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Abstract. The universal approximation theorem ensures that any continuous
real-valued function defined on a compact subset can be approximated with ar-
bitrary precision by a single hidden layer neural network. In this paper, we
show that the universal approximation theorem also holds for tessarine-valued
neural networks. Precisely, any continuous tessarine-valued function can be
approximated with arbitrary precision by a single hidden layer tessarine-valued
neural network with split activation functions in the hidden layer. A simple nu-
merical example, confirming the theoretical result and revealing the superior
performance of a tessarine-valued neural network over a real-valued model for
interpolating a vector-valued function, is presented in the paper.

1. Introduction
Despite the many neural network architectures, this article focuses on single hid-

den layer neural networks, also known as multilayer perceptron (MLP). Once fixed the
synaptic weights of the network, each input pattern is mapped into one unique (and al-
ways the same) output through the propagation of neural activation. As a consequence,
MLPs are naturally able to handle static problems, such as regression and classification.

The universal approximation theorem is an existential theoretical result that jus-
tifies why neural networks can be used in practice. It states that any continuous real-
valued function defined on a compact set can be approximated with arbitrary preci-
sion by a single hidden layer neural network. The universal approximation theorem for
neural networks with a single hidden layer with sigmoid activation functions has been
proved 1989 by Cybenko [Cybenko 1989]. Then, it was generalized for neural net-
works with arbitrary bounded and nonconstant activation functions by Hornik in 1991
[Hornik 1991]. Recently, many researchers addressed the approximation capabilities of
neural networks, including deep and shallow models based on piece-wise linear activa-
tions functions such as the widely used rectified linear unit (ReLU) activation function
[Hanin and Sellke 2017, Lu et al. 2017, Yarotsky 2017, Petersen and Voigtlaender 2018].

In contrast to the widely used real-valued MLP model, a quaternion-valued feed-
forward network was developed by Arena et al. in the late 1990s [Arena et al. 1997].
Quaternions are four-dimensional hypercomplex numbers widely used to describe spa-
tial rotations [Arena et al. 1998]. Like real-valued models, quaternion-valued neu-
ral networks have been effectively applied for classification and regression problems
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Table 1. Tessarines multiplication table

× i j k
i −1 k −j
j k 1 i
k −j i −1

[Parcollet et al. 2020]. Moreover, quaternion-valued networks usually reduce the num-
ber of parameters for processing multi-dimensional data. Like the real-valued network,
any continuous quaternion-valued function on a compact can be approximated by a single
hidden layer quaternion-valued MLP (Q-MLP) network whose hidden units are equipped
with the so-called split activation function [Arena et al. 1997].

Despite the quaternions developed by Hamilton in 1843, James Cockle presented
the tessarine numbers in a series of articles published in 1848. Like the quaternions,
tessarines are also four-dimensional hypercomplex numbers. On the one hand, some tes-
sarines do not have a multiplicative inverse. On the other hand, in contrast to quaternion’s
algebra, the product of tessarines is commutative. The commutativity of tessarine’s prod-
uct may be advantageous for the design of neural networks because synaptic weights and
neuron inputs can interchange their roles. Thus, this paper uses tessarine algebra to define
a new class of neural networks called tessarine-valued multilayer perceptron (T-MLP).
Moreover, we point out that the universal approximation theorem holds for T-MLP net-
works. In other words, we show that any continuous tessarine-valued function defined on
a compact can be approximated by a single hidden layer T-MLP network with arbitrary
precision.

The paper is organized as follows: Next section presents the tessarine algebra and
its properties. Section 3 contains some theoretical results and auxiliary definitions for the
main theorem. The universal approximation theorem for T-MLP is proved in Section 4.
A simple numerical example comparing real-valued and tessarine-valued MLP networks
is given in Section 5. The paper finishes with some concluding remarks in Section 6.

