
Evaluation of Neural Architecture Search Approaches for
Offshore Platform Offset Prediction

Tomaz M. Suller1 , Eric O. Gomes1 , Henrique B. Oliveira1 ,
Lucas P. Cotrim1 , Amir M. Sa’ad1 , Ismael H. F. Santos2 , Rodrigo A. Barreira2 ,

Eduardo A. Tannuri1 , Edson S. Gomi1 , Anna H. R. Costa1

1Escola Politécnica da Universidade de São Paulo (USP)
Av. Prof. Luciano Gualberto, 380, 05508-010, Sao Paulo-SP, Brazil

2Petrobras, Rio de Janeiro-RJ, Brazil

{tomaz.suller,ericog,henrique.barrosoliveira}@usp.br
{lucas.cotrim,amir.saad,eduat,gomi,anna.reali}@usp.br

{ismaelh,barreira}@petrobras.com.br

Abstract. This paper proposes a solution based on Multi-Layer Perceptron
(MLP) to predict the offset of the center of gravity of an offshore platform. It
also performs a comparative study with three optimization algorithms – Ran-
dom Search, Simulated Annealing, and Bayesian Optimization (BO) – to find
the best MLP architecture. Although BO obtained the best architecture in the
shortest time, ablation studies developed in this paper with hyperparameters of
the optimization process showed that the result is sensitive to them and deserves
attention in the Neural Architecture Search process.

1. Introduction
The current design process of mooring systems for Floating Oil Production and Offload-
ing units (FPSOs) is highly dependent on the availability of mathematical models and
accuracy of dynamic simulations, through which resulting time series motion is evaluated
according to platform design constraints. The maximum distance of the FPSO’s center
of gravity (CG) to its equilibrium position, also known as offset, is a critical variable
in mooring system design that is dependent on mooring line configuration and incident
environmental conditions. The usual approach to determining the FPSO offset is based
on dynamic simulations, which tend to be computationally expensive and only allow the
assessment of a narrow subset of the possible environmental conditions to which the plat-
form could be subjected. Furthermore, multivariate and complex models of motion dy-
namics are often based on simplifying assumptions and, therefore, prone to error.

The versatility of neural networks (NN) and deep learning (DL) have allowed
data-driven motion estimators to be developed. The use of NN decouples the calculation
of the CG offset from manually derived models and from dynamic simulations, reduc-
ing the computational cost associated with evaluating each environmental condition and,
therefore, allowing for the creation of a more holistic picture of the operating conditions
of the platform. Previous studies have highlighted the benefits of using NNs for FPSO
motion prediction. [Gumley et al. 2016] successfully implemented a Multi-Layer Per-
ceptron (MLP) NN capable of predicting the hourly mean offset of a turret-moored FPSO
from environmental conditions. [Mazaheri et al. 2003] also proposed an MLP for predict-
ing FPSO motions such as surge, sway and offset from a set of environmental conditions,



showing that it produced results comparable to those calculated by a mathematical model.
Despite their promising results, these systems still pose the challenge of determining the
best hyperparameter and architecture configurations of the network. Indeed, there is often
a reliance on manual, painstaking experimentation and tuning during NN engineering.

The field of Neural Architecture Search (NAS) studies the automation of NN ar-
chitecture engineering, which has been shown to provide exceptional results that out-
perform manually designed architectures in certain problems, such as image classifica-
tion and object detection [Zoph et al. 2017] and regression [Märtens and Izzo 2019]. Re-
search in NAS has increased significantly over the years [Liu et al. 2018, Jin et al. 2018],
and has given rise to numerous new strategies [Pinos et al. 2021, Zoph and Le 2016],
bringing up a new problem, which is choosing the most appropriate NAS technique.

