
Iterative machine learning applied to annotation
of text datasets

Thiago Abdo[0000−0003−3086−1461] and Fabiano Silva[0000−0001−5453−6175]

Informatics Department, Federal University of Paraná, Curitiba, Brazil
{tjabdo,fabiano}@inf.ufpr.br

Abstract. The purpose of this paper is to analyze the use of differ-
ent machine learning approaches and algorithms to be integrated as an
automated assistance on a tool to aid the creation of new annotated
datasets. We evaluate how they scale in an environment without ded-
icated machine learning hardware. In particular, we study the impact
over a dataset with few examples and one that is being constructed. We
experiment using deep learning algorithms (Bert) and classical learning
algorithms with a lower computational cost (W2V and Glove combined
with RF and SVM). Our experiments show that deep learning algorithms
have a performance advantage over classical techniques. However, deep
learning algorithms have a high computational cost, making them inad-
equate to an environment with reduced hardware resources. Simulations
using Active and Iterative machine learning techniques to assist the cre-
ation of new datasets are conducted. For these simulations, we use the
classical learning algorithms because of their computational cost. The
knowledge gathered with our experimental evaluation aims to support
the creation of a tool for building new text datasets.

Keywords: Machine learning · Natural Language Processing · Senti-
ment Analysis.

1 Introduction

The creation of new annotated datasets for machine learning is a slow and costly
process. Usually, this process is done in a manual and error-prone manner. Tools
that make the process of building a new annotated dataset less error-prone,
faster, and straightforward [1, 5, 16] are of great interest. In this paper, we present
an experimental evaluation of machine learning techniques to support the de-
velopment of such tools. The first one can suggest annotations based on past
annotations (iterative learning) [4, 8, 11]. And, the second, choose which is the
next example that should be annotated to improve the performance of a machine
learning algorithm (active learning) [9, 13, 15, 17].

In this paper, we provide the rationale behind choosing a machine-learning
algorithm to support the development of a web application to be used as an anno-
tation tool. The experimental evaluation is conducted to evaluate both iterative
and active learning using a Brazilian Portuguese dataset with 4333 annotated

2 Thiago Abdo and Fabiano Silva

examples. For evaluating the machine-learning algorithm, we have to test not
only the performance but also have to account for the environment where this
algorithm is going to be running. We choose BERT [3] to represent deep learning
algorithms, as it is easy to find different versions trained in several languages.
We also executed a full training using our dataset.

To represent classical learning algorithms, we choose to combine the feature
extractors, Word2Vec (W2V) [10] and GloVe [12], with the classifiers Random
Forest (RF) [7] and Support Vector Machine (SVM) [2]. We tested each of the
feature extraction algorithms with the dataset and also with extra content.

Although deep learning strategies have a better performance than the clas-
sical approach, it also has an increased computational cost that is not viable to
the environment where the tool is executed. Because of that, we choose to use
classical learning algorithms even with a performance hit that can be as big as
15% in our tested datasets.

To evaluate the iterative and active learning, we created a simulation using
our annotated dataset [16]. At first, we used few examples of each class, after
each round, we added more examples, randomly for iterative learning and by
uncertainty for active learning.

2 Materials and methods

In all experiments, we use a database about social and racial quotas under con-
struction by the Communication Department of Federal University of Paraná
(UFPR). This database has 4333 comments from social networks. They are het-
erogeneous in size and format. From this database were manually created 22
datasets (https://gitlab.c3sl.ufpr.br/mestr/datasets). We are using these three
datasets in our tests: positioning, rationality, and theme. To ensure that each
dataset was balanced these actions were necessary to: remove the classification
“does not apply” from the dataset “positioning”, as this had only 289 examples
and reduce the “absent” classification of the “rationality” dataset since it had
2536 examples (about 41 % more than the other most present class).

We also created a new dataset by reducing the “theme” dataset called “re-
duced theme”. The table 1 shows the possible classifications for each dataset
with the number of examples.

Table 1. Datasets with the number of examples in each class.

