
Tessarine and Quaternion-Valued Deep Neural Networks
for Image Classification

Fernando Ribeiro de Senna1, Marcos Eduardo Valle1

1Institute of Mathematics, Statistics, and Scientific Computing
University of Campinas (UNICAMP), Campinas, Brazil

fernandordsenna@gmail.com, valle@ime.unicamp.br

Abstract. Many image processing and analysis tasks are performed with deep
neural networks. Although the vast majority of advances have been made
with real numbers, recent works have shown that complex and hypercomplex-
valued networks may achieve better results. In this paper, we address
quaternion-valued and introduce tessarine-valued deep neural networks, in-
cluding tessarine-valued 2D convolutions. We also address initialization
schemes and hypercomplex batch normalization. Finally, a tessarine-valued
ResNet model with hypercomplex batch normalization outperformed the corre-
sponding real and quaternion-valued networks on the CIFAR dataset.

1. Introduction

Image classification is an important area with many practical applications in which ma-
chine learning and deep learning play fundamental roles through particular types of artifi-
cial neural networks (ANNs) such as the convolutional neural networks (CNNs) and other
deep networks. The CNN proposed by Lecun et al. was one of the pioneers and gave vis-
ibility to deep neural architectures [Lecun et al. 1998]. Before the advent of CNNs and
other deep neural networks, one of the most common artificial network architectures was
the Multilayer Perceptron (MLP) [Haykin 2009]. However, MLP is not well suited for
image processing tasks. Images consist of many pixels, so the MLP would need too many
parameters. Moreover, MLP is not robust to translations and slight modifications, which
are common in images. Also, the structure of images is not considered because they are
usually flattened to a vector. CNN models circumvent many of the MLP limitations for
image processing tasks by taking advantage of convolutions, which reduce the number of
parameters and preserve the input structure [Lecun et al. 1998].

Recent developments are mainly made with real ANNs. Nonetheless, there
is evidence that using other algebras such as complex numbers [Aizenberg 2011,
Trabelsi et al. 2017] and quaternions [Arena et al. 1997, Gaudet and Maida 2017,
Zhu et al. 2019, Kumar and Tripathi 2019, Parcollet et al. 2020, Grassucci et al. 2021]
may improve networks performance without increasing (and sometimes reducing) the
number of parameters. Reducing the number of parameters is particularly advantageous
for applications with memory and other constraints. Despite reducing the number of pa-
rameters, using hypercomplex algebras often better treats multi-dimensional information
data such as color images.

Tessarines and quaternions are two different four-dimensional algebras. Quater-
nions have been conceived by Hamilton in 1844 [Hamilton 1844] while the tessarines



have been proposed by Cockle in 1848 [Cockle 1848]. Quaternions have been suc-
cessfully used in deep neural networks models achieving the state of the art perfor-
mances [Gaudet and Maida 2017, Zhu et al. 2019, Grassucci et al. 2021]. Although there
are examples of tessarines usage for signal processing [Navarro-Moreno et al. 2020,
Navarro-Moreno and Ruiz-Molina 2021], to the best of our knowledge, no tessarine-
valued neural network has been proposed yet. Both quaternions and tessarines are well
suited for computer vision applications because a single hypercomplex number can en-
code the color pixel information. In contrast, real-valued networks treat each channel
independently.

In this paper, we address tessarine and quaternion-valued deep neural networks.
Precisely, we present 2D tessarine-valued convolutions. We also address hypercomplex
weight initialization and batch normalization. Moreover, we discuss activation functions,
residual learning, and average pooling for tessarine and quaternion-valued networks. Fi-
nally, we compare the performance of real, tessarine, and quaternion-valued ResNet mod-
els [He et al. 2015a, He et al. 2016] for image classification tasks using the CIFAR10
database [Krizhevsky 2009].

The paper is structured as follows. Section 2 presents the basic concepts on tes-
sarines and quaternions. Section 3 generalizes some of the main building blocks of deep
neural networks for tessarines and quaternions. Computational experiments for an image
classification task are detailed in Section 4. In Section 5, we offer concluding remarks
and possibilities of future work.