2. Tessarines Algebra

Tessarines are hypercomplex four-dimensional hypercomplex numbers repre-
sented as follows

t = t0 + t1i+ t2j + t3k

where t0, t1, t2, t3 ∈ R and i, j,k are the hypercomplex units. Throughout this paper, the
set of all tessarines is denoted by T. The tessarine hypercomplex units i, j, and k satisfy
the multiplication Table 1. In contrast to the multiplication table of quaternions, Table 1
is symmetric. As a consequence, the product of tessarines is commutative.

Given two tessarines t = t0 + t1i + t2j + t3k and w = w0 + w1i + w2j + w3k,
their sum is

t+ w = t0 + w0 + (t1 + w1)i+ (t2 + w2)j + (t3 + w3)k. (1)

The product of t and w is established using distributivity and the multiplication table



resulting in:

tw = (t0 + t1i+ t2j + t3k)(w0 + w1i+ w2j + w3k)

= (t0w0 − t1w1 + t2w2 − t3w3) + (t0w1 + t1w0 + t2w3 + t3w2)i (2)
+ (t0w2 − t1w3 + t2w0 + t3w3)j + (t0w3 + t1w2 + t2w1 + t3w0)k

A tessarine t = t0 + t1i+ t2j + t3k can also be written as

t = R(t) + I(t)i+ J(t)j +K(t)k,

where R, I, J,K : T→ R are the functions defined by

R(t) = t0, I(t) = t1, J(t) = t2, and K(t) = t3, (3)

for all t = t0 + t1i + t2j + t3k ∈ T. In this case, t0 = R(t) is the real part of t while
t1 = I(t), t2 = J(t), and t3 = K(t) are the imaginary parts of t. The absolute value of a
tessarine t = t0 + t1i+ t2j + t3k is defined by

|t| =
√
t20 + t21 + t22 + t23. (4)

The nth Cartesian product of T is

Tn = {t = (t1, · · · , tn) : ti ∈ T}. (5)

The set Tn is interpreted as a vector space. Like in real-valued linear algebra, given two
tessarine-valued vectors x = (x1, . . . , xn) ∈ Tn and y = (y1, . . . , yn) ∈ Tn, we define

xT · y = x1y1 + x2y2 + . . .+ xnyn. (6)

Note that the inner product given by (6) satisfies the following properties for all x,y, z ∈
Tn and λ ∈ R:

1. xT · (y + z) = xT · y + xT · z.
2. xT · (λy) = λxT · y.
3. xT · y = yT · x.

Finally, we would like to point out that the set of all tessarine numbers can be
identified with R4 by means of the isomorphism ψ : T→ R4 defined by

ψ(t) = (t0, t1, t2, t4), ∀t = t0 + t1i+ t2j + t3k. (7)

Similarly, the Cartesian product Tn can be identified with R4n by applying ψ in a
component-wise manner, that is,

(t1, . . . , tn) ∈ Tn ψ←→ (ψ(t1), . . . , ψ(tn)) ∈ R4n. (8)



3. Basic Concepts on Approximation Theory
Let us begin by presenting a class of activation functions used for proving the

universal approximation theorem for neural networks [Cybenko 1989]:
Definition 1. A function φ : R → R is called discriminatory if the only signed Borel
measure µ on the n-dimensional unit hypercube In = [0, 1]n such that∫

In

φ(yT · x+ θ)dµ(x) = 0,∀y ∈ Rn and ∀θ ∈ R, (9)

is the zero measure, that is, µ = 0.

The continuous sigmoid function σ(x) = 1/(1 + e−x) is an example of a discrim-
inatory function. The linear rectified function (ReLU), defined by ReLU(x) = max{0, x}
for all x ∈ R and widely used for designing neural networks nowadays, is also a discrim-
inatory function [Ferreira Guilhoto ]. The following presents the universal approximation
theorem for neural networks with discriminatory functions in the hidden layer.