Dataset Classes

Positioning neutral (1501), favorable (1298), and contrary (1245)

Rationality present (1797) and absent (1797)

Theme off topic (1181), relational (1213), structural (937), and unknown
(1002)

Reduced Theme off topic (off topic and unknown) (2183) and on topic (relational
and structural) (2150)

Iterative machine learning applied to annotation of text datasets 3

2.1 The machine learning algorithm

To choose the machine learning technique that is the best for the tool, we devel-
oped two experiments. In the first one, we tested five different BERT training
sets. The goal is to evaluate the performance of each Bert’s model concerning the
F1 metric (using different amounts of data in the pre-training) and the training
time of the algorithm. In the second one, we combined feature extractors (W2V
and GloVe) with non-linear classifiers (SVM and RF) and used three training
sets. The second experiment aims to evaluate the performance concerning the
F1 metric, the total training time for algorithms that do not have deep learn-
ing, such as W2V and GloVe, and if adding more data about the subject of the
dataset improves the performance.

In the first experience, we use BERT due to its training process be split into
two parts (pre-training and fine-tuning). So, it’s easy to find versions with the
pre-training completed on the internet for different languages, and it’s compet-
itive with state-of-the-art for several natural language processing problems. We
tested five BERT’s pre-training: pre-training only with data from the database,
pre-training with texts extracted from the internet, pre-training with texts ex-
tracted from the internet together with the data from the base data, pre-trained
with texts in different languages by Google, and pre-trained with texts in Por-
tuguese by Neuralmind [14]. All models went through fine-tuning using only the
quota database.

– Bert 1: pre-training with the dataset examples only.
– Bert 2: pre-training with texts about quotas extracted from the internet.
– Bert 3: pre-training with texts about quotas extracted and dataset examples.
– Google: multi-language provided by Google.
– Neuralmind: single language provided by Neuralmind.

In the models that we did the complete training (Bert 1, 2, and 3), the pre-
training was tested with variations of the following parameters: the size of the
internal layers, number of layers, number of attention mechanisms, and input’s
max size. The tested values for each parameter are exhibited in the table 2. In
the fine-tuning, we tested every model generated with the combinations of these
parameters. The size of each inner layer, the number of layers, and the input’s
max size determine respectively: the number of neurons in each inner layer, the
number of inner layers, and the maximum size of the input that will be processed.
These parameters are common to most deep learning algorithms. The number
of attention mechanisms is a specific parameter of BERT and determines the
number of attention mechanisms per inner layer.

The attention mechanism is a BERT instrument that allows each word ana-
lyzed by this mechanism to have a connection of some intensity with other words
in the sentence/text that is analyzed. Another peculiarity of BERT is that the
size of the inner layer needs to be multiple of the size of the attention mecha-
nism. The initial values were inspired for these parameters by the values that
the Google model used for pre-training. We added variations and reductions due
to the size of our datasets and the computational cost.

For fine-tuning, we made variations in the following parameters: entry size,
learning rate, and the number of epochs. The tested values for each parameter

4 Thiago Abdo and Fabiano Silva

Table 2. Variation of each parameter tested in the pre-training of BERTs 1, 2, and 3.

Parameters Tested value

Size of the internal layers 288, 516, 768

Number of layers 4, 8 e 12

Number of attention mechanisms 4 e 12

Input’s max size 256 e 512

are presented in the table 3. These parameters are common to most machine
learning algorithms. We choose the inputs max sizes according to the number
of elements in the dataset: 54.60% has the size of up to 128, 77.75% of up to
256 and, 91.14% up to 512. We defined the number of epochs and the learning
rate empirically. We also performed preliminary tests with more epochs (7) and
a smaller learning rate (2−7), but we only performed the complete tests with the
values in the table 3.

Table 3. Variation of each parameter tested in the fine-tuning phase.

Parameters Tested value

Input’s max size 128, 256 e 512

Learning rate 2−3 e 2−5

Number of epochs 3 e 5

In the second experiment, we are evaluating machine learning models that
do not have deep learning. We developed an experiment combining feature ex-
tractors (W2V and GloVe) and non-linear classifiers (RF and SVM). Also, we
tried three different variants for training the feature extractors, using: only the
dataset for training (represents an extractor without prior knowledge); a set of
texts without classification on the same subject of the dataset combined with the
dataset (represents an extractor with knowledge of the subject of the dataset);
a set of 17 datasets in Portuguese (represents an extractor with language knowl-
edge) [6]. We are trying these 3 types of training data for the feature extractors
because our datasets are small and we wanted to do a fair comparison with the
Bert models. Due to the nature of the dataset, comments from internet pages, we
tried combinations of these two pre-processors: data cleaning (removing links,
numbers, excessive repetition of characters and HTML structures) and spelling
correction.

