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Abstract. Curriculum learning consists of training strategies for machine
learning techniques in which the easiest observations are presented first,
progressing into more difficult cases as training proceeds. For assembling
the curriculum, it is necessary to order the observations a dataset has ac-
cording to their difficulty. This work investigates how instance hardness
measures, which can be used to assess the difficulty level of each obser-
vation in a dataset from different perspectives, can be used to assemble a
curriculum. Experiments with four CIFAR-100 sub-problems have demon-
strated the feasibility of using the instance hardness measures, the main
advantage is on convergence speed and some datasets accuracy gains can
also be verified.

1. Introduction

In human learning, individuals usually learn subjects in an order of increasing dif-
ficulty, so that the learner may first grasp easier concepts before trying to assimi-
late harder topics. In contrast, most Machine Learning (ML) methods present the
training data to the learning system without much regard to their difficulty level.
Curriculum learning (CL) is a learning paradigm which attempts to approximate
the ML process to that of human learning [Bengio et al. 2009], by presenting the
training data to the learning algorithm in a meaningful order, beginning with easy
examples but increasing their difficulty as training proceeds. This methodology has
been found to improve learning for some domains, by either increasing generalization
performance and/or decreasing convergence time [Weinshall et al. 2018].

Seeking to characterize the difficulty of the data points in a classification
problem, there is some recent literature which extracts simple measures from the
training datasets in order to quantify their hardness level, that is, how hard each
observation is to classify [Arruda et al. 2020, Smith et al. 2014]. Instance hardness
is defined in [Smith et al. 2014] as the likelihood an instance has to be misclassified
by a diverse set of classification models. These authors also propose to quantify
different aspects which may expound the hardness level of an instance, in a set of
what they call “hardness measures” (HM).

The topics of CL and HM can be considered somewhat related. While the
former needs to know which examples are easy and hard in order to rank them prop-
erly during the learning process, the latter is able to assess the difficulty levels of



the individual observations from a dataset. Therefore, one is expected to profit from
their combination. This is the hypothesis investigated in this work: “Can instance
hardness measures be used to properly rank the instances in curriculum learning?”.
The work [Smith and Martinez 2016] has investigated how instance hardness as mea-
sured by a posterior class probability of multiple ML models could be used in CL.
More recently, [Hacohen and Weinshall 2019] have employed a Support Vector Ma-
chine (SVM) classifier trained over features extracted from pre-trained deep learning
network models, in a transfer learning strategy. Here we use a similar approach, but
employing simpler measures able to describe why a given instance is hard to classify.
Experimentally, we have observed that the average hardness level of a dataset is in
general a proxy to whether CL can be beneficial and gains are verified mainly for
datasets with higher average hardness levels.

This paper is organized as follows: Section 2 presents background on CL and
HM. Section 3 presents the methodology adopted in the work. Section 4 presents
and discusses experimental results achieved for different subsets of the CIFAR-100
dataset. Section 5 concludes this paper and discusses future work opportunities.

2. Background

This section presents background on CL and HM. In the following definitions, let
T denote a training dataset composed of N pairs (xi, yi), where xi is a particular
observation described by d input features and yi is its label.

2.1. Curriculum Learning

Curriculum learning (CL) consists of guiding the training of Machine Learning (ML)
models such that the observations of a dataset are presented in a particular mean-
ingful order [Bengio et al. 2009, Weinshall et al. 2018]. Usually the observations are
ranked according to their difficulty level and ordered from easier to harder, so that
the system first learns the simpler aspects of the task from the easier examples before
learning the more complex ones from the more difficult cases [Bengio et al. 2009].
One of the centerpieces in developing a curriculum is finding a good ranking (or
scoring) system, which depends on the problem at hand [Silva and Costa 2018].

Weinshall et al. [Weinshall et al. 2018] actually understand that defining a
CL strategy in practice consists of solving two major problems: scoring the data ac-
cording to their difficulty; and defining a scheduling procedure based on the resulting
ranking. Formalizing this, Hacohen and Weinshall [Hacohen and Weinshall 2019]
define scoring and pacing functions, which together define a curriculum.