Therefore, the contributions of this paper are two-fold: (i) a proposal based on
MLP to solve the FPSO offset prediction problem; and (ii) a comparative analysis of three
different MLP hyperparameter optimization algorithms – Random Search, Simulated
Annealing [van Laarhoven and Aarts 1987], and Bayesian Optimization [Frazier 2018].
Random Search is a NAS approach often employed as a baseline to attest the efficiency of
NAS algorithms, yet has been reported to match the performance of more advanced tech-
niques [Sciuto et al. 2019]; Simulated Annealing is a well-known and easy to implement
local optimization algorithm which has shown promising results [Goffe et al. 1994]; and
Bayesian Optimization is a state-of-the-art global optimization algorithm which has seen
wide adoption in NAS [White et al. 2019].

The remainder of this paper is organized as follows: Section 2 describes CG offset
prediction in FPSOs and the proposed solution. Section 3 gives an overview of NAS and
of the optimization techniques explored. Section 4 presents the experiments performed
and their respective results, and Section 5 concludes discussing the results of the compara-
tive analysis of the hyperparameter optimization algorithms tested and indicating possible
future work.

2. FPSO Offset Prediction
An MLP model capable of predicting maximum platform offset from incident environ-
mental conditions is proposed. This approach bypasses the need for traditional time series
dynamic simulation, as the trained model takes in ten inputs corresponding to measured
oceanic conditions and directly calculates two outputs corresponding to the desired mo-
tion statistics. The proposed model is represented in Figure 1 [Cotrim et al. 2021].

The NN is trained using real current, wind and wave data measured in 3h periods
at the Campos Basin in Rio de Janeiro, Brazil, from 2003 to 2010. The measured data con-
sists of: Current velocity: Mean current velocity vc (m/s); Current direction: Current
propagation angle θc (°); Wind velocity: Mean wind velocity vw (m/s); Wind direction:
Wind incidence angle θw (°); First Wave component height: Significant wave height
Hs1 (m) corresponding to highest energy wave; First Wave component period: Peak
Period Tp1 (s) corresponding to highest energy wave; First Wave component direction:
Incidence angle θ1 (°) corresponding to highest energy wave; Second Wave component
height: Significant wave height Hs2 (m) corresponding to second highest energy wave;
Second Wave component period: Peak Period Tp2 (s) corresponding to second highest
energy wave; Second Wave component direction: Incidence angle θ2 (°) corresponding



Figure 1. Proposed model for offshore platform offset prediction.

to second highest energy wave.

Subject to these conditions, time-domain simulations using Dynasim
[Nishimoto et al. 2002] for a spread-moored FPSO is performed. The time series
generated by Dynasim is then analyzed in order to extract XCG and YCG, corresponding
to the global positions of the platform’s CG associated with maximum observed offset.{

XCG = X(t∗)

YCG = Y (t∗)
where t∗ = argmax

t>tcutoff

‖(X(t), Y (t))− (Xeq, Yeq)‖2 .

During the first seconds the resulting motion is highly dependent on the initial configura-
tion, while subsequent dynamics are governed by the incident environmental conditions.
In order to isolate the effects of environmental conditions, a cutoff time tcutoff = 2000 s
was implemented and time-series analysis was performed from this time onward.

Processing input data. Let e = (vc, θc, vw, θw, Hs1, Tp1, θ1, Hs2, Tp2, θ2) be a set of ob-
served environmental conditions as defined previously. As angular variables are defined
in [0°, 360°], their periodic property implies that values such as 0.1° and 359.9° are func-
tionally close despite being numerically distant. This can cause slow NN convergence as
similar environmental conditions may be far apart in the network input space. As a result,
the projections of current velocity, wind velocity and wave height in the N-S and E-W
directions were used, rather than their magnitude and incidence angle, so that the same
set of environmental conditions can be represented as

eproj = (vc sin(θc), vc cos(θc), vw sin(θw), vw cos(θw),

Hs1 sin(θ1), Hs1 cos(θ1), Tp1, Hs2 sin(θ2), Hs2 cos(θ2), Tp2).

Each input was then standardized to ensure zero-mean and unit-variance, and the resulting
dataset was then divided into train, validation and test sets, as illustrated in Figure 2, using
a 5-fold cross validation split for the train and validation sets.