In the following list, we have the acronyms for each combination of feature
extractors plus training sets that were tested:

– W2V 1: W2V without prior knowledge
– W2V 2: W2V with knowledge of the subject of the dataset
– W2V 3: W2V with knowledge of the language
– GloVe 1: GloVe without prior knowledge
– GloVe 2: GloVe with knowledge of the subject of the dataset

Iterative machine learning applied to annotation of text datasets 5

– GloVe 3: GloVe with knowledge of the language

2.2 Techniques to improve learning

We tested two techniques that aim to improve learning speed and feedback to
the annotator. Iterative machine learning (IML) [4, 11, 8] can be used both in
the context of creating new datasets and in the creation or improvement of a
machine learning system. In the context of creating a new dataset, IML is used
to assist in labeling examples.

Active machine learning (AML) [13, 17, 9, 15] is a technique that can be useful
to reduce the number of examples needed for a machine learning system to
achieve the desired performance. In the context of creating a new dataset, AML
works together with IML reducing the number of examples that need to be
classified before IML can make good classification guesses.

To evaluate the impact of these learning techniques and how the success rate
of each model behaves, we developed a simulation. This simulation consists of
evaluating the performance of the models with only a part of the dataset, and
at each round adding a fixed amount of new examples annotated from each
class. How we choose the examples that are added depends on the technique
that we are simulating. When we are simulating AML, we add examples that
the current model has more uncertainty. When we are simulating IML, we add
examples randomly. Allowing us to test the evolution of the performance of the
models as if we were creating a new dataset. This way, we do not need to involve
human annotators, thus occur in a fraction of the time. The main difference of
this simulation for reality is the time it takes to include more examples.

Each simulation started with ten examples of each class. After the training
and testing process, we add ten more examples from each class until there are
no more examples. We are using the datasets “positioning with data cleaning”
and “reduced theme with data cleaning” because they are the ones with the
worst and best performance in our tests respectively. In these simulations, we
evaluated feature extractors W2V 3 and GloVe 3.

3 Experimental results

In this section, we present the results for the experiments to choose the machine
learning algorithm and the simulations with techniques to improve annotation
speed and quality.

In our testing, Bert-based algorithms performed better in all scenarios. They
had up to 15% more f1-score than the approach with classic algorithms. But
their computational cost is too high for the environment where we intend to use
it. The two best Bert models that we tested took more than 28 hours to complete
fine-tunning. For this reason, even with worse overall performance, we choose to
continue our tests of techniques to improve annotation and speed using classic
algorithms.

6 Thiago Abdo and Fabiano Silva

In our simulations of techniques to improve annotation speed and quality,
we simulated AML and IML. AML showed that we could use it to speed up
learning while using fewer examples. Improving how fast we can start using IML
and acting as a balancer to keep the dataset balanced with meaningful examples.

3.1 Choosing a machine learning algorithm

For all models, the best overall parameters setting is in table 4, but for the
models that we only performed fine-tuning, we have a N/A (not applicable) in
the parameters exclusive for pre-training. We measured overall performance by
each model accumulating points depending on the f1 score it had in one test.
The model with the highest f1 score accumulates ten points, the second nine.
Until the tenth that accumulates 1 point. The models chosen to have the results
presented in table 5 are the models that had the best overall performance.