A scoring function is one function which determines the difficulty level of
the individual observations in the training dataset, enabling ranking and sorting
the data. Formally, it is any function f : T → R which allows us to say that
an observation (xi, yi) is more difficult than another (xj, yj) if f(xi, yi) > f(xj, yj)
[Hacohen and Weinshall 2019]. A pacing function is one function which determines
the pace in which the data is presented to the learning algorithm. It is a function
which determines the subsets T

′
1, . . . , T

′
M ⊆ T of size |T ′

i | = g(i) from where M
training mini-batches {Bi}Mi=1 are sampled. A particular subset T

′
i contains the g(i)

first examples from the training dataset, when sorted in ascending order by the value



of the scoring function. In this way, the first subsets contain the easiest examples
but harder cases are progressively included as training proceeds.

Algorithm 1 presents a pseudocode of CL for producing the training mini-
batches [Hacohen and Weinshall 2019]. Given a dataset T , a scoring function for
ordering the data and a pacing function for sampling them, the algorithm outputs a
sequence of mini-batches that are recommended for training the learning algorithm.
Line 1 first sorts the data items in ascending order of difficulty. The for loop in line
3 assembles the mini-batches sampling without replacement from the ordered set T ,
following the pace of increasing difficulty given by the pacing function.

Algorithm 1: CL pseudo-code [Hacohen and Weinshall 2019]

Input: scoring function f, pacing function gϑ, dataset T , desired number
of batches M .

Output: sequence of mini-batches [B′
1, ...,B

′
M ].

1 sort T according to f, in ascending order
2 result← []
3 forall i=1, ..., M do

size← g(i)
T

′
i ← T [1, ..., size]

uniformly sample B′
i from T

′
i

append B′
i to result

4 return result

The pacing function employed in this work is the exponential pacing function.
It has a fixed step length, but increases the batch size at each step. Let step length
be the number of iterations in each step, inc be an exponential factor used to in-
crease the amount of data used for sampling the mini-batches in each step and
starting percent be the fraction of the data used in the initial step, the fixed expo-
nential pacing function can be defined by Equation 1 [Hacohen and Weinshall 2019],
where N is the number of instances in the dataset:

g(i) = min(starting percent · incb
i

step length
c, 1) ·N. (1)

2.2. Instance Hardness Measures

Smith et al. [Smith et al. 2014] introduced the concept of instance hardness as the
likelihood each observation of a dataset has to be misclassified, despite the learning
algorithm employed. Given a training dataset T , let h be a hypothesis mapping the
input feature vectors to their corresponding labels, induced from T . The probability
of h correctly classifying a particular observation xi is p(yi|xi, h). Smith et al.
[Smith et al. 2014] define the hardness level of an instance xi as:

IHA(xi, yi) = 1− 1

|A|

|A|∑
j=1

p(yi|xi, hj). (2)



Where A is a set of representative learning algorithms. Therefore, the hardness
level of an instance depends not only on its own features but also on the remaining
training data and the performance of a set of representative algorithms producing
classification hypothesis hj from T . Discussions on how the set of representative
algorithms is chosen are beyond the scope of this work. Our interest is on the
subsequent analysis of reasons why an instance is hard to classify.

Whilst instance hardness as defined in Equation 2 measures the probability
that an instance will be misclassified, giving insight on the complexity and hardness
levels of the observations, there are various underlying aspects that influence the
difficulty of an observation. Seeking to explore why an instance is misclassified,
Smith et al. [Smith et al. 2014] define a set of hardness measures (HM), each one
measuring an aspect that may influence in an observation being misclassified and,
in consequence, in its hardness level. Next we present the set of hardness measures
from the literature [Smith et al. 2014] employed in this work.