Designing the MLP model. The use of an MLP is proposed here for its ability to exhibit
non-linear behavior. In addition to the input and output layers, an MLP is a dense, fully
connected network that can have multiple hidden layers. Thus, two decisions must be
made: how many hidden layers to have in the MLP and how many neurons there are in
each of those layers. With complex datasets involving time series, two or more hidden



Figure 2. Dataset split for 5-fold cross-validation.

layers are required. Seeking a good compromise so that the network can learn complex
representations, the number of hidden layers in the MLP was set to three. Still, the number
of neurons in each hidden layer has a significant influence in MLP performance. There-
fore, the NAS techniques described in the following section were only applied to these
numbers, as optimizing fewer hyperparameters with greater impact makes the optimiza-
tion process more efficient.

3. Fundamentals of Neural Architecture Search

Finding the optimal hyperparameters for an ML model has always been an important,
yet demanding and time-consuming task. Recently, new methods have been developed
to automate these tasks, greatly reducing the human effort required to optimize mod-
els [Feurer and Hutter 2019] and thus creating the field of Automated Machine Learning
(AutoML). The positive results obtained by NNs and DL in recent years motivated the
development of Neural Architecture Search (NAS), a subfield of AutoML.

NAS methods can be defined by three dimensions [Elsken et al. 2019]: a search
space SS , which bounds the possible architectures evaluated during NAS; a performance
estimation strategy, which defines an objective function C used to evaluate model perfor-
mance during the search process; and a search strategy, which determines how the algo-
rithm explores the search space. The search space and performance estimation strategy
are manually defined to obtain the best optimization performance for the shortest execu-
tion times and to ensure that the models generated by this process are able to generalize
to unseen data.

In this paper, the search strategy is defined by iterative algorithms that follow the
same general structure. These methods depend on a search history H, an initially empty
data structure that stores the models architectures M and their performance, obtained
by evaluating C(M), which is to be minimized (or maximized) during optimization.
The search process consists of a predetermined number k of iterations, also called trials,
whose high-level overview is presented in the Algorithm 1. There are various strategies
that can be employed in NAS. In this paper, three search strategies are evaluated: Random
Search, Simulated Annealing, and Bayesian Optimization.

Random Search. Random Search (RS) is implemented by sampling architectures ran-
domly from SS , aiming to find the architecture which most closely reaches the goal of the
optimization process, as described in Algorithm 2. RS is most commonly used as baseline



for comparison with other methods, yet has been shown to achieve performance similar
to that of state-of-the-art NAS algorithms on some specific problems [Sciuto et al. 2019].

Algorithm 1: Trial
ChooseM∈ SS according to the search strategy;
TrainM;
Evaluate C(M);
Append {M, C(M)} toH;

Algorithm 2: Random Search
Input: search space SS , objective function C
Output: search historyH
H ← ∅;
for i = 1, 2, . . . , k do
M← random(SS);
H ← H∪ {{M, C(M)}};

end

Simulated Annealing. Simulated Annealing (SA) is a local optimization algorithm anal-
ogous to the metallurgical process annealing. SA relies on the definition of a neighbor-
hood n(M) of a model architecture M, which must be defined during the algorithm
implementation so that neighbor models are deemed to possess similar architectures. In
each trial, a random neighbor architecture M′ ∈ n(M) is chosen, evaluated and com-
pared to the current architectureM. IfM′ is better thanM (i.e. C(M′) < C(M)), it
is chosen as the next architecture; if it is not (i.e. if C(M′) ≥ C(M)), its acceptance
probability is given by

p(M′,M, T ) = exp

(
−C(M

′)− C(M)

T

)
.

The temperature T is a parameter that regulates the probability of accepting worst mod-
els and decreases after each trial, commonly by exponential decay, in which the current
temperature is multiplied by a constant decay rate α, 0 < α < 1. Both α and the initial
temperature T0 must be tuned to each specific problem. The general procedure is shown
in Algorithm 3.

Due to the temperature decay mechanism, SA can explore less promising model
architectures in early trials, yet still converge to a local minimum, since the probability
of accepting a worse model decreases with the temperature. It is also relatively sim-
ple to implement and use, as the only parameters that need to be tuned are T0 and α.
However, as a local search algorithm, it can only consider architectures similar to the
current one, according to the definition of its neighborhood n. Thus, it has limited ca-
pacity to explore the search space in a limited number of trials and is heavily depen-
dent on M0. A more thorough discussion on Simulated Annealing can be found in
[van Laarhoven and Aarts 1987].