2. Basic Concepts on Tessarines and Quaternions

A tessarine t is represented by t = t0 + t1i + t2j + t3k where t0, t1, t2, t3 ∈ R and i, j,
and k are the hyper-imaginary units. The set of tessarine numbers is denoted by T. To
represent each of the tessarine components, we will use the representation Re(t) = t0,
I(t) = t1, J (t) = t2, and K(t) = t3. We say that t is a pure tessarine if Re(t) = 0.

Similarly, a quaternion q is represented by q = q0 + q1i + q2j + q3k where q0,
q1, q2, q3 ∈ R. The set of all quaternions is denoted by Q. Moreover, the quaternions
components are Re(q) = q0, I(q) = q1, J (q) = q2, and K(q) = q3. A quaternion q
is called a pure quaternion if Re(q) = 0. Despite the resemblance of quaternions and
tessarines, their hyper-imaginary units are not the same and have different properties.

Given two tessarines, s = s0 + s1i + s2j + s3k and t = t0 + t1i + t2j + t3k, and
two quaternions, p = p0 + p1i + p2j + p3k and q = q0 + q1i + q2j + q3k, their sums are
defined, respectively, as

s+ t = (s0 + t0) + (s1 + t1)i + (s2 + t2)j + (s3 + t3)k. (1)
p+ q = (p0 + q0) + (p1 + q1)i + (p2 + q2)j + (p3 + q3)k. (2)

A hypercomplex product is defined using a multiplication table. A multiplica-
tion table indicates the product of every two hyper-imaginary units. The tessarine and
quaternion multiplication tables are given by Tables 1 and 2, respectively [Cerroni 2017].

Given a multiplication table, the product of two hypercomplex numbers is defined
using the distributivity law. Precisely, the product of two tessarines s = s0+s1i+s2j+s3k



Table 1. Tessarine multiplication table.
× i j k
i −1 k −j
j k 1 i
k −j i −1

Table 2. Quaternion multiplication table.
× i j k
i −1 k −j
j −k −1 i
k j −i −1

and t = t0 + t1i + t2j + t3k is defined by

st = (s0 + s1i + s2j + s3k)(t0 + t1i + t2j + t3k)

= (s0t0 − s1t1 + s2t2 − s3t3) + (s0t1 + s1t0 + s2t3 + s3t2)i (3)
+ (s0t2 − s1t3 + s2t0 − s3t1)j + (s0t3 + s1t2 + s2t1 + s3t0)k.

Analogously, the Hamilton product of two quaternions p = p0 + p1i + p2j + p3k and
q = q0 + q1i + q2j + q3k is defined by

pq = (p0 + p1i + p2j + p3k)(q0 + q1i + q2j + q3k)

= (p0q0 − p1q1 − p2q2 − p3q3) + (p0q1 + p1q0 + p2q3 − p3q2)i (4)
+ (p0q2 − p1q3 + p2q0 + p3q1)j + (p0q3 + p1q2 − p2q1 + p3q0)k.

On the one hand, the quaternion product is noncommutative; that is, there are
p, q ∈ Q for which pq 6= qp. In contrast, the tessarine product is commutative. On the
other hand, tessarine numbers have non-zero divisors; that is, there are non-zero tessarines
s, t ∈ T such that st = 0.

3. Tessarine and Quaternion-Valued Deep Neural Networks
Deep neural networks depend on many operations, such as convolution, initialization,
batch normalization, and pooling. Analogous operations must be defined for designing
valuable hypercomplex-valued deep neural networks. In this section, we first review real-
valued operations to address their tessarine and quaternion-valued modifications subse-
quently.

3.1. Convolution
Given a real-valued image I and a filter (or kernel) F of size (2N + 1) × (2N + 1), the
2D convolution widely used in deep neural networks is defined by

(I ∗ F)(x,y) =
N∑

i=−N

N∑
j=−N

I(x+i,y+j)F (i,j). (5)

In order to define tessarine convolution, it is useful to represent tessarines as vec-
tors. Hence, we identify a tessarine t = t0 + t1i + t2j + t3k with a four-dimensional



vector (t0, t1, t2, t3). Accordingly, we may represent a tessarine-valued image I as
I = (I0, I1, I2, I3).