Theorem 1 (Universal Approximation Theorem [Cybenko 1989]). Let φ : R → R be a
continuous discriminatory function. Then, the class of all real-valued neural networks
defined by

HR =

{
NR(x) =

M∑
i=1

αiφ(y
T
i · x+ θi),∀x ∈ Rn

}
, (10)

is dense in the class C(K) of all real-valued continuous functions on a compact K ⊆ Rn.
In other words, given fR : K → R and ε > 0, there exist M > 0, α = (α1, . . . , αM) ∈
RM , θ = (θ1, . . . , θM) ∈ RM , and y1, . . . ,yM ∈ Rn such that the single hidden-layer
neural network given by

NR(x) =
M∑
i=1

αiφ(y
T
i · x+ θi), ∀x ∈ Rn, (11)

satisfies
|fR(x)−NR(x)| < ε, ∀x ∈ K. (12)

Because `i(x) = yT ·x is a linear functional, the universal approximation theorem
states that a function fR : K → R can be approximated by a single hidden-layer neural
network given by

NR(x) =
M∑
i=1

αiφ(`i(x) + θi), ∀x ∈ Rn, (13)

where `1, `2, . . . , `M : Rn → R are linear functions.

4. Universal Approximation Theorem for Tessarine-Valued Neural Networks
Briefly, an hypercomplex-valued neural network is obtained by replacing the real-

valued inputs, outputs, and parameters by hypercomplex-valued entities. A quaternion-
valued feedforward neural network has been developed by [Arena et al. 1997]. Besides
introducing quaternion-valued networks, Arena et al. proved that single hidden-layer
neural networks are universal approximators when the hidden units have discriminatory



split functions. In the following, we derive a similar result for tessarine-valued MLP
networks.

Consider a tessarine-valued activation function φ : T → T. Given tessarine-
valued vectorsα = (α1, . . . , αM) ∈ TM , θ = (θ1, . . . , θM) ∈ TM , and y1, . . . ,yM ∈ Tn,
a tessarine-valeud MLP network (T-MLP) is defined by

NT(x) =
M∑
i=1

αiφ(y
T
i · x+ θi), ∀x ∈ Tn. (14)

Note the algebraic similarity between the real-valued and the tessarine-valued neural net-
works given by (11) and (14), respectively. In contrast to the real-valued neural network,
the T-MLP model defines an applicationNT : Tn → T. Thus, like quaternion-valued neu-
ral networks, the T-MLP model process four-dimensional information as a single entity.
An up-to-date review on quaternion-valued neural networks and their applications can be
found in [Parcollet et al. 2020]. We believe that many applications of quaterion-valued
neural networks can also be addressed by tessarine-valued models. In the following, we
show that the universal approximation theorem also holds for the T-MLP networks. To
this end, let us present some concepts and Lemma 1.

The following lemma, which is analogous to Lemma 3.1 of [Arena et al. 1997],
plays a key role in the proof of the universal approximation theorem for the T-MLP net-
works:

Lemma 1. Given a linear function ` : Tn → R, there are uniquely determined tessarine-
valued vectors yR,yI ,yJ ,yK ∈ Tn such that

`(t) = R(yTR · t) = I(yTI · t) = J(yTJ · t) = K(yTK · t), ∀t ∈ Tn.

Proof. Let us prove the result for the representation `(t) = R(yTR · t). The other three
representations are analogous. Consider the application

L : Tn → {` : ` is a linear function from Tn to R},

defined by setting L(y) = ` with `(t) = R(yT · t) for every t ∈ Tn. Because the linear
product and the projection R are linear, the application L is also linear. Moreover, from
the isomorphism between T and R4, we conclude that dim(Tn) = 4n. Similarly,

dim({` : ` is a linear function from Tn to R}) = dim(Tn)dim(R) = 4n.

Therefore, the linear application L maps spaces of the same dimension. In the following,
we show that Ker(L) = {0} which imples that L is a one-to-one correspondence.

Consider y = (y1, . . . , yn) ∈ Ker(L). In this case, we have L(y) = 0 or, equiva-
lently, R(yT · t) = 0 for every t ∈ Tn. In particular, considering t ∈ {ej, iej, jej,kej},
where ej denotes the jth canonical basis of Rn for j = 1, . . . , n, we conclude that

0 = R
(
yT · ej

)
= R(yj),

0 = R
(
yT · (iej)

)
= −I(yj),

0 = R
(
yT · (jej)

)
= J(yj),

0 = R
(
yT · (kej)

)
= −K(yj).