• k-Disagreeing Neighbors (kDN): estimates the local overlap of an instance in
the input space by regarding its nearest neighbors. The kDN of an instance is
the percentage of its k nearest neighbors that do not share its label. Letting
kNN(xi) be the set of the k nearest neighbors of the instance xi, kDN can
be formally defined as:

kDN(xi) =
]{xj : xj ∈ kNN(xi) ∧ yj 6= yi}

k
. (3)

Higher values of kDN imply the instance is surrounded by observations from
different classes, resulting in a strong class overlap and a more complex clas-
sification.

• Disjunct Class Percentage (DCP): this measure first builds a decision tree
using T and considers the percentage of instances in the disjunct of xi which
share the same label as xi. The disjunct of an observation corresponds to the
leaf node where it is classified by the decision tree.

DCP (xi) = 1− ]{xj|xj ∈ Disjunct(xi) ∧ yj = yi}
]{xj|xj ∈ Disjunct(xi)}

(4)

where Disjunct(xi) represents the set of instances contained in the disjunct
where xi is placed. Here we adopt the complement of the original DCP
measure such that easier instances will register lower DCP values, having a
larger percentage of examples sharing the same label as them in their disjunct.

• Class Likelihood Difference (CLD): takes the difference between the likeli-
hood xi has to yi and the maximum likelihood it has to any other class:

CLD(xi) =
1− (P (xi|yi)P (yi)−maxyj 6=yi [P (xi|yj)P (yj)])

2
(5)

The difference in the class likelihood is larger for easier instances, because the
confidence they belong to their classes is larger than that of any other class.
Here we take a normalized version of the measure, so that easier instances
show a lower CLD value and it is bounded in the [0, 1] interval.



Other HMs are defined in the work of Smith et al. [Smith et al. 2014] and,
more recently, in [Arruda et al. 2020]. We have chosen here measures with high-
lighted performance in describing the hardness level of the observations of a dataset,
as experimentally evaluated in [Arruda et al. 2020].

3. Methodology

The usage of HM in CL is simple using the methodology proposed in
[Hacohen and Weinshall 2019]. We embed HM as the scoring function f in Algo-
rithm 1, allowing the use of those metrics with minimal modifications to the CL
framework, which we describe next. All HMs as described in Section 2 are al-
ready standardized so that higher values are output for harder instances. The
PyHard package was used in the computation of the HM1. In our experimental
evaluation, we use as base an experimental framework delineated in the recent work
of [Hacohen and Weinshall 2019]2, which uses a convolutional network (CNN) of
moderate size for classifying a group of images from the CIFAR-100 dataset. The
CIFAR-100 dataset contains 60,000 32x32x3 colored images divided into 100 classes
[Krizhevsky et al. 2009]. The classes are also grouped into super-classes, each one
comprising five similar classes. Each super-class contains 3,000 images, further di-
vided into 2,500 training images and 500 test images. The datasets used in this work
are: (i) “people”, (ii) “small mammals”, (iii) “trees” and (iv) “vehicles 2”, which show
different difficulty levels, as discussed in Section 4.

The CNN used in the experiments has eight convolutional layers with 32, 32,
64, 64, 128, 128, 256 and 256 filters, respectively. The first six layers have filters of
size 3 x 3, while the last two layers have filters of size 2 x 2. Additionally, in every
second layer there is a 2 x 2 max-pooling layer and a 0.25 dropout layer. After the
convolutional layers, the units are flattened and there is a fully-connected layer with
512 units followed by a 0.5 dropout layer. The output layer is a fully-connected layer
with a number of output units equal to the number of classes, followed by a softmax
layer. Finally, the network is trained using a SGD optimizer, with cross-entropy loss
and batch size of 100.

Hacohen and Weinshall [Hacohen and Weinshall 2019] used a transfer scoring
function in their experiments. It takes the Inception network [Szegedy et al. 2016],
pre-trained on the ImageNet dataset [Deng et al. 2009], runs it through each train-
ing set observation and uses the activation levels of the penultimate layer of the
network as a feature vector. This yields a new dataset consisting of the extracted
feature vectors of the images (with 2048 features) and their original labels. Finally,
a SVM classifier is trained over this new dataset and this classifier’s classification
probability scores are used as the scoring function. Given these scores, the network
is trained using a fixed exponential pacing function. We also use the features from
the Inception network to build the datasets fed into the HM, but without the need
of making use of the SVM classifier.