Given a tessarine-valued image I = (I0, I1, I2, I3) and a tessarine-valued filter
F = (F0,F1,F2,F3), the tessarine-valued convolution is defined as

(I ∗ F)(x,y) =
N∑

i=−N

N∑
j=−N

I(x+i,y+j)F (i,j). (6)

As (6) depends on the product between the tessarine quantities I(x+i,y+j) and F (i,j), from
(3), the tessarine-valued convolution (I ∗ F)(x,y) is equal to

N∑
i=−N

N∑
j=−N


I
(x+i,y+j)
0 F

(i,j)
0 − I(x+i,y+j)

1 F
(i,j)
1 + I

(x+i,y+j)
2 F

(i,j)
2 − I(x+i,y+j)

3 F
(i,j)
3

I
(x+i,y+j)
0 F

(i,j)
1 + I

(x+i,y+j)
1 F

(i,j)
0 + I

(x+i,y+j)
2 F

(i,j)
3 + I

(x+i,y+j)
3 F

(i,j)
2

I
(x+i,y+j)
0 F

(i,j)
2 − I(x+i,y+j)

1 F
(i,j)
3 + I

(x+i,y+j)
2 F

(i,j)
0 − I(x+i,y+j)

3 F
(i,j)
1

I
(x+i,y+j)
0 F

(i,j)
3 + I

(x+i,y+j)
1 F

(i,j)
2 + I

(x+i,y+j)
2 F

(i,j)
1 + I

(x+i,y+j)
3 F

(i,j)
0


t

.

(7)
Since tessarine addition operates independently among its components, (7) can be com-
puted as follows, using real-valued convolutions:

I ∗ F =


(I ∗ F)0
(I ∗ F)1
(I ∗ F)2
(I ∗ F)3


t

=
[
I0 I1 I2 I3

]
∗


F0 F1 F2 F3

−F1 F0 −F3 F2

F2 F3 F0 F1

−F3 F2 −F1 F0

 . (8)

It is important to notice that I and F are tessarine-valued image and filter, respec-
tively. Hence, I ∗ F is a tessarine convolution. Nonetheless, I0, I1, I2 and I3 are real
images and F0, F1, F2 and F3 are real filters, so Ia ∗ Fb, with a, b ∈ {0, 1, 2, 3}, is a
real-valued convolution.

The quaternion-valued convolution is defined analogously. Given a quaternion-
valued image I = (I0, I1, I2, I3) and a quaternion-valued filter F = (F0,F1,F2,F3),
their convolution is defined (similarly to the one proposed in [Gaudet and Maida 2017])
by

I ∗ F =


(I ∗ F)0
(I ∗ F)1
(I ∗ F)2
(I ∗ F)3


t

=
[
I0 I1 I2 I3

]
∗


F0 F1 F2 F3

−F1 F0 −F3 F2

−F2 F3 F0 −F1

−F3 −F2 F1 F0

 . (9)

3.2. Activation Function
There are several different activation functions that can be considered for designing
hypercomplex-valued neural networks [Trabelsi et al. 2017, Kumar and Tripathi 2019].
In this paper, we consider the so-called split-activation functions [Arena et al. 1997,
Gaudet and Maida 2017, Gaudet and Maida 2020]. The main idea is to apply a real ac-
tivation function to each component of the hypercomplex number. Precisely, given a
real-valued activation function f : R → R, a split-activation function Split f : H → H,
with H ∈ {T,Q}, is defined by

Split f(z) = f(z0) + f(z1)i + f(z2)j + f(z3)k,∀z = z0 + z1i + z2j + z3k ∈ H. (10)



3.3. Initialization

Let us now address quaternion and tessarine weight and bias initialization. To this end, we
review the expected value and the variance of hypercomplex variables. Given a random
variable Z = Z0+Z1i+Z2j+Z3k with either quaternion or tessarine values, its expected
value is defined by