Bayesian Optimization. Bayesian Optimization (BO) consists of two key components:
a probabilistic surrogate model S of the objective function C; and a policy P , denoted
as acquisition function, for selecting new parameters based on the surrogate model. In



each trial, an evaluation of C updates the surrogate model S, allowing P to select a new
architectureM most likely to achieve the objective of the optimization for the next trial.
The general procedure is shown in Algorithm 4.

Algorithm 3: Simulated Annealing
Input: search space SS , objective function C, neighborhood n, initial

architectureM0 and temperature T0, temperature decay rate α
Output: search historyH
M←M0;
T ← T0;
H ← {{M0, C(M0)}};
for i = 1, 2, . . . , k − 1 do
M′ ← random({M′ ∈ n(M)});
if (C(M′) < C(M)) or (p(M′,M, T ) > random([0, 1])) then
M←M′;

end
H ← H∪ {{M, C(M)}};
T ← α · T ;

end

Algorithm 4: Bayesian Optimization
Input: search space SS , objective function C, initial architectureM0,

surrogate model S, acquisition function P
Output: search historyH
M←M0;
H ← {{M0, C(M0)}};
Initialize the surrogate model S;
for i = 1, 2, . . . , k − 1 do
M← arg maxM′∈SSP (M

′, S);
H ← H∪ {{M, C(M)}{;
S ← updateSurrogate(S, {M, C(M)});

end

Despite being more complex, BO presents two major advantages over SA. Firstly,
it can evaluate any configuration in the search space in any trial, thus not being limited to
evaluating architectures in the neighborhood of the current one. Secondly, it reduces the
number of evaluations of the objective function (often expensive to evaluate) to achieve
the optimization objective due to the use of the surrogate model.

The surrogate model is used as an estimate of the objective function C, and can be
generated in a number of ways. Often Gaussian Process regression is used [Frazier 2018].
However, there has been a rise in the use of Tree-structured Parzen Estimator (TPE), as it
is more flexible to non-numerical search spaces, is able to scale to bigger search spaces
with a smaller computational cost and has been shown to achieve better performance
on some optimization problems [Feurer and Hutter 2019, Bergstra et al. 2011]. Various
choices are also available for the acquisition function, the most common being Expected
Improvement (EI). This method is based on selecting the model with the best estimated
performance at each turn. EI is calculated using the surrogate model, and the architecture



with the largest EI is selected for evaluation in the next trial. A more thorough discussion
on Bayesian Optimization can be found in [Frazier 2018, Bergstra et al. 2011].

4. Experiments and Results
The algorithmic performance evaluation was conducted in two stages: (i) an initial com-
parison of all three aforementioned techniques using sensible parameter configurations;
and (ii) further analysis of the impact of different parameters for the best performing algo-
rithm in the previous stage. In both stages, it is necessary to first define a common search
space and performance estimation strategy.

Search Space Definition. This paper focuses exclusively on MLPs with three hidden
layers (HLs), aiming to determine the optimal number of neurons in each layer. The
number Ni of neurons in the i-th hidden layer ranges from 20 to 4470 with a step of 50,
i.e. Ni ∈ N = {20, 70, . . . , 4470}, so reasonable sized models can be obtained in a space
of search neither too small (which would constrain the algorithms) nor too large (which
would hamper optimization). The search space is thus SS ∈ N3 = N ×N ×N .

Performance Estimation Strategy. The performance of the models generated by each
optimization algorithm was evaluated to assess their relative effectiveness. A set of stan-
dard model hyperparameters, described in Table 1, remained fixed throughout the initial
experiments, with the only variable parameter being the number of neurons in each HL of
the MLP assigned by the optimization algorithm. During optimization, all models were
compared based on the average mean squared error (MSE) across the five cross-validation
folds, which was used as the objective function C. Cross-validation was implemented
during optimization so the optimization algorithms do not develop a bias towards the val-
idation set, and thus propose models able to generalize. After each optimization, model
weights were reset and the best architecture in the search history H was trained on all
five cross-validation folds (the train/validation set) for 5000 epochs and evaluated on the
holdout test set. This allows for direct model performance comparison despite different
parameter configurations and techniques employed during optimization.

