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Abstract. RBF-based neural networks models (RBFNN) are classic machine
learning methods which contains a layer of Radial Basis Functions (RBF) which
act as the feature extractor for the final layer, which performs the pattern recog-
nition. The estimation of RBF radius during the model training is one of the most
crucial tasks for this method and directly affects its generalization power and
accuracy. This works presents a new heuristic for radius estimation and employ
computational experiments to assess its performance against other approaches
using 14 classification problems. The proposed method is shown competitive
performance, winning the other approaches in 9 ou of 14 problems.

Resumo. Redes Neurais baseadas em Fungoes de Base Radial (RBFNN) sdo
métodos cldssicos do aprendizado de mdquina que contém uma camada de
Fungées de Base Radial (RBF) que atuam como extrator de caracteristicas para
a camada final, que executa o reconhecimento de padroes. A estimagdo do
raio das RBFs é uma das atividades mais cruciais do treinamento de modelos
RBFNN e afeta diretamente o seu poder de generalizacdo e acurdcia. Neste
trabalho é apresentado uma nova heuristica para estimacdo do raio e experi-
mentos computacionais sdo empregados para medir sua eficdcia comparada a
outras abordagens usando 14 problemas de classificacdo. A método proposta
mostrou uma eficdcia competitiva, vencendo os demais métodos em 9 dos 14
problemas.

1. Introduction

The Radial Basis Functions Neural Networks (RBFNN) are a widespread shallow archi-
tecture of neural network that gather some key desirable properties as simplicity, flexi-
bility and explainability. The core idea of RBFNN is the employment of Radial Basis
Functions (RBF) in their hidden layer, where each neuron represents a center, i. e., an
interest point in feature space and its neighborhood, and the RBF measures the distance
of an input data x; with these centers. Then, each neuron (with its center and width) rep-
resent the features of one or more patterns, and the distance of the input data from these
centers means the adherence or not to those patterns. Finally, the output layer is responsi-
ble to combine the distances from the centers and recognize the patterns. RBF Networks
are universal aproximators and can handle linear and nonlinear problems properly.

The first RBFNN models were proposed more than 30 years ago in
[Rumelhart 1986], but they still being actively employed in the industry and academia, for



instance in Nonlinear Control ([Wang et al. 2021],[Kaaniche et al. 2021]), Sensor Valida-
tion ([Alves et al. 2021]), Renewable Energy ([Barreto et al. 2021]), among others appli-
cations.

Besides all those recent advances, the vanilla RBFNN still is employed in several
industrial and academic problems, being this one of the most classic and used models of
Machine Learning. There are still several enhancement opportunities for RBFNN, includ-
ing the optimization of the number of neurons of the hidden layer (the number of centers),
the chosing of optimal points for the centers and, mainly, the radius of influence of each
center, also known as widths. Many times these parameters are chosen empirically.

This last parameter - the influence radius or width - determine the amount of over-
laps between radial functions, as well as the generalizability of the network. The objective
of this work is to present the new method Maximum and Minimum Distances and Num-
ber of Centers (MMDNC) for calculating the radius of the function radial, applying it to
supervised learning problems, more specifically of classification, whose goal is to pre-
dict qualitative target variables from a set of independent variables, previously observed.
The results obtained by the proposed method were also compared with some traditional
methods, as the proposed by [Haykin 1994], described in Equation 2, where o is the fixed
value of the radii, d,,,, 1s the maximum distance between the centers and m is the number
of centers.

The remaining of the paper is organized as follows. In Section 2 is presented the
background concepts abount RBFs and RBFNNs, and also reviewed recent advances in
the field. In Section 3 a new heuristic method for definition of RBF widths is proposed,
comparing with previous methods. In Section 4 computational experiments are employed
in order to assess the reliability of the proposed heuristic. Finally, in Section 5, the con-
clusions are presented, as the remarks of future works.

2. Background

According to [Buhmann 2003], Radial Basis Functions (RBF) are functions ¢ : R — R
which depends only on the distance ||z — u|| from a fixed point x4 (the center or origin
point) to another given point z, both p, x € RP where p is the dimensionality of the input
data, and the radius (or width) ¢ which determines the influence maximum extent of the
distance ||z — p||. Hereafter, the distance calculation and the parameters y; and o of
each RBF ¢; will be implicit in the notation, such that ¢;(z) = ¢;(||Jz — 4|, o). In the
Table 1, some common RBF functions employed in RBFNNs models are listed and the
relationships between ;1 and o becomes more clear in each case.

Name p(x)
Logistic 1+ exp <”$;—§”H
Gaussian exp <_”x2+/2”“2>

Multiquadratic V14 (oflz — )2
Inverse Multiquadratic \/ﬁ

Table 1. Most common Radial Basis Functions



RBF Neural Networks (RBFNN) were first proposed in [Rumelhart 1986] and are
neural networks with a three-layered architecture (input, hidden and output), as shown in
Figure 1, where the RBFs are employed as the activation functions in the hidden layer.
According to [Haykin 1994], RBF networks has three types of parameters: the centers
1; € R, the variances (or widths) o; € RT for each center y; and weights w; € R of the
output layer, for 7 = 0..K and K € NT the number of centers.