E[Z] = E[Z0] + E[Z1]i + E[Z2]j + E[Z3]k. (11)

The definition of variance depends on conjugates. The conjugate of a quaternion
q = q0 + q1i + q2j + q3k is q = q0 − q1i− q2j− q3k. As a result, qq = q20 + q21 + q22 + q23 .
Given a quaternion random variable Q = Q0 + Q1i + Q2j + Q3k with expected value
E[Q] = µQ, its variance [Loots et al. 2012] is defined by

V ar(Q) = E
[
(Q− µQ)(Q− µQ)

]
= V ar(Q0) + V ar(Q1) + V ar(Q2) + V ar(Q3).

(12)

In contrast to quaternions, there is not a straightforward definition of tessarine con-
jugates [Babadağ 2017]. Therefore, it is difficult to define a proper concept of tessarine
variance. Nevertheless, this paper is aimed at providing the foundations for tessarine and
quaternion-valued deep neural networks. Since initialization is a small part of it, we will
focus on developing a quaternion-valued initialization. Then, we shall use the quaternion-
valued initialization for tessarine-valued networks as well.

Initialization will be performed based on [He et al. 2015b]. Consider a network
with L quaternion layers. Based on a forward propagation, the output of a layer l with
input xl, weight matrix Wl, and bias bl is yl = Wlxl + bl. The bias bl is initialized as
zero. For l > 1, we have xl = Split f(yl−1), where f is an activation function.

LetYl,Wl, andXl be the quaternion random variables from which the components
of yl, Wl, and xl are sampled, respectively. Assuming that nl is the length of yl (after
eventual reshapes), because Yl =WlXl, we have

V ar(Yl) = nlV ar(WlXl). (13)

If Wl is symmetrically distributed around zero, so is Yl. Assuming that Wl and Xl are
independent, we get

V ar(Yl) = nlV ar(Wl)E[XlXl]. (14)

Analogously to [He et al. 2015b], for the Split ReLU activation function, we obtain

XlXl = ReLU(Re(Yl−1))
2 +ReLU(I(Yl−1))

2 +ReLU(J (Yl−1))
2 +ReLU(K(Yl−1))

2.
(15)

Assuming that the quaternion components of Wl−1 are independent and identically dis-
tributed with mean zero and variance σ2

Wl−1
, due to the structure of quaternion product,

the quaternion components of Yl−1 are also identically distributed with mean zero and
variance σ2

Yl−1
. Thus, we have

E[XlXl] = 4
σ2
Yl−1

2
= 2σ2

Yl−1
. (16)



Therefore,
V ar(Yl) = 2nlV ar(Wl)σ

2
Yl−1

, (17)

or, equivalently,
σ2
Yl

= 2nlσ
2
Wl−1

σ2
Yl−1

. (18)

As proposed in [He et al. 2015b], accumulating over L layers:

σ2
YL

= σ2
Y1

L−1∏
l=1

2nlσ
2
Wl
. (19)

Concluding, the identity 2nlσ
2
Wl

= 1 is a sufficient condition to have a scalar
σ2
YL

. We should initialize each layer having each component with mean zero and variance
σ2
Wl

= 1
2nl

. It is also possible to deduce an initialization based on backpropagation.
However, the one presented above guarantees that variance will not grow exponentially in
backpropagation [He et al. 2015b].

Following a similar procedure, it is possible to make initialization based on
[Glorot and Bengio 2010]. In this case,

σ2
Wl

=
1

2(nin
l + nout

l )
. (20)

3.4. Hypercomplex Batch Normalization
Ioffe and Szegedy originally proposed real-valued batch normalization (BN)
[Ioffe and Szegedy 2015]. Batch normalization consists in centering and normalizing
each input and then scaling and shifting it. BN prevents exploding and vanishing gradi-
ents, allowing the use of more effective learning rates and reducing overfitting. To imple-
ment hypercomplex batch normalization (HBN), we relied on whitening and decorrelation
of each of the hypercomplex components [Trabelsi et al. 2017, Gaudet and Maida 2017].
Thus, instead of using hypercomplex-based operations, we used real-valued statistics.