Table 4. Best overall parameters for pre-trainned and fine-tunned BERTs

Bert 1 Bert 2 Bert 3 Google Neuralmind

Size of the internal layers 768 288 768 N/A N/A

Number of layers 8 8 8 N/A N/A

Number of attention mechanisms 4 4 4 N/A N/A

Input’s max size in pre-training 512 512 256 N/A N/A

Input’s max size in fine-tunning 512 512 512 512 512

Learning rate 2−5 2−5 2−5 2−5 2−5

Number of epochs 5 5 5 3 3

Table 5. F1 score for each dataset

Bert 1 Bert 2 Bert 3 Google Neuralmind

Reduced theme 88.19% 84.95% 89.81% 89.35% 88.89%

Theme 59.76% 60.67% 58.81% 63.07% 64.81%

Positioning 56.92% 49.17% 59.43% 56.94% 61.80%

Rationality 74.02% 75.12% 75.39% 77.65% 79.89%

In table 5, Neuralmind had the best performance in three datasets, only in
the reduced theme it is worse than Google’s pre-training. In addition, Bert 2
and 3 performed better than Google in the positioning dataset. Even with the
usage of hardware, time, and data for pre-training and training being lower.

Due to high computational cost, algorithms based on BERT are not ideal for
our scenario since the tool is hosted on web servers without access to resources
to speed up learning. To illustrate how high computational cost is a problem to
run tests on non-optimized hardware such as a server in the cloud, we performed
the fine-tuning tests of the Google and Neuralmind models on a four processors

Iterative machine learning applied to annotation of text datasets 7

virtual machine. These models took more than 28 hours to complete the fine-
tuning, and they had a consumption of 16 Gigabytes of RAM and occupied all the
processing of the virtual machine. With a high computational cost, algorithms
based on deep learning are not feasible for scenarios that do not have specific
hardware for reducing learning time.

The results presented in tables 6, 7, 8 and 9 are using the random forest as the
non-linear classifier. In bold text, we have the best model for a pre-processor (the
best in a row), and in underlined text, we have the best model pre-processor for
a model (the best in a column). In addition to having the best F1 performance
in 6 of 12 combinations of dataset and pre-processing, this classifier has a lower
computational cost than support vector machines.

Table 6. F1 score for classic models in the dataset “reduced theme”

W2V 1 GloVe 1 W2V 2 GloVe 2 W2V 3 GloVe 3

No pre-processing 85.40% 81.70% 85.64% 82.86% 81.44% 79.84%

Data Cleaning 84.25% 83.09% 83.08% 81.94% 80.78% 81.70%

Spell correction 83.32% 82.62% 85.87% 82.15% 82.14% 79.14%

Both 81.94% 80.29% 84.49% 82.40% 81.48% 80.32%

For the dataset “Reduced Theme”, we can see in table 6 that there is no
performance gain from using both pre-processors in any model, and using data
cleaning or spell correction brought performance gains in 4 of 6 models tested.
When comparing extractors that used the same training data (eg. W2V 1 with
GloVe 1 and W2V 2 with GloVe 2), the models using W2V as extractors had a
better performance than GloVe for this dataset in 11 of 12 comparisons.

Table 7. F1 score for classic models in the dataset “theme”

W2V 1 GloVe 1 W2V 2 GloVe 2 W2V 3 GloVe 3

No pre-processing 52.12% 52.30% 53.42% 51.53% 51.79% 48.54%

Data Cleaning 52.95% 56.36% 50.80% 53.01% 47.06% 50.38%

Spell correction 50.33% 53.75% 51.74% 53.64% 49.05% 49.64%

Both 52.56% 54.79% 50.14% 51.14% 49.39% 49.52%

For the dataset “Theme”, we can see in table 7 that the pre-processing “data
cleaning” improved 3 of 6 models tested. When comparing extractors that used
the same training data, the models using GloVe as extractors had a better per-
formance than W2V for this dataset in 10 of 12 comparisons.

For the dataset “Positioning”, we can see in table 8 that the pre-processing
“data cleaning” improved 3 of 6 models tested, and “both”, for 2 of 6. When
comparing extractors that used the same training data, the models using GloVe
as extractors had a better performance than W2V for this dataset in 7 of 12
comparisons. Also, using an extractor with knowledge of the language (W2V 3

8 Thiago Abdo and Fabiano Silva

Table 8. F1 score for classic models in the dataset “positioning”