Table 1. MLP hyperparameters for initial experiments.

Number of HLs Training Epochs Batch Size Optimizer Learning Rate Activation Function

3 200 800 Adam 0.001 ReLU

4.1. Comparison Between the Algorithms
For all SA, BO, and RS experiments, the number of trials executed by each algorithm
was kept constant at 500, i.e k = 500. Given that model training and evaluation are
the most demanding components of the optimization process, this ensures all algorithms
have a fixed computational budget and ensures a fair comparison of their optimization
efficiency. In this paper, SA employed an exponentially decaying temperature profile,
which depends on a starting temperature T0 and a temperature decay rate α. For the initial
experiment, these parameters were set to T0 = 0.1 and α = 0.995. These values were
manually tuned through earlier experiments to ensure a balanced compromise between
exploration in the initial trials (when temperature is high) and exploitation in the final
ones (when temperature is low). The neighborhood function n(M) is defined as a random



choice within the set of architectures Mi, 1 ≤ i ≤ 26, which differ from M by ±50
in any combination of hidden layers, so that the Manhattan distance from M to Mi is
either 50, 100 or 150. BO has a number of different parameters, such as the choice
of surrogate probabilistic model, acquisition function and various parameters associated
with them. The chosen surrogate model was TPE, and the acquisition function, EI, for
which the standard configuration supplied in the Optuna framework [Akiba et al. 2019]
was employed.

Under these conditions, SA, BO, and RS were executed and evaluated by ana-
lyzing NN performance in the validation set. Figure 3 gives an overview of the model
architectures explored by each algorithm. Overall, the number of parameters in the an-
alyzed architectures maintained the same order of magnitude across all processes, with
three notable results arising. Firstly, the architectures investigated by SA had a signifi-
cantly higher validation error than those by BO or RS; indeed, Figure 3b shows that even
the best performing model obtained by SA had an MSE above the interquartile range of
RS. Secondly, Figure 3a shows SA only analyzed architectures with a very close number
of parameters to each other due to its local search strategy, highlighting its dependency
on the initial architecture in order to succeed. Thirdly, BO shows a clear pattern of re-
ducing both the number of parameters and the validation error in later trials, indicating
the process converges to more promising regions of the search space; both Figure 3a and
3b highlight this, indicating that BO not only had on average models with lower error but
also had the model with lowest error.

Figure 4 illustrates the evolution of the minimum MSE obtained by the search
methods during optimization, in which the minimum MSE obtained up to a given trial is
shown for each algorithm. Although SA optimized the error at a decent rate, its heavy
reliance on the initial architecture resulted in significantly worse results than RS, given
the global nature of this optimization problem. It also shows BO outperforming RS by
decreasing validation error faster and by achieving the lowest MSE, as noted previously.

Table 2 reports the best architecture found with each algorithm and its MSE ob-
tained by cross-validation during optimization and by evaluating on the holdout test set.
These results show a large difference between the validation and test MSEs. However,
BO still obtained the lowest test MSE.

Table 2. Best models found with SA, BO and RS.

Optimization algorithm MLP architecture Validation MSE Test MSE

HL 1 HL 2 HL 3

SA 2520 470 4150 0.970828 1.4783065
BO 370 2870 520 0.717813 1.4161978
RS 70 4370 420 0.731122 1.4194246

4.2. Further Testing of Bayesian Optimization
According to the comparative experiment, BO performed best. Therefore, it was chosen
for further inspection to assess the influence of the number of training trials and epochs
over the optimization process while also evaluating the test set performance for the ob-
tained models.



0.8

1.0

1.2

1.4
SA

Trial
0
100
200
300
400

0.8

1.0

1.2

1.4
BO

105 106 107

0.8

1.0

1.2

1.4
RS

Number of trainable parameters

Av
er

ag
e 

va
lid

at
io

n 
M

SE

(a) Model performance across the optimization,
highlighting the best performer in red.