Consider a real-valued random vector X with mean µ and covariance matrix Σ.
Whitening [Kessy et al. 2018] consists in transforming X into another real-valued ran-
dom vector Y = XW such that the convariance matrix of Y is identity matrix I .

In HBN, X is a four-dimensional vector whose entries represent the components
of the tessarine or the quaternion-valued random variable to be whitened (e.g., batch nor-
malization inputs). Furthermore, we apply whitening to X − µ because we also want to
center the inputs.

V ar(Y) = E[Y tY ] (21)
= E[Wt(X − µ)t(X − µ)W] (22)
= WtE[(X − µ)t(X − µ)]W (23)
= WtΣW (24)
= I (25)

Multiplying both sides of WtΣW = I by W, we get WWtΣW = W, or equiv-
alently, WWt = Σ−1. There are several ways to calculate the matrix W, as discussed



in [Kessy et al. 2018]. [Gaudet and Maida 2017] propose choosing W as the Cholesky
factor of Σ−1. Hence, one needs to compute the inverse of a 4 × 4 square matrix and
its Cholesky decomposition. We propose a slight modification to decrease computational
cost. First, we compute the Cholesky factor R of Σ and then we define W = R−t. It is
easy to see that WWt = Σ−1 = (RRt)−1. Using this alternative procedure, we compute
the inverse of an upper triangular matrix instead of computing the inverse of a square ma-
trix. Despite its small improvement, as this computation occurs many times in different
layers, it reduces the time required for training and prediction.

There is only a slight problem to the approach described above: Σ is positive
semidefinite since it is a covariance matrix, and Cholesky decomposition is well defined
only for positive definite matrices. To circumvent this problem, we add εI, with ε > 0 a
small number. Hence, Σ + εI is positive definite.

Moreover, like the real-valued BN, the input is scaled and shifted after centering
and normalizing within the HBN. In [Ioffe and Szegedy 2015], the authors propose that
the network must be able to return to the original variance and mean of the input during
learning whenever it is necessary. Hence, we should define the scaling parameter γ as a
matrix that can learn W−1. As W is an upper triangular matrix, its inverse is an upper
triangular matrix, and so must be γ. This is another difference from what is proposed
by [Gaudet and Maida 2017], as they suggest a symmetric γ matrix. Finally, shifting is
performed with a vector β. Thus, given an input x, the output of the hypercomplex-value
batch normalization layer is

HBN(x) = (x− µ)Wγ + β. (26)

The parameters µ and Σ are updated during training with an exponential moving
mean. Thus, they are not learned, as its correlates in real-valued BN. γ and β are learned
during training with the only condition that γ is an upper triangular matrix. We followed
the initialization proposed in [Gaudet and Maida 2017] for HBN parameters. β and µ are
initialized as zero, and so are the off-diagonal elements of Σ and γ. The diagonals of
Σ and γ are initialized as 0.5. HBN considers each tessarine or quaternion feature map
independently. There is no relationship between different hypercomplex feature maps.

Finally, we would like to point out that HBN usually depends on heavy compu-
tations due to the Cholesky decomposition and the matrix inversion. Alternatively, the
real-valued BN could be applied independently on each hypercomplex component like
the split-activation functions.

3.5. Residual Learning, Average Pooling and Backpropagation

A problem that arises from training in deep learning is degradation because it has many
layers and learning of each of them depends on the learning of the next one in backpropa-
gation. Therefore, layers that have not started learning block the process for those before
it. Residual learning [He et al. 2015a], [He et al. 2016] is aimed at overcoming this issue.