W2V 1 GloVe 1 W2V 2 GloVe 2 W2V 3 GloVe 3

No pre-processing 47.61% 48.63% 45.70% 50.92% 51.56% 53.08%

Data Cleaning 50.89% 48.97% 49.70% 50.99% 53.59% 53.96%

Spell correction 51.31% 48.48% 46.05% 49.57% 51.62% 51.23%

Both 49.38% 50.16% 48.61% 47.98% 54.83% 51.20%

Table 9. F1 score for classic models in the dataset “rationality”

W2V 1 GloVe 1 W2V 2 GloVe 2 W2V 3 GloVe 3

No pre-processing 68.58% 67.47% 67.00% 67.67% 67.23% 63.49%

Data Cleaning 66.23% 65.44% 66.36% 64.05% 65.68% 65.19%

Spell correction 69.49% 64.62% 65.97% 65.24% 68.20% 64.36%

Both 69.11% 66.95% 66.97% 62.39% 69.67% 65.71%

and GloVe 3) is better than using extractors with dataset knowledge for every
tested pre-processing.

For the dataset “Rationality”, we can see in table 9 that the no pre-processing
was better in 3 of the 6 models tested. When comparing extractors that used
the same training data, the models using W2V as extractors had a better per-
formance than GloVe for this dataset in 11 of 12 comparisons.

Overall, the usage of all the pre-processors increased the performance in
50% of the use cases. The pre-processing that has the best performance most
of the time is “data cleaning” in 8 of the 24 tests and the second-best is “no
preprocessing” in 7 of 24 tests for these datasets. The performance difference
between the classical approach and deep learning models can be as big as 15%
(for the “Rationality” dataset) in favor of deep learning models.

For classic models, when trained on the virtual machine, the tests that took
the longest run were those that used the combination of feature extractor with
language knowledge and SVM, lasting, on average, 2 hours, and using less than
one Gigabyte of RAM. Tests with random forests took an average of 20 minutes
and used less than one Gigabyte of RAM. The time to train for deep learning
approaches in the same machine took more than one day to complete (28 hours).

The chosen model to be used in an annotation tool must be able to train
its model daily for all the datasets. With this in mind, we chose to continue
the simulation experiments using only the classical approach, once using a deep
learning model would not be possible in this kind of tool. Also, we chose to use
W2V 3 and GloVe 3 because this model is pre-trained, therefore saving us the
time for training the feature extractor.

3.2 Simulation of techniques to improve learning

In tables 10 and 11 we present the performance results in stages of the simulation
of IML, with 10, 50, 100, 200, 400, 800, and all the examples of each class of the
dataset. The values shown in the tables are the average values of 10 runs. As the

Iterative machine learning applied to annotation of text datasets 9

Table 10. F1 score as the “positioning” database with “data cleaning” size increased.
In parentheses, the difference of the rate for the same model of the previous line.

Examples W2V + SVM GloVe + SVM W2V + RF GloVe + RF

30 33.67% 36.27% 37.31% 37.03%

150 39.72% (6.05%) 40.47% (4.20%) 42.04% (4.73%) 41.45% (4.42%)

300 42.88% (3.15%) 44.38% (3.91%) 43.49% (1.45%) 43.62% (2.17%)

600 44.47% (1.59%) 46.25% (1.87%) 46.05% (2.57%) 45.06% (1.44%)

1200 45.79% (1.32%) 48.48% (2.22%) 46.76% (0.71%) 45.47% (0.41%)

2400 51.19% (5.41%) 50.55% (2.07%) 47.58% (0.82%) 47.12% (1.65%)

3640 53.60% (2.41%) 50.99% (0.44%) 47.03% (-0.55%) 47.45% (0.33%)

Table 11. F1 score as the “reduced theme” dataset examples added with data cleaning.
In parentheses, the difference of the rate for the same model of the previous line.