SA BO RS
Search algorithm

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

Av
er
ag

e 
va

lid
at
io
n 
M
SE

(b) Distribution of average cross validation MSE.

Figure 3. Statistics of models analyzed during optimization.

The initial experiment analyzed the behaviour of BO with more trials, and as-
sessed the correlation between the validation error during optimization and the test error.
Figure 5 illustrates a longer run of Bayesian Optimization, with 1200 trials and the same
parameters presented in Table 1. Every time a model with better MSE was found, its
architecture was saved and trained for 5000 epochs, then evaluated on the test set, and its
test error was plotted. It is evident that the validation MSE – the optimization objective
function – and test MSE are incompatible, since even close to the last trial, a decrease in
the validation error caused a significant increase in the test error.

The incompatibility between validation and test MSE was hypothesized to stem
from a hyperparameter configuration that did not allow validation error to serve as an
appropriate estimator of test performance. In particular, the disparity between number
of training epochs (200 during optimization, against 5000 during testing) was believed
to play a significant role. Therefore, another experiment was conducted, maintaining all
parameters from Table 1 constant except for the number of training epochs, which took
up values of 100, 200, 300, 400 and 500. The number of trials was fixed at 500.

Figure 6 shows test MSE of the models obtained in this experiment, which high-
lights two distinct patterns. On the one hand, with up to 300 epochs during optimization, a
strong negative correlation exists between the number of epochs and test error; however,
the same relationship exists between the number of trainable parameters and test error,



0 100 200 300 400 500
Trial

0.75

0.80

0.85

0.90

0.95

1.00

1.05

M
in
im

um
 v
al
id
at
io
n 
M
SE

Minimum validation score obtained during optimization

SA
BO
RS

Figure 4. Minimum validation MSE obtained during the optimization process for
SA, BO and RS.

indicating the analysis of bigger, more complex models during optimizations with greater
number of epochs was responsible for the reduction in test loss. On the other hand, for
400 and 500 epochs, the previous pattern is disrupted: the result of optimization with 400
epochs performed worse than the one with 300 epochs despite having more parameters;
and the result with 500 epochs was the best performer of this experiment in the validation
and test sets while also possessing the smallest number of parameters. Thus, the increase
in the number of training epochs during optimization had a positive effect on the opti-
mization process overall, but results indicate erratic behaviour which suggests that the
performance estimation strategy is still not completely adequate.

Overall, the best performing model – with 220 neurons in the first HL, 3120 in the
second and 1520 in the third – was obtained in the experiment with 1200 trials, on trial
830, and achieved a test MSE of 1.3412.

5. Conclusion
This study aimed to obtain an optimal MLP model for offshore platform offset prediction
employing NAS. Three methods were considered: Simulated Annealing, Random Search
and Bayesian Optimization. SA had the worst performance, followed by RS and BO,
which yielded the best result.

Despite the good results obtained by BO, a large difference between the validation
error during optimization and the final test error motivated additional experiments to ex-
amine the influence of the number of trials and epochs in the optimization. Increasing the
number of trials provided diminishing returns after the first 500 trials; nevertheless, the
overall best model was found on trial 830. Moreover, increasing the number of training
epochs during optimization to a value closer to that used during evaluation provided a sig-
nificant improvement to the test error, highlighting the trade-off between computational
cost and search performance.

Ultimately, despite reaching satisfactory results, a clear mismatch between the
MSEs of validation during optimization and test warrants further research on the influence



0 200 400 600 800 1000 1200
Trial

0.8

1.0

1.2

1.4

M
SE

Validation and test performance during BO with 1200 trials

Validation MSE
Final test MSE

Figure 5. Validation MSE for the best model obtained during optimization com-
pared to the training test MSE obtained by the same model.