Furthermore, results for four distinct curricula are presented for each dataset
and hardness measure, namely:

1https://pypi.org/project/pyhard/0.2/
2Publicly available at www.github.com/GuyHacohen/curriculum learning

https://pypi.org/project/pyhard/0.2/
https://github.com/GuyHacohen/curriculum_learning


• Curriculum: uses the sequence of mini-batches [Bi]
M
i=1 resulting from the CL

algorithm with the scoring function, i.e. uses training data in an order of
ascending difficulty;

• Anti-curriculum: uses an anti-curriculum scoring function, meaning it uses
the inverse training order demanded by the curriculum, training on data in
an descending order of difficulty;

• Random: uses a randomized training order, independent of the scores. This
is the standard strategy to train neural network models;

• SVM [Cortes and Vapnik 1995]: uses the SVM scoring function of
[Hacohen and Weinshall 2019].

The complete pipeline for the use of HM is illustrated in Figure 1. First the
set of images, originally unstructured, is structured into an feature-value format by
the extraction of a fixed set of features from the images using a pre-trained Inception
neural network model. Next, the HMs take the structured data as input to estimate
the hardness level of the instances. Allied to a pacing function, the CL strategy is
employed to generate a given sequence of batches to train the CNN models.

Since the main interest of the study lies in the scoring functions, the pacing
function used is kept the same as that employed by [Hacohen and Weinshall 2019],
namely the fixed exponential pacing function, with parameter values step length =
100, inc = 1.9 and starting percent = 0.04.

Figure 1. Flowchart of steps in the framework implemented, based on Algorithm 1.

For the evaluation of the experimental results, both the test accuracy and
standard deviation are observed for multiple runs of each scoring function, as done
in the reference work [Hacohen and Weinshall 2019]. Each evaluated curriculum
was executed 30 times. Since the main effects we want to observe from the use
of the curriculum are the improvement in generalization ability and in convergence
speed, as in [Hacohen and Weinshall 2019] these metrics were analysed from two
perspectives: how they behave across the epochs and which are their final values,
concerning a mean and standard deviation from the various runs.

4. Results

We present next the experimental results of this work. The codes employed
for generating the results can be consulted at https://github.com/ghnunes/

bracisCurriculum.

https://github.com/ghnunes/bracisCurriculum
https://github.com/ghnunes/bracisCurriculum


4.1. Hardness measures results

We first analyze the results obtained when each of the HMs experimented are em-
ployed to assemble the curriculum. The average and standard deviation accuracies
of the CNN models are monitored for increasing numbers of batches. The results are
contrasted to those of an anti-curriculum using the same measures and of a standard
random sampling of the images for training, disregarding their hardness levels.

The results for the k-DN HM, using k = 5 as in [Smith et al. 2014], are
plotted in Figure 2. The curriculum strategy is presented in blue, the anti-curriculum
is colored in green and the random strategy is shown in red.

(a) Dataset “people” (b) Dataset “small mammals”

(c) Dataset “trees” (d) Dataset “vehicles 2”

Figure 2. Average accuracy results of the CNN models using the k-DN measure as
scoring function, for increasing batches.

The plots from Figure 2 show that the curriculum in general allows to obtain
higher accuracy rates earlier than the other strategies, speeding up the network
convergence. In contrast, the anti-curriculum impairs the accuracy performance in
earlier stages of the CNN training, when the batches present predominantly hard
instances. For some datasets, such as“people”and“trees”, there is even a decrease of
performance in early training epochs. As training progresses, the accuracy raises for
all strategies. In fact, as more batches are generated, they tend to show an average
hardness level and include the same instances, justifying the raise in the accuracy
values even for the anti-curriculum strategy. Eventually the accuracy of the anti-
curriculum may catch up the accuracies of the other strategies, as in the dataset
“vehicles 2”. But in other datasets such as “people” and “small mammals”, the
accuracy rates of the anti-curriculum remain inferior to those of the other strategies,
specially when compared to the curriculum. The inferior performance of the anti-
curriculum compared to the curriculum counterpart, in speed of convergence and/or
generalization performance, evidences the k-DN measure is effective in ordering the
training data according to their hardness levels. The random scoring had in general
intermediate performance. It is worth noting that in the dataset “trees”, the random



strategy was quite effective for lower batch numbers. Whilst the anti-curriculum was
the worst strategy in all cases, specially for early training batches.