Examples W2V + SVM GloVe + SVM W2V + RF GloVe + RF

20 61.13% 64.88% 66.01% 72.12%

100 68.16% (7.03%) 67.92% (3.04%) 75.63% (9.62%) 76.90% (4.79%)

200 69.40% (1.24%) 70.39% (2.47%) 77.43% (1.80%) 78.16% (1.26%)

400 71.15% (1.75%) 73.06% (2.67%) 78.23% (0.80%) 79.10% (0.94%)

800 72.22% (1.07%) 77.93% (4.87%) 79.68% (1.44%) 78.88% (-0.22%)

1600 76.39% (4.16%) 80.04% (2.11%) 80.18% (0.50%) 80.71% (1.83%)

3900 81.06% (4.68%) 81.94% (1.90%) 80.73% (0.55%) 81.25% (0.53%)

number of classes in each database is different, the total amount of examples in
each one also differs, but the amount of examples per class is the same (except for
the last step, which uses all the examples in the training dataset). In parentheses,
we have the step difference in the f1 score rate from the current line to the
previous one. We have, in the second line of each table, that the impact of
adding 40 examples of each class at the beginning of training (totaling 50 for
each class) is greater than adding 200 examples from each class to a dataset that
has 200 examples (totaling 400 examples for each class). The average increase in
the F1 score by adding the forty examples of each class in a dataset that has ten
examples is 4.85% for the “positioning with data cleaning” dataset and 6.12%
for the “reduced theme with data cleaning” dataset. The average increase of the
F1 score by adding 200 examples of each class to a dataset that already has 200
examples, is 1.86% for the “positioning with data cleaning” dataset and 1.54%
for the “reduced theme with data cleaning” dataset.

The impact of adding new examples decreases with dataset size. When adding
100 examples to a dataset that previously had 10. the dataset size is increased by
approximately ten times. When adding 100 examples to a dataset that has 1000.
the size of the base is increased by 0.1 times. Besides, the larger the dataset,
the greater the chance that a new example is similar to an existing one and not
contribute to increased performance.

The standard variance starts at about 5%, as is expected for small datasets.
However, when adding examples, the standard variance decreases. With 300

10 Thiago Abdo and Fabiano Silva

examples of each class, it is around 1%. When adding more examples, it drops
to less than 1% for all models.

(a) Added randomly (b) Added by uncertainty

Fig. 1. F1 score of classifiers with feature extractors as adding new examples in the
dataset “positioning with clean”.

In figures 1 and 2 we have the results of the AML simulation. These graphs are
the average performance evolution of each tested model. The standard variant
behaves in the same way as the simulation for iterative learning. The X-axis is
the total number of examples in each run. The Y-axis is the F1 score rate of
each run in the range from 0 to 1.

In figure 1 we can see that active machine learning did not change how the
learning curve behaves, bringing little or no performance gain at the beginning
of execution when compared to not choose the next examples. Although the
impact was small, there was a small change in the learning curve of the models
that use the SVM classifier.

In figure 2 we can see that active machine learning changed the learning curve,
increasing the learning speed of models that use the SVM classifier. The model
combining GloVe with SVM has fast learned at the beginning of the dataset (it
used fewer examples) and it reached the maximum performance faster.

4 Discussion

Machine learning techniques using deep learning have better performance in our
evaluation, in some cases, it has over 15% of advantage over classic alternatives.
But the computational cost makes it impractical for the tool that is being built. It
took over 28 hours to complete fine-tunning. Our testing determined that using
machine learning techniques without the usage of deep learning was a viable
solution. We choose to use the combination of the Random Forest classifier and
the Word2Vector feature extractor, because of its lower computational cost and
better performance in the tested database.

Iterative machine learning applied to annotation of text datasets 11

(a) Added randomly (b) Added by uncertainty

Fig. 2. F1 score of classifiers with feature extractors as adding new examples in the
dataset “reduced theme with data cleaning”

Our simulations of iterative machine learning confirmed that most of the
performance of a machine learning system comes from the initial examples. As
we increase the training dataset, we have small performance breakthroughs. The
active learning simulations showed that the Support Vector Machine had better
use of the reordering of the examples than the Random Forest in the tested
datasets. But it can improve both, speeding up the initial learning and antici-
pating breakthroughs.

In the annotation tool, we can use active machine learning to propose an
order of examples to be annotated. By doing it, we can reduce the amount of
annotated examples needed for a machine learning algorithm that can be used in
an iterative machine learning scenario. So, we can use iterative machine learning
to suggest possible annotations, for example, improving the quality and speed
of the annotation process.