Then, given a training dataset D = {x;,y;}, where x; € R? are the p independent
attributes, y; € RY are the ¢ dependent attributes (or labels), for ¢ = 1..n and n the number
of instances in D, the RBF network input layer is represented by the ¢ inputs in z;, the
hidden layer contains K neurons with RBF activation functions parametrized by j; and
oj, for 7 = 1..K, and the output layer contains ¢ neurons which are linear combinations
of the hidden layer outputs weighted by w;, such as each output g, is defined in Equation
1, for z =1..q.

K
Je = wao+ > wsj(x;) (1)

j=1

Is worth noting that each RBF function has two main parameters: the center i,
which is different in each ¢, and the radius o, which may be different for each ¢; or
unique and shared among all of them. The radius o governs the width of influence of
each RBF and have direct impact in the generalization and specialization capabilities of
the RBFNN. Together with the chosing of K and the centers y;, the chosing of optimal
values of o is determinant to avoid the underfit or overfit of RBFNN models.

It is also notable that the hidden layer acts as a feature extraction layer, creating an
embedding space to be later used by the output layer. Also, the radial functions are used
to transform non-linearly separable problems into linearly separable ones, whose patterns
are recognizable by each linear output neuron.

There exist many approaches for training RBFNNs, separated mainly by how the
hidden and output layers are trained. The most common approach is train these layers
separately in the two phase method listed below:

1. Hidden Layer Training
In this phase the appropriate number of centers K is chosen, then the centers
1; and the widths o; are determined. Some methods employed include random
sampling,

2. Output Layer Training:
In this phase the weights of the output layer are trained using the outputs of the
hidden layer for

In the literature there are also methods that train both layers together, as using
Backpropagation algorithm or Genetic Algorithms, for instance. However, the two-phase
approach has some key advantages as granting the semantic explainability of the centers
pt; and radius o, which may exploit expert knowledge e the employment of computation-
ally cheap methods (as the OLS) in the training of the output layer.

Recent RBFNN research also proposed new improved architectures, as new multi-
layered architectures [Bodyanskiy et al. 2020], self-adaptative and multi-hierarchical ar-
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Figure 1. RBFNN Architecture and its nonlinear capabilities

chitectures [Zhao-zhao et al. 2020] and multicolumn networks [Han et al. 2021]. Ensem-
bles of RBFNNs were subject of investigation in [Wu et al. 2021]. Deep Learning exten-
sions for RBFNN where proposed in [Zadeh et al. 2018] and [Burruss et al. 2021].

2.1. RBF Radius Determination Methodologies

The initialization of centers and radius in RBFNNs still the target of investigation, for
instance [Dong et al. 2011], and many improvements were proposed in recent years.

The classic approach for estimating the ideal radius o were proposed in
[Haykin 1994] and presented in Equation 2, where d,,,, represents the maximum dis-
tance between the centers.

In [Benoudjit et al. 2002] a simple heuristic is proposed based in the standard de-
viation of the clusters represented by each center multiplied by an scalar s determined by
the least validation error, according to Equation 3.

o = g0, 3)

An iterative approach is proposed in [Verleysen and Hlavackova 1994], where the



width o is adapted during the learning of the centers y, according to Equation 4 where 3
is the learning rate.

o1 = (1 = Be)oy + Be2||a; — e “4)

Most recently, [BATISTA et al. 2019] proposed the MMRBF (Minimum Mean
RBF) heuristic based in the average of the minimum distance between the centers and the
averages of the distances, according to Equation 5, where d(j,¢) = ||;1; — fu;|| represents
the average distances between the center y; and all the other centers j;, for i # j.

0= [(% > dg, i)) + min(d(j. i))] )

In the next section a new method for radius estimation is proposed, as well as the
complete details of the RBFNN method.

3. Proposed Methodology

In this section we present the method Maximum and Minimum Distances and Number of
Centers (MMDNC), a RBFNN method that employs a two phase training approach, with
gaussian RBFs in the hidden layer. The hidden layer training procedure starts with the
definition of K hyperparameter, which is strongly dependent of the application instance
and empirically defined by the user.

The centers ji; are defined using the K-means algorithm. K-means is a unsu-
pervised clustering technique based in the Expectation-Maximization optimization algo-
rithm, where in its initial phase randomly selects K input vectors to be the j; centers.
Then an iterative process assigns the y; center for each instance (z;,y;) € D which min-
imize the Euclidean Distance ||(x;, v;) — p;|| and later update each 1, to be the average
of all instances assigned to it. This process is repeated until there is convergence of the
algorithm, according to [Braga et al. 2000]. This process assign values for the /' centers
{45, remaining in this phase the determination of the radius o; for all centers.