Therefore, yj = R(yj)+iI(yj)+jJ(yj)+kK(yj) = 0 for any j = 1, . . . , n. Equivalently,
y = 0 which implies that Ker(L) = {0}. Concluding, the mapping L is a one-to-one
correspondence. Hence, given a linear function ` : Tn → R one defines yR = L−1(`).

In the following we present the main contribution of this paper: the universal
approximation theorem for T-MLP networks with split activation functions. A real-valued
function φ : R→ R yields a tessarine-valued function φT : T→ T defined as follows for
all t = t0 + t1i+ t2j + t3k ∈ T:

φT(t) = φ(t0) + φ(t1)i+ φ(t2)j + φ(t3)k. (15)

In this case, we say that φT : T → T is a split function derived from φ : R → R. Note
that a split function can be alternatively written as follows using the composition of φ and
the functions R, I, J,K : T→ R given by (3):

φT(t) = (φ ◦R)(t) + (φ ◦ I)(t)i+ (φ ◦ J)(t)j + (φ ◦K)(t)k. ∀t ∈ T. (16)

Theorem 2. Let φ : R → R be a continuous discriminatory function such that
limλ→−∞ φ(λ) = 0 and φT : T → T be the split function derived from φ by means of
(15). Then, the class of all tessarine-valued neural networks defined by

HT =

{
NT(t) =

M∑
i=1

αiφT(y
T
i · t+ θi),∀t ∈ Tn

}
, (17)

is dense in the class C(K) of all tessarine-valued continuous functions on a compact
K ⊆ Tn. In other words, given fT : K → T and ε > 0, there exist M > 0, α =
(α1, . . . , αM) ∈ TM , θ = (θ1, . . . , θM) ∈ TM , and y1, . . . ,yM ∈ Tn such that the single
hidden-layer neural network given by

NT(t) =
M∑
i=1

αiφT(y
T
i · t+ θi), ∀x ∈ Tn, (18)

satisfies
|fT(t)−NR(t)| < ε, ∀t ∈ K, (19)

where | · | denotes the absolute value of a tessarine.

Proof. First of all, from (3), the continuous tessarine-valued function fT : Tn → T can
be written as follows for all t ∈ T:

fT(t) = (R ◦ fT)(t) + i(I ◦ fT)(t) + j(J ◦ fT)(t) + k(K ◦ fT)(t). (20)

Let us now apply the universal approximation theorem for real-valued neural networks on
the real and imaginary parts of fT by identifying a tessarine-valued vector in Tn with a
real-valued vector in R4n by means of the isomorphism (8). Precisely, given ε > 0, from



Theorem 1, there exist an integer M > 0, real-valued vectors α = (α1, . . . , αM) ∈ RM

and θ = (θ1, . . . , θM) ∈ RM , and linear functions `1, . . . , `M : Tn → R such that∣∣∣∣∣(R ◦ fT)(t)−
M∑
i=1

αiφ
(
`i(t) + θi

)∣∣∣∣∣ < ε

2
, ∀t ∈ K. (21)

From Lemma (1), there exist tessarine-valued vectors y1, . . . ,yM such that∣∣∣∣∣(R ◦ fT)(t)−
M∑
i=1

αiφ
(
R
(
yTi · t

)
+ θi

)∣∣∣∣∣ < ε

2
, ∀t ∈ K. (22)

Now, we define

θi(λ) = θi + λi+ λj + λk ∈ T, ∀i = 1, . . . ,M. (23)

Then, because limλ→−∞ φ(λ) = 0, we have

lim
λ→−∞

φT

(
yTi · t+ θi(λ)

)
= φ

(
R
(
yTi · t

)
+ θi

)
+ 0i+ 0j + 0k. (24)

As a consequence, there exists λ such that∣∣∣∣∣
M∑
i=1

αiφT

(
yTi · t+ θi(λ)