Suppose a deep neural network receives an input x and models a function h(x).
If x is added to its output (skip connection), the network will now model a function
g(x) = h(x)− x. Skip connection is the basic concept of residual learning. Input signal
skips some layers of the network and is added to their output. The main advantage occurs



when the network has several aligned residual units (RUs), which are blocks of few lay-
ers with a skip connection. The RUs reduce the impact of layers preventing learning of
previous ones because there is little dependence between different RUs. Furthermore, the
hypercomplex residual learning is as simple as its real-valued counterpart because skip
connections consist of adding the input to the output of some intermediate layers, and the
addition of hypercomplex numbers operates independently at each component.

Besides, average pooling is based on addition (and division by a real number).
Hence, its transformation to tessarines and quaternions is straightforward as well.

Finally, backpropagation depends on derivatives and the chain rule. Working with
hypercomplex derivatives is complicated because they depend on the algebra structure
and Cauchy-Riemann conditions. Designing a proper and efficient hypercomplex back-
propagation algorithm would be out of the scope of this study. Our aim with this paper is
to focus on the basic foundations of tessarine and quaternion-valued deep neural networks
and to see whether these algebraic systems achieve satisfactory results or not. Thus, like
[Trabelsi et al. 2017, Gaudet and Maida 2017], we used the isomorphism between hyper-
complex numbers and four-dimensional vectors to train tessarine and quaternion-valued
neural networks within the real-valued backpropagation.

4. Computational Experiments

The experiments performed consisted in training real, tessarine and quaternion-valued
ResNet models [He et al. 2015a, He et al. 2016] with similar architectures on CIFAR10
database [Krizhevsky 2009]. Recall that the CIFAR10 dataset consists of a training set
with 50 thousand images and a test set with 10 thousand divided into 10 classes. The
deep neural networks were implemented in python with TensorFlow. Moreover, the
training was performed with Google Colab Pro using GPU1.

The ResNet models are based on stacking residual units (RUs). The RUs are
structured as follows: convolution, BN, activation, convolution, BN, activation, and skip
connection. Default convolution uses 3×3 kernels, stride of 1, same padding, and regular-
ization L2 with regularizer factor of 10−3. Every few RUs, the number of filters doubles,
and the size of the resulting feature maps halves. This is achieved by applying the first
convolution of the RU with stride of 2 every time the number of filters doubles. Conse-
quently, a problem with the skip connection arises because it would try to add different
numbers of feature maps with mismatched shapes. To overcome this, we apply a con-
volution with the same number of 1 × 1 kernels and stride of 2 in the skip connection,
followed by batch normalization.

We worked on six neural networks: two real-valued, two tessarine-valued, and two
quaternion-valued models. All of them have 16 layers. Apart from the differences created
by the algebraic systems, the main difference is the number of filters in each convolution.
Let n represent the number of filters in the first convolutional layer. Then, there are seven
stacked residual units (RUs): 3 using convolutions with n filters, 2 with 2n filters, and 2
with 4n filters. Finally, a global average pooling is applied, the result is flattened, and a
dense layer with ten units is used for classification purposes with softmax activation.

1Complete code is available at https://github.com/FernandoRSenna/
Tessarine-and-Quaternion-Valued-Convolutional-Neural-Networks



For the tessarine and quaternion-valued networks, we adopted n = 6 (consid-
ering that each kernel is hypercomplex-valued). They use the corresponding hyper-
complex convolution, quaternion-based He uniform initialization exposed in Section
3.3, and the Split ELU activation function. The dense layer was emulated as a real-
valued layer and also used the softmax function. Despite having derived initialization
based on Split ReLU , we used Split ELU because it yielded higher accuracy than the
Split ReLU . The real-valued equivalent is detailed in [Clevert et al. 2016]. Furthermore,
for each hypercomplex number system, there is a network that uses Hypercomplex Batch
Normalization (HBN) proposed in Section 3.4 and another with real-valued BN applied
to each of the hypercomplex-valued components.