Similar tendencies are verified when DCP is used as a scoring function (Figure
3), although the accuracies in earlier training epochs seem more unstable and present
more variation than those observed in the case of kDN. The DCP curriculum (in
blue) in general improves the convergence speed more than the random (in red) and
anti-curriculum (in green) strategies, as evidenced by the blue line being above the
red and green lines in the early stages of the training (and eventually through all the
training process, as in the“people”dataset). The curriculum has also shown superior
test accuracy performance than the anti-curriculum in most of the cases. Therefore,
DCP was also effective in ordering the training instances according to their hardness
levels. In dataset “trees”, the difference of the curriculum to the random strategy
for early training batches was more subtle than that observed when kDN was used
as a scoring function. And in the dataset “vehicles 2” all training strategies tend to
present similar test accuracies as training progresses.

(a) Dataset “people” (b) Dataset “small mammals”

(c) Dataset “trees” (d) Dataset “vehicles 2”

Figure 3. Average accuracy results of the CNN models using the DCP measure as
scoring function, for increasing numbers of batches.

For CLD we observe again (Figure 4) that the curriculum in general im-
proves the convergence speed of the CNN models and in some cases also improves
the generalization ability as measured by the test set accuracy (as observed for
datasets “small mammals” and “people”). As kDN and DCP, CLD was in general
effective for ordering the training instances according to their hardness levels. But a
counterintuitive result is observed for the dataset “trees” and after 500 batches the
anti-curriculum achieves higher accuracy rates than all other strategies. Overall, the
“trees” dataset has shown more distinct results compared to the other three datasets
used. In dataset “vehicles 2”, again all strategies behave similarly as more batches
are presented.



(a) Dataset “people” (b) Dataset “small mammals”

(c) Dataset “trees” (d) Dataset “vehicles 2”

Figure 4. Average accuracy results of the CNN models using the CLD measure as
scoring function, for increasing numbers of batches.

4.2. Discussions

The results from the previous section prove that different HMs are suitable for CL,
although the effectiveness may vary per dataset. Overall, using a CL strategy might
be of particular interest if one wants to train the CNN models for a lower number of
epochs due to computational resource constraints, as the curriculum in general gets
better accuracy results earlier than the other strategies.

Figure 5 presents the final accuracy values achieved per dataset and cur-
riculum ordering strategy, that is, the test accuracy after 3500 batches of data are
presented. In these plots the final accuracy values achieved when the SVM cur-
riculum strategy from [Hacohen and Weinshall 2019] is used are also presented. In
general, the SVM curriculum achieved the best accuracy results. Only in the dataset
“trees” the results of the SVM curriculum were very similar to those of the HM scor-
ing functions. While taking the probabilities of classification output by a robust
SVM model seem to provide better orderings, the computational cost involved is
far superior to that of computing the HMs. An SVM can require up to cubic op-
erations in the number of observations N [Bottou and Lin 2007]. kDN and CLD
have a linear asymptotic cost and DCP has an asymptotic cost of O(NlogN), for
N > d. Therefore, they are much simpler to compute compared to the SVM-based
scoring function. As the results of the HMs vary for different datasets, one strat-
egy worth future studies is to aggregate the ranking provided by multiple measures
and test other instance hardness. In this way one may take into account different
characteristics which can influence the hardness level of an observation.