100 200 300 400 500
Optimization epochs

1.38

1.40

1.42

1.44

Te
st

 M
SE

Test MSE per number of training epochs in BO

0.66

0.68

0.70

0.72

0.74

0.76

Validation MSE

Figure 6. Test MSE for best model in BO runs with differing numbers of training
epochs. Point size represents the number of parameters in the model.

of the performance estimation strategy over the optimization algorithms. Additionally,
a more detailed comparison of the analyzed algorithms, subject to a greater variety of
problems, would bring deeper insights into the advantages and disadvantages of each
search strategy and of their generalization potential.

Acknowledgments

This work was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nı́vel Superior (CAPES Finance Code 001), Brazil, ANP/PETROBRAS, Brazil (project
N. 21721-6) and PTDF, Nigeria (Award N. PTDF/ED/PHD/SAM/977/19). We also
gratefully acknowledge partial support from CNPq (research grants 310085/2020-9 and
310127/2020-3).

References

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M. (2019). Optuna: A next-
generation hyperparameter optimization framework. CoRR, abs/1907.10902.



Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. (2011). Algorithms for hyper-
parameter optimization. In Advances in Neural Information Processing Systems, pages
1–9.

Cotrim, L. P., Oliveira, H. B., Filho, A., Santos, I., Barreira, A., Tannuri, E. A., Costa,
A. H. R., and Gomi, E. S. (2021). Neural Network Meta-Models for FPSO Motion
Prediction from Environmental Data. In Proc. of the Int. Conf. on Offshore Mechanics
and Arctic Engineering.

Elsken, T., Metzen, J. H., and Hutter, F. (2019). Neural architecture search: A survey.
Journal of Machine Learning Research, 20(55):1–21.

Feurer, M. and Hutter, F. (2019). Hyperparameter Optimization, pages 3–33. Springer
International Publishing.

Frazier, P. I. (2018). A tutorial on bayesian optimization. arXiv:1807.02811.

Goffe, W. L., Ferrier, G. D., and Rogers, J. (1994). Global optimization of statistical
functions with simulated annealing. Journal of Econometrics, 60(1):65–99.

Gumley, J. M., Henry, M. J., and Potts, A. E. (2016). A novel method for predicting the
motion of moored floating bodies. In 35th Int. Conf. on Ocean, Offshore and Arctic
Engineering, OMAE2016-54674. DOI = 10.1115/OMAE2016-54674.

Jin, H., Song, Q., and Hu, X. (2018). Efficient neural architecture search with network
morphism. CoRR, abs/1806.10282.

Liu, H., Simonyan, K., and Yang, Y. (2018). DARTS: differentiable architecture search.
CoRR, abs/1806.09055.

Märtens, M. and Izzo, D. (2019). Neural network architecture search with differentiable
cartesian genetic programming for regression. CoRR, abs/1907.01939.

Mazaheri, S., Mesbahi, E., Downie, M., and Incecik, A. (2003). Seakeeping analysis of
a turret-moored FPSO by using artificial neural networks. In Proc. of the Int. Conf. on
Offshore Mechanics and Arctic Engineering. DOI = 10.1115/OMAE2003-37148.

Nishimoto, K., Fucatu, C. H., and Masetti, I. Q. (2002). Dynasim—A Time Domain
Simulator of Anchored FPSO. J. Offshore Mech. Arct. Eng., 124(4):203–211.

Pinos, M., Mrazek, V., and Sekanina, L. (2021). Evolutionary neural architecture search
supporting approximate multipliers. CoRR, abs/2101.11883.

Sciuto, C., Yu, K., Jaggi, M., Musat, C., and Salzmann, M. (2019). Evaluating the search
phase of neural architecture search. CoRR, abs/1902.08142.

van Laarhoven, P. J. M. and Aarts, E. H. L. (1987). Simulated Annealing: Theory and
Applications. Springer Netherlands.

White, C., Neiswanger, W., and Savani, Y. (2019). Bananas: Bayesian optimization with
neural architectures for neural architecture search. arXiv:1910.11858.

Zoph, B. and Le, Q. V. (2016). Neural architecture search with reinforcement learning.
arXiv:1611.01578.

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. (2017). Learning transferable architec-
tures for scalable image recognition. CoRR, abs/1707.07012.