It is also important to contrast the hypercomplex-valued networks with the corre-
sponding real-valued models. Because of the isomorphism between the hypercomplex al-
gebras and four-dimensional vectors, some researchers compare the hypercomplex-valued
model with a real-valued network with similar architecture (SA) obtained by multiplying
n by 4 [Trabelsi et al. 2017, Gaudet and Maida 2017]. In our case, the real network has
n = 6 · 4 = 24 filters in the first convolutional layer. However, the real-valued network
with similar architecture has more parameters than the hypercomplex-valued models. As
an alternative and fairer comparison, we also analysed a real-valued network with similar
number of parameters (SP) to the hypercomplex-valued models (n = 12). Both real-
valued networks use ELU as activation function [Clevert et al. 2016], real batch normal-
ization [Ioffe and Szegedy 2015], and He uniform initialization [He et al. 2015b].

The optimization was performed using stochastic gradient descent within 250
epochs using a mini-batch size of 128 images. The loss function is the categorical cross-
entropy. From epoch 1 to 10, the learning rate was 10−2, then it was 10−1 until epoch
150, 50 more epochs used 10−2, and the last 50 considered 10−3 as the learning rate. We
used data augmentation in training with horizontal flip and horizontal and vertical shift of
0.125. We also subtract each pixel mean before training.

Finally, data needs to be preprocessed in the hypercomplex-valued networks be-
cause tessarines and quaternions are formed by four real numbers, and the images have
three color channels. We encoded each (color) pixel as a pure tessarine or a pure quater-
nion (zero as real-part), with the RGB values associated with the hyper-imaginary units.

Table 3 presents the results for each network. The total number of parameters is
presented. The number of convolutions of each layer may be accessed by the value of
n. Test set accuracy is defined by the average accuracy after training each network three
times.

Table 3. Networks results comparison.
Network n Parameters Accuracy
Real (SA) 24 404818 87.8%
Real (SP) 12 102478 84.5%
Tessarine (HBN) 6 107170 85.3%
Tessarine (Real BN) 6 104578 84.0%
Quaternion (HBN) 6 107170 84.2%
Quaternion (Real BN) 6 104578 83.9%



The real-valued network with similar architecture to the hypercomplex-valued
model presents the best result. However, the tessarine-valued ResNet with HBN yielded
considerably high accuracy scores, with around one-fourth of the parameters. It also out-
performed the real-valued network with a similar number of parameters (SP). The other
hypercomplex-valued networks presented worse accuracy scores than the real-valued net-
work with a similar number of parameters, with the accuracy difference ranging between
0.3% and 0.6%.

When comparing the accuracy of all hypercomplex-valued networks, the
tessarine-valued with HBN outperformed the other ones. It may seem that there is lit-
tle difference between tessarine and quaternion networks when analyzing the similarity
of their performance with real-valued BN. However, their behavior with HBN shows that
this is not the case. HBN increases tessarine-valued ResNet performance by 1.3%, while
the quaternion-valued network yields a minor difference.

Finally, it is important to mention that we did not achieve state of the art per-
formance [He et al. 2015a, He et al. 2016, Trabelsi et al. 2017, Gaudet and Maida 2020].
The main reason is lack of powerful computing tools, which led us to decide to work
with networks that had fewer layers and parameters than those proposed in the papers
mentioned above. We believe that the smaller accuracy scores are not a major problem
because the main focus was on the foundations of tessarine and quaternion-valued net-
works and comparing their performances with real-valued networks.

5. Conclusions and Future Work

This paper proposed a 2D tessarine-valued convolution, a quaternion-based weight ini-
tialization, and improvements on hypercomplex-valued batch normalization. We also dis-
cussed how to adapt other operations commonly used in deep learning to tessarine and
quaternion-valued neural networks.

Results show that tessarine-valued ResNet model with HBN outperformed its real
and quaternion-valued corresponding models with a similar number of parameters. Be-
sides, hypercomplex batch normalization has increased the tessarine-valued network ac-
curacy score.

Currently, many real-based operations are merged with hypercomplex ones to cre-
ate hypercomplex-valued networks. We do not take complete advantage of the structure
of these algebraic systems, as we work with split-activations and mainly the real-based
backpropagation. Nevertheless, this paper has presented robust evidence that further stud-
ies and developments in this field might improve network performance without increasing
their number of parameters.