)
−

M∑
i=1

αiφ
(
R
(
yTi · t

)
+ θi

)∣∣∣∣∣ < ε

2
. (25)

Using the triangle inequality and the inequalities (22) and (25), we obtain∣∣∣∣∣(R ◦ fT)(t)−
M∑
i=1

αiφT

(
yTi · t+ θi(λ)

)∣∣∣∣∣ ≤
∣∣∣∣∣(R ◦ fT)(t)−

M∑
i=1

αiφ
(
R
(
yTi · t

)
+ θi

)∣∣∣∣∣
(26)

+

∣∣∣∣∣
M∑
i=1

αiφ
(
R
(
yTi · t

)
+ θi

)
−

M∑
i=1

αiφT

(
yTi · t+ θi(λ)

)∣∣∣∣∣ ≤ ε (27)

In words, there exist tessarine-valued vectors α = (α1, . . . , αM), θ(λ) =
(θ1(λ), . . . , θM(λ)) ∈ TM , and y1, . . . ,yM ∈ Tn such that the real-part of fT(t) can
be approximated with arbitrary precision by

∑M
i=1 αiφT(y

T
i · t + θi(λ)) for some λ. In a

similar fashion, we can show that∣∣∣∣∣(I ◦ fT)(t)−
M∑
i=1

αiφT

(
yTi · t+ θi(λ)

)∣∣∣∣∣ ≤ ε, (28)

where
θi(λ) = λ+ θii+ λj + λk, ∀i = 1, . . . ,M, (29)

and α = (α1, . . . , αM), θ = (θ1, . . . , θM), and y1, . . . ,yM ∈ Tn are obtained by applying
Theorem 1 to approximate (I ◦ fT) and Lemma 1. Finally, the approximation of the other
two imaginary parts of fT are derived similarly.

Note that the sigmoid function σ(x) = 1/(1 + e−x) and the linear rectified
function ReLU(x) = max{0, x} are both continuous discriminatory functions such that
limλ→−∞ φ(λ) = 0. Therefore, Theorem 2 holds, in particular, for tessarine-valued net-
works equipped with these two activation functions.



5. Numerical Example
Let us now provide a simple example to illustrate Theorem 2.

Consider the non-linear tessarine-valued function fT : K ⊆ T→ T given by

fT(t) = pt+ tq + t2, ∀t ∈ K, (30)

where
p = 1.5− 1.3i+ 1.2j + 0.5k and q = 0.5 + 0.3i+ 0.2j − k, (31)

and K ⊆ T is the compact set defined by

K = {t = t0 + t1i+ t2j + t3k ∈ T : 0 ≤ t0, t1, t2, t3 ≤ 1}. (32)

We would like to point out that the function fT given by (30) is analogous to
the quaternion-valued function considered by Arena et al. to illustrate the univer-
sal approximation theorem for quaternion-valued single-hidden layer neural network
[Arena et al. 1994].

To illustrate Theorem 2, we considered a tessarine-valued network with two hid-
den neurons equipped with the linear rectified function. The parameters of the T-MLP
network are tessarines y1, y2, θ1, θ2, α1, and α2, resulting a total 24 (= 6× 4) real-valued
parameters. Moreover, the tessarine-valued synaptic weights have been adjusted by min-
imizing the mean squared error (MSE) using Adam optimizer with 1000 epochs on a
training set determined as follows with N = 400:{(
ti, fT(ti)

)
: ti = ri0 + ri1i+ ri2j + ri3k, ri0, ri1, ri2, ri3 ∼ U [−1,+1], i = 1, . . . , N

}
.

(33)
Then, we evaluated the performance of the tessarine-valued network using a test set ob-
tained from (33) with N = 100. The real and the imaginary parts of both analytical
and approximated outputs by the testing samples are shown in Figures 1 - 4. Also, the
first row of Table (2) shows the MSE yielded by the real and imaginary parts of the T-
MLP on the training set. Note that the tessarine-valued network yielded errors in order
of magnitude less than 10−7. Therefore, the T-MLP network was able to approximate the
tessarine-valued function fT given by (30).