References

1. Bontcheva, K., Cunningham, H., Roberts, I., Tablan, V.: Web-based collaborative
corpus annotation: Requirements and a framework implementation. New Chal-
lenges for NLP Frameworks pp. 20–27 (2010)

2. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for op-
timal margin classifiers. In: Proceedings of the Fifth Annual Workshop
on Computational Learning Theory. pp. 144–152. COLT ’92, ACM,
New York, NY, USA (1992). https://doi.org/10.1145/130385.130401,
http://doi.acm.org/10.1145/130385.130401

3. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers).
pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota
(Jun 2019), https://www.aclweb.org/anthology/N19-1423

12 Thiago Abdo and Fabiano Silva

4. Dudley, J.J., Kristensson, P.O.: A review of user interface design for interactive
machine learning. ACMTransactions on Interactive Intelligent Systems (TiiS) 8(2),
1–37 (2018)

5. El-Assady, M., Sevastjanova, R., Gipp, B., Keim, D., Collins, C.: Nerex:
Named-entity relationship exploration in multi-party conversations. Com-
puter Graphics Forum 36(3), 213–225 (2017). https://doi.org/10.1111/cgf.13181,
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13181

6. Hartmann, N.S., Fonseca, E.R., Shulby, C.D., Treviso, M.V., Rodrigues,
J.S., Aluısio, S.M.: Portuguese word embeddings: Evaluating on word analo-
gies and natural language tasks. In: XI Brazilian Symposium in Informa-
tion and Human Language Technology and Collocated Events. pp. 122–131.
SBC, Sociedade Brasileira de Computação, Uberlândia, Brazil (Oct 2017),
https://www.aclweb.org/anthology/W17-6615

7. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning.
Springer Series in Statistics, Springer New York Inc., New York, NY, USA (2001)

8. Kim, B., Glassman, E., Johnson, B., Shah, J.: ibcm: Interactive bayesian case model
empowering humans via intuitive interaction. Tech. rep., MIT-CSAIL, Cambridge,
MA 02142-1209 (2015)

9. Kranjc, J., Smailović, J., Podpečan, V., Grčar, M., Žnidaršič, M., Lavrač, N.:
Active learning for sentiment analysis on data streams: Methodology and workflow
implementation in the clowdflows platform. Information Processing & Management
51(2), 187–203 (2015)

10. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in neural
information processing systems. pp. 3111–3119 (2013)

11. Mishra, S., Diesner, J., Byrne, J., Surbeck, E.: Sentiment analysis with incremental
human-in-the-loop learning and lexical resource customization. In: Proceedings of
the 26th ACM Conference on Hypertext & Social Media. pp. 323–325 (2015)

12. Pennington, J., Socher, R., Manning, C.: GloVe: Global vectors for word repre-
sentation. In: Proceedings of the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP). pp. 1532–1543. Association for Computa-
tional Linguistics, Doha, Qatar (Oct 2014). https://doi.org/10.3115/v1/D14-1162,
https://www.aclweb.org/anthology/D14-1162

13. Settles, B.: Active learning literature survey. Tech. rep., University of Wisconsin-
Madison Department of Computer Sciences (2009)

14. Souza, F., Nogueira, R., Lotufo, R.: Bertimbau: Pretrained bert models for brazil-
ian portuguese. In: Brazilian Conference on Intelligent Systems. pp. 403–417.
Springer (2020)

15. Vitório, D., Souza, E., Oliveira, A.L.I.: Evaluating active learning sampling strate-
gies for opinion mining in brazilian politics corpora. In: Moura Oliveira, P., Novais,
P., Reis, L.P. (eds.) Progress in Artificial Intelligence. pp. 695–707. Springer Inter-
national Publishing, Cham (2019)

16. Yimam, S.M., Biemann, C., Majnaric, L., Šabanović, Š., Holzinger, A.: Interactive
and iterative annotation for biomedical entity recognition. In: Guo, Y., Friston,
K., Aldo, F., Hill, S., Peng, H. (eds.) Brain Informatics and Health. pp. 347–357.
Springer International Publishing, Cham (2015)

17. Zimmermann, M., Ntoutsi, E., Spiliopoulou, M.: Incremental active opinion learn-
ing over a stream of opinionated documents. WISDOM 2015 (KDD’15) (10 2015)