Future work may focus on the following: tessarine-valued initialization, further re-
duction in hypercomplex-valued batch normalization computing cost, different activation
functions, larger networks to achieve better performance, comparison of diverse ways to
represent images as tessarine and quaternion-valued images, hypercomplex dense layers,
other neural networks applications, and neural networks based on alternative hypercom-
plex algebras.



References

Aizenberg, I. (2011). Complex-valued neural networks with multi-valued neurons, vol-
ume 353. Springer.

Arena, P., Fortuna, L., Muscato, G., and Xibilia, M. G. (1997). Multilayer perceptrons to
approximate quaternion valued functions. Neural Networks, 10(2):335–342.

Babadağ, F. (2017). A new approach to homothetic motions and surfaces with tessarines.
International Journal of New Technology and Research (IJNTR), Volume-3:45–48.

Cerroni, C. (2017). From the theory of “congeneric surd equations” to “segre’s bicomplex
numbers”. Historia Mathematica, 44(3):232–251.

Clevert, D., Unterthiner, T., and Hochreiter, S. (2016). Fast and accurate deep network
learning by exponential linear units (elus).

Cockle, J. (1848). On certain functions resembling quaternions, and on a new imaginary
in algebra. The London, Edinburgh, and Dublin Philosophical Magazine and Journal
of Science, 33(224):435–439.

Gaudet, C. and Maida, A. (2017). Deep quaternion networks.

Gaudet, C. and Maida, A. (2020). Generalizing complex/hyper-complex convolutions to
vector map convolutions.

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedfor-
ward neural networks. In Teh, Y. W. and Titterington, M., editors, Proceedings of the
Thirteenth International Conference on Artificial Intelligence and Statistics, volume 9
of Proceedings of Machine Learning Research, pages 249–256. PMLR.

Grassucci, E., Cicero, E., and Comminiello, D. (2021). Quaternion generative adversarial
networks.

Géron, A. (2017). Hands-On Machine Learning with Scikit-Learn and TensorFlow: Con-
cepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., 1st
edition.

Hamilton, W. R. (1844). On quaternions; or on a new system of imaginaries in algebra.
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,
25(163):10–13.

Haykin, S. (2009). Neural Networks and Learning Machines. Pearson International Edi-
tion. Pearson.

He, K., Zhang, X., Ren, S., and Sun, J. (2015a). Deep residual learning for image recog-
nition.

He, K., Zhang, X., Ren, S., and Sun, J. (2015b). Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Identity mappings in deep residual net-
works.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift.



Kessy, A., Lewin, A., and Strimmer, K. (2018). Optimal whitening and decorrelation.
The American Statistician, 72(4):309–314.

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. Technical
report.

Kumar, S. and Tripathi, B. K. (2019). On the learning machine with compensatory aggre-
gation based neurons in quaternionic domain. Journal of Computational Design and
Engineering, 6(1):33–48.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

Loots, M., Bekker, A., Arashi, M., and Roux, J. (2012). On the real representation of
quaternion random variables. Statistics, 47:1–17.

Navarro-Moreno, J., Fernández-Alcalá, R. M., Jiménez-López, J. D., and Ruiz-Molina,
J. C. (2020). Tessarine signal processing under the t-properness condition. Journal of
the Franklin Institute, 357(14):10100–10126.

Navarro-Moreno, J. and Ruiz-Molina, J. C. (2021). Wide-sense markov signals on the
tessarine domain. a study under properness conditions. Signal Processing, 183:108022.

Parcollet, T., Morchid, M., and Linarès, G. (2020). A survey of quaternion neural net-
works. Artificial Intelligence Review, 53(4):2957–2982.

Trabelsi, C., Bilaniuk, O., Serdyuk, D., Subramanian, S., Santos, J. F., Mehri, S., Ros-
tamzadeh, N., Bengio, Y., and Pal, C. J. (2017). Deep complex networks. CoRR.

Zhu, X., Xu, Y., Xu, H., and Chen, C. (2019). Quaternion convolutional neural networks.