For comparison purposes, we also approximated the function fT by a real-valued
network. Precisely, using the isomorphism ψ : T → R4 given by (7), we approximated
ψ ◦fT ◦ψ−1 by a real-valued network with 4−6−4 architecture equipped with the linear
rectified activation function. The real-valued MLP network has 54 adjustable parameters.
The synaptic weights and bias of the real-valued network have been adjusted analogously
to the tessarine-valued model. The second row of Table 2 shows the MSE product by
the real-valued network for the real and imaginary parts of the output on the test set. As
expected, the real-valued network can also approximate the function fT but with MSEs of
orders of 10−4 and 10−5.

where:

h = [1.5,−1.3, 1.2, 0.5]T

f = [[0.5, 0.3, 0.2,−1]T



Figure 1. Comparison between T-
MLP output and the target for the
real part.

Figure 2. Comparison between T-
MLP output and the target for the
first imaginary component.

Figure 3. Comparison between T-
MLP output and the target for the
second imaginary component.

Figure 4. Comparison between T-
MLP output and the target for the
third imaginary component.

with
{q ∈ R : −1 ≤ q ≤ 1}

in which q is a tessarine.

For the proposed interpolation it was generated a uniform sample with 500 val-
ues of q, such that, 100 where utilized for training, and the other 400 for evaluating the
network capability of generalization. The architecture used for the tessarine model was
1 − 2 − 1, with ReLU as activation function in the hidden layer. Finally, the optimizer
chosen was Adam with loss function MSE, such that 1000 epochs were computed. The
results obtained for the function with tessarine values in the four components of the hy-
percomplex numbers were:

Comparing the mean squared error between the TMLP and the reference model
for each component:

By the charts it is possible to notice that, the TMLP, for each one of it’s compo-
nents, was able to approximate the reference function. In fact, the 1000 epochs of training
represent the power of interpolation of that kind of net, which was capable to generate
an overfit. In practical terms, it is expected to monitor the loss function to optimize the



MLP r i j k
Tessarine 2.7× 10−7 2.3× 10−7 6.8× 10−8 4.8× 10−7

Real 2.6× 10−4 1.5× 10−4 4.6× 10−5 4.5× 10−5

Table 2. Comparison of the mean squared error from the TMLP and MLP output
for each component.

generalization of the model, for example, using an early stop regularization.

Moreover, by the table, we can compare the accuracy between the TMLP and the
canonical MLP with real values. This, kept the same architecture characteristics, that is,
4−2−4, given by the isomorphism with tessarines in R4. So, for both the real component
and the imaginary ones, the TMLP obtained an error in order of magnitude of 10−4. That
error order was only obtained by the real MLP in the second imaginary component, with
the others in the order of 10−3.

6. Concluding Remarks
In this paper, we addressed the universal approximation capability of tessarine-

valued feedforward single-hidden layer neural networks. Broadly speaking, the tessarine-
valued networks are obtained by replacing the real-valued inputs, outputs, and parameters
by four-dimensional hypercomplex numbers whose multiplication satisfy Table (1). Like
the real-valued networks, any tessarine-valued function can be approximated with arbi-
trary precision by a tessarine-valued multilayer perceptron (T-MLP) on a compact set.
In particular, T-MLP networks with sigmoid or linear rectified activation functions enjoy
the universal approximation capability. We finished the paper with a single numerical
example to illustrate the approximation capability of the tessarine-valued networks.

In the future, we plan to investigate further tessarine-valued neural networks. In
particular, we plan to investigate their applicability for solving classification and regres-
sion problems.

Therefore, the tessarine based neural network is a powerful interpolator. Com-
paratively, it showed a superior performance in reference with the real valued MLP for
approximating tassarine functions. That proof, in theoretical terms, represents the funda-
mental mechanism of new category of nets - TMLP. In practical terms, opens new doors
for exploring applications in a diverse range of scientific problem with hypercomplex
neural networks.
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