The proposed radius (variance) calculation is described in Equation 6 where d}***
and d"" are respectively the maximum and the minimum distance between the center 1,
and all the other centers, such that d7*** = max|[;; — g, and d7" = min [[p; — pu],
k = 1..K,k # j. The intuition of the method is to find the average distance between the
centers and increase these mean values by the square value of K, which means the incre-
ment of uncertainty due the number of centers. This intuition helps also in the model’s
interpretability, once is clear that the radius is a function of average distance, unlike the
methods reviewed in Section 2.1.

dmex _ dmzn
0j =S5+ VK (©)
The output layer training employs the Ordinary Least Squares algorithm to calcu-
late the vector of weights using the training data D, through the multiplication between



the inverse matrix of the results of the hidden layer A and the matrix of the true output
values Y.

Given the matrix X € R™? of independent attributes, the column vectors Y, €
R"*! for each one of the ¢ dependent attributes, the matrix H € R"*¥ contains the outputs
of the hidden layer such as h; ; = ¢;(z;). For each output v, z = 1..¢, the weights vector
W, € RE*! is calculated by multiplying Y, by the inverse of H, as defined in Equation 7.

W,=H'Y, Vz2=1.g4 7)

The presented approach introduces a new simple method for estimating the radius
o that improves the generalization capability of the vanilla RBFNNSs, reducing the overfit
and keeps the method simple and explainable. In the next section the proposed method is
assessed and compared with traditional methodologies of radius estimation.

4. Computational Experiments

The aim of this section is to assess the effectiveness of the MMDNC method, measur-
ing its performance against 14 open benchmark datasets, and comparing the results with
two other classic methods. In order to grant the transparency and reproducibility of this
research the source code of the proposed method and experiments can be accessed at
the address https://bit.ly/source_rbf_cbic_2021'. The methods were de-
veloped using the Python 3 language. For commodity, all datasets files employed in
these research are also stored and available at the address https://github.com/
LucasPepper/rbf_sbic.

The chosen competing methods are the traditional RBFNN defined in
[Haykin 1994], which employs the radius estimation defined by Equation 2, hereafter
named only by RBF, and the method proposed by [BATISTA et al. 2019] which employs
the radius estimation defined by Equation 5, hereafter named by MMRBFE.

The benchmark datasets were collected from the UCI Machine Learning Reposi-
tory?, published in [Dua and Graff 2017], with the exception of the Appendicitis dataset
which was taken from the KEEL Dataset Repository?, published in [Hou 2018]. Both
repositories are open and well known in the literature.

It is noticed that both neural networks achieved similar accuracies with respect to
bases 3 and 4, with percentage differences less than 3 points between them. For cases 1
and 2, the network proposal achieved considerably better results than the traditional one.
It is reinforced that they were used the same parameters for both networks, changing only
the method of calculation of rays.

These results can be explained through the influence of the radius on the superpo-
sition of radial functions of different classes, which can lead to ambiguity or erroneous
results. This fact reinforces the importance of careful selection of the radius in RBF net-
works, as well as other hyperparameters, such as the number of clusters and method of
definition of centers.

I"The source codes are hosted in Google Colab online framework
https://archive.ics.uci.edu/ml/index.php
Shttps://data.mendeley.com/datasets/py4hhv3rb8/1



Dataset | RBF | MMRBF | MMDNC
Append | 0.8600 0.89 0.9
Austr 0.6753 | 0.6812 0.6957
Bank 0.9956 | 0.9971 0.9985
Blood 0.7392 | 0.7432 0.7405
Bupa 0.7471 | 0.7441 0.7412
Cancer | 0.9750 | 0.9735 0.9824
Diabetes | 0.7211 | 0.7276 0.7316
Fertil 0.9000 | 0.9000 0.9000
Haberm | 0.7633 | 0.7800 0.7733
hHeart 0.7704 | 0.7630 0.7593
ilpd 0.7018 | 0.7018 0.7018
Ionosp 0.8229 | 0.8943 09114
Parkins | 0.8579 | 0.8474 0.8579
sonar 0.6600 | 0.8800 0.8750

Table 2. Average accuracy by dataset and method

5. Conclusion

This work introduced the Maximum and Minimum Distances and Number of Centers
(MMDNC) method for RBFNN networks and evaluated its performance for 14 classifica-
tion problems, being applied in databases known in the literature. For the training of net-
works, the k-means clustering technique and the application of the radial Gaussian func-
tion, with the subsequent calculation of the vector of weights, to determine the resulting
classes in the output layer. Different methods of calculating the radii of radial functions
were also compared, which proved to be relevant for the achieving high accuracy, which
is intrinsically related to the choice of architectures and appropriate hyperparameters.

In relation to future works, it is suggested to evaluate the proposed method for re-
gression problems and its robustness for datasets with imbalanced classes. Deep RBFNN
models and its hyperparameter optimization are also considered for future research.
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