Taking a closer look at the datasets themselves, Table 1 presents the average
(and standard deviation in parenthesis) of the different HMs per dataset. That
is, we compute the HMs for each individual observation of a dataset and take the
average of such values as an aggregate measure of difficulty, aka complexity level



(a) Dataset “people” (b) Dataset “small mammals”

(c) Dataset “trees” (d) Dataset “vehicles 2”

Figure 5. Comparison of the accuracy obtained with the baseline.

of the dataset [Lorena et al. 2019]. The highest values per HM are highlighted in
boldface and the lowest values are highlighted in italics. What stands from this
table is that the “people” dataset was in average the hardest, whilst the “vehicles 2”
dataset is the easiest. Standard deviation values are usually quite high, specially
for the CLD measure. This indicates a large variation of values for all datasets and
HMs. The dataset “trees” figures as the second hardest dataset, followed by the
“small mammals” dataset.

Table 1. Difficulty of datasets based on average instance hardness measures (stan-
dard deviations in parenthesis)

Dataset
HM people mammals trees vehicles
kDN 0.608 (0.292) 0.363 (0.325) 0.526 (0.317) 0.148 (0.254)
DCP 0.676 (0.207) 0.501 (0.305) 0.611 (0.261) 0.271 (0.318)
CLD 0.428 (0.489) 0.274 (0.443) 0.417 (0.491) 0.098 (0.297)
SVM 0.604 (0.010) 0.233 (0.228) 0.237 (0.020) 0.052 (0.040)

CL was particularly effective for the datasets “people” and “small mam-
mals” regarding the final generalization performance. In the datasets “vehi-
cles 2” and “trees”, CL was not so advantageous. For “vehicles 2”, the easiest
of the problems, the results are in accordance to what is expected in CL theory
[Hacohen and Weinshall 2019, Weinshall and Amir 2020, Weinshall et al. 2018]. In
fact, when a topic is already easy, CL may not be necessary at all. In that case, a
conventional random sampling will already approximate the order of the curriculum.
But harder problems tend to be easier to grasp by employing a CL strategy. The



“trees” dataset breaks the pattern, since it is the second hardest from our pool and
yet CL did not present outstanding results for it. There may be other sources of
difficulty for this particular dataset which are not being captured by the scoring
functions employed in this paper.

5. Conclusion

This work has explored the synergy of the Curriculum Learning and Instance Hard-
ness measures topics, as by definition the former require the instances of a dataset
to be ordered according to their difficulty level, which can be measured by the lat-
ter. We have employed the hardness measures as scoring functions in a general CL
algorithm. Knowing that different hardness measures quantify distinct aspects that
contribute to an observation being misclassified, we have also compared the results
of three different instance hardness measures extracting distinct characteristics from
the data.

Experiments with four CIFAR-100 sub-problems have demonstrated the fea-
sibility of using the instance hardness measures to assemble a curriculum for training
CNN models. The main advantage is on convergence speed, which is usually faster
when a CL strategy is employed. For some datasets accuracy gains can also be ver-
ified. Interestingly, these gains are more evident for some harder datasets compared
to easier problems, as measured by the average hardness level of the instances they
contain. This makes evaluating the hardness of a dataset a possible initial proxy to
decide whether employing a curriculum learning strategy for a new problem would
be advisable.

Even though this work serves mainly as a proof of concept that curriculum
learning and instance hardness measures may be applied together, a more thorough
experimentation is still necessary in order to derive more definitive conclusions. More
datasets should be used and other ML/deep learning techniques can also be tested.
The usage of a pre-trained Inception network for extracting features from the images
can also bias the results and other pre-trained models can be used instead. There
are also a plethora of other hardness measures based on other aspects of the data,
whose performances can differ from those presented here. Therefore, the test of
other instance hardness measures in curriculum learning poses as another possible
future work. A combination of the rankings provided by multiple hardness measures
is also worth investigating, as each one of them provides an alternative perspective
on the difficulty level of the instances.

In addition, this work has only focused on the effect that the scoring function
may have on curriculum learning. However, the pacing function is also an important
component which was not explored. Therefore, experimenting on the use of other
pacing functions is also a worth future work.
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