.1.



The AdaBoost and Bagging members varied between 10, 15 and 20. Nevertheless, no
significant performance variation was detected in the results. Among the obtained results,
the ranking of classifiers for AdaBoost and Bagging was as follows: the highest average
accuracy was obtained by MLP, followed by k-NN, J48 and Naive Bayes.

Stacking execution was divided into homogeneous and heterogeneous. For the
homogeneous one, the number of classifiers varied between 10, 15 and 20. The heteroge-
neous stacking was divided in 4 groups all composed of 20 classifiers in total. The first
group was composed by k-NN and J48 classifiers, the second group was composed by
J48 and Naive Bayes, the third group was composed by Naive Bayes and k-NN and the
last group was composed by k-NN, J48 and Naive Bayes.

Based on the obtained results, we can observe that the homogeneous Stacking
obtained better results than the heterogeneous one. However, among the heterogeneous
Stacking, k-NN combined with J48 was better. Table 3 shows the best average accuracy
of each ensemble for the different analysed datasets.

Dataset AdaBoost Bagging Stacking

Original Base 70.21 70.11 62.50
Reduced Base 1 89.52 91.32 75.77
Reduced Base 2 64.11 66.37 60.62
Reduced Base 3 59.03 62.77 50.59

Table 3. Performance of the classifier ensembles for all datasets.

Analyzing the results of AdaBoost, Bagging and Homogeneous Stacking , there
was no significant improvement in the algorithm for the amount of classifiers used, how-
ever the highest number (20) was more accurate.

Analyzing the individual results for each dataset, the ratings of the classifier en-
sembles were better than the individual classifiers. The algorithm that achieved a signif-
icant improvement was the Decision Tree, while Naive Bayes had a gets worse. Consid-
ering the mean accuracy, the ranking of classifier ensembles was Bagging in first position
followed by AdaBoost, Homogeneous Stacking and finally Heterogeneous Stacking. For
all bases Heterogeneous stacking with k-NN, J48 and MLP, was more satisfactory than
the other groups.

In the Original Base use Naive Bayes with Heterogeneous Stacking was not very
beneficial. For the Reduced Base 1 the J48 obtained a very considerable increase. Just
like in the Original Base, the Naive Bayes got worse. The results for Reduced Base 2 were
not as expressive as in the previous bases. However, if we take into account the individual
classifiers for this base, the classifier ensembles obtained a significant improvement for all
the methods, none of them decreased. For the results of Reduced Base 3 was possible ob-
serve some particularities. The k-NN decreased significantly compared to the individual,
while the decision tree and Naive Bayes was improved.

6. An Analysis of the Obtained Results
With the results seen in the previous section, it is possible to reach the conclusion that the
dataset reduction had a positive effect in the classification process, specially the balancing



of classes with Resample (reduced base 1). The use of the PCA, on the other hand, did
not bring any benefits to the classification process, obtaining unsatisfactory results when
compared to the other datasets.

In supervised methods k-NN with k equal to 1 and MLP with learning rate in
0.001, number of neurons equal to number of attributes and number of interactions at
1000 had the best results. Analyzing the methods of classifier ensembles, Bagging and
AdaBoost had better results than the Stacking methods. The classifiers used in the classi-
fier ensemble methods, k-NN and MLP had better accuracy.

In order to analyse the statistical validity of the obtained results, the non-
parametric Friedman test was performed, which revealed significant differences between
all binding criteria (p − value < 0.001), with a significance level of α = 0.05. As a
result, a p-value of 0.0010317868098302344 was obtained, which means that the results
are significantly different. Next, the post-hoc Nemenyi test was performed. Figure 4 il-
lustrates the Critical Difference (CD) diagram of the results of the Nemenyi test. As it can
be seen in this figure, Bagging with MLP was statistically better than all other analysed
classification models.

Figure 4. Nemenyi test of the bests classifiers.

The obtained results and the analysis of the statistical tests allow us to state that
the Bagging method with MLP was statistically superior to the others. Furthermore, it
was also possible to observe that the K-NN classifier stood out considerably in relation to
J48, Naive Bayes and Stacking.

When comparing the results obtained in this work with the results of similar
studies such as the work of Gu and Pan [Gu et al. 2018] which obtained an accuracy
of 80.42% to classify X-ray images into three classes (Normal, Viral Pneumonia and
Bacterial Pneumonia), using deep networks. Additionally, in [Stephen et al. 2019], the
authors obtained an average accuracy of 94.18% to classify X-ray images into two classes
(Normal, Pneumonia) using deep networks. It is possible to notice that while the cited
studies had a great effort to idealize a deep learning model, as well as the increase of the
data set (data augmentation), the present work had its best accuracy of 91.32%. There-
fore, we can observe that the obtained results were superior to the ones obtained by Gu’s
[Gu et al. 2018], which has the same complexity, and a result close to the ones obtained by
[Stephen et al. 2019]. This indicates that there is a great influence of the used classifiers
and also the set of features extracted with the HOG descriptor.

With the results obtained, it is believed that a fine adjustment in the extraction of
features using the HOG descriptor and the use of classifier ensembles, as well as the use
of neural networks and deep networks can bring even better results for the classification
of pulmonary X-ray images .



7. Conclusion

This paper presented an investigation of machine learning models to the classification
of pneumonia using x-ray images. In the proposed methodology, four classification algo-
rithms and three ensemble structures were assessed in an empirical analysis. Additionally,
three different dataset reductions were also assessed. Through this analysis, we can ob-
serve that the use of MLP achieved the highest accuracy levels, among all analysed clas-
sification algorithms. Among the classifier ensembles, the AdaBoost method obtained the
highest overall accuracy level. Finally, a comparison with two existing studies showed
that the obtained results were very competitive, which is promising.
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