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Abstract. Handwritten signature authentication systems are important in many real
world scenarios to avoid frauds. Thanks to Deep Learning, state-of-art solutions
have been proposed to this problem by making use of Convolutional Neural Net-
works, but other models in this Machine Learning subarea are still to be further
explored. In this perspective, the present article introduces a Conditional Deep
Convolutional Generative Adversarial Networks (cDCGAN) approach whose exper-
imental results in a realistic dataset with skilled forgeries have Equal Error Rate
(EER) of 18.53 % and balanced accuracy of 87.91 %. These results validate a writer-
dependent cDCGAN-based solution to the signature authentication problem in a real
world scenario where no forgeries are available nor required in training time.

1. Introduction

In spite of recent technological developments, handwritten signatures remain an important
biometric marker in contemporary society due to its universality, uniqueness, permanence,
collectability, acceptability and circumvention [Wayman et al. 2005]. According to Araudjo
[2019], the development of automatic handwritten signature authentication strategies is im-
portant to minimize frauds, to help verifying artistical or historical documents, among many
other applications. The crucial challenge for reliable signature authentication methods is to
deal with high intra-user variability and also with high-quality forgeries [Heinen 2002], tipi-
cally produced with the over-the-shoulder method [Blankers et al. 2009]. Considering the
developments so far, there are many findings in literature suggesting different automatic ap-
proaches to address this problem, such as using Support Vector Machines (SVMs), Hidden
Markov Models, Artificial Neural Networks, etc. [Impedovo and Pirlo 2008, Hafemann et al.
2017b, Sanmorino and Yazid 2012, Hameed et al. 2021].

Given the advent of Deep Learning, a subarea of Machine Learning in which models
are trained to recognize complex patterns in high-dimensional data due to a hierarchical fea-
ture representation [Goodfellow et al. 2016], many state-of-art solutions for Computer Vision
problems have emerged [Khan et al. 2018]. Such deep models, specially Convolutional Neural
Networks (CNNs), have already been used in the handwritten signature authentication prob-
lem, specially in the offline case — in which no dynamics features during the signing process
are captured, just the resulting signature image. In the work of Aradjo [2019], for example,
two signatures are taken as input — the first is an authentic signature as reference, and the
second is the one under test — to a MobileNet CNN architecture that ouputs the binary classi-
fication result, whether the second one is authentic or forged. Results showed an accuracy of



98.65 % for this task in a writer-independent (WI) scenario, a promising performance. Hafe-
mann et al. [2017a] also considered a WI approach with CNNs applied to the feature learning
process, having achieved state-of-art results in a scenario where skilled forgeries are available
for training.

An advantage of using CNNs in the problem under consideration is that this model can
learn features automatically with little or even no pre-processing tasks. Hence it provides an
efficient and robust solution by combining automated feature extraction and prediction or clas-
sification [Hameed et al. 2021]. However, Deep Learning comprises models other than CNNs,
such as the Deep Convolutional Generative Adversarial Networks (DCGANSs), proposed in
2016, to synthesize verisimilar data [Goodfellow et al. 2014, Radford et al. 2016]. So a re-
search question that naturally emerges is: Can DCGANs be used to address the handwritten
signature authentication problem? In this work we aim at exploring this question first by in-
vestigating the findings in literature and also by providing some perspectives with the proposal
of a DCGAN-based handwritten signature authentication solution.

As a result, this paper shows a preliminary assessment of a writer-dependent (WD)
offline handwritten signature authentication solution based on Conditional DCGANSs. The so-
lution proposed was evaluated on a realistic scenario with the CEDAR dataset [Kalera et al.
2004], having Equal Error Rate (EER) of 18.53 % and balanced accuracy of 87.91%. Two
remarkable features of the proposed solution is that it does not require forged examples in
training time and that it can be built under the Semi-Supervised Learning Paradigm. In partic-
ular, both characteristics mentioned are well-suited for requirements in real-world scenarios.

The present paper is organized as follows: some background concepts on DCGANSs are
introduced in Sec. 2. The proposed solution architecture, experimental data and performance
metrics are presented in Sec. 3. Results obtained are depicted in Sec. 4. Lastly, final remarks
and further steps are shown in Sec. 5.

2. Generative Adversarial Networks

Generative Adversarial Networks (GANs) are a Machine Learning (ML) framework to syn-
thesize verisimilar data. In this approach, two models, tipically artificial neural networks, are
trained simultaneously in a zero-sum game dynamic: a generator G produces an artifical out-
put from random noise; a discriminator D must distinguish if a given input comes from the
original distribution or if it is artificially produced; GG wins when D misclassifies an artificial
example as true, and D wins when it correctly classifies an input. If trained jointly until Nash
equilibrium, G' becomes an expert in synthesizing realistic examples and D becomes an expert
in distinguishing real inputs from high-quality forgeries [Goodfellow et al. 2014].

GAN:S training dynamics is depicted in Fig. 1. The training is said to converge when G
outputs artificial examples there are indistinguishable from those in training set and when D
strategy is no better than a random guess, but such conditions are hard to verify and remain an
important open problem [Langr and Bok 2019]. As a result of training, G' describes how the
dataset is generated in terms of a probabilistic model, where the random noise z is the sthocas-
tic component that helps producing different output when sampling from the model, accessing
different positions in latent space [Foster 2019]. GANs have peculiar characteristics, such
as an intuitive non-supervised training, robustness against overfitting and good capabilities to



capture data distribution [Ganguly 2017]. Some notable GANs applications can be found in
artificial image colorization, music composition and even in text creation [Foster 2019].

Algorithm 1: GANs training pseudocode
Data: Training set T’

1 foreach training iteration do
2 Train D:
3 Get a sample z from T
4 Get a random noise vector z;
5 Use z in G to synthesize a fake example z*;
6 Use D to classify x and *;
7 Compute classification errors;
8 Backpropagate total errors in D to adjust trainable parameters aiming at minimizing
classification errors;
9 Train G:
10 Get a random noise vector z;
11 Use z in G to synthesize a fake example x*;
12 Use D to classify =*;
13 Compute classification errors;
14 Backpropagate total errors in G to adjust trainable parameters aiming at maximizing D
error;
15 end

Figure 1: Overview of GANs training algorithm.

In the present work we will use Deep Convolutional GANs (DCGANSs), introduced in
2016 altogether with optimization training techniques [Radford et al. 2016], and also addi-
tional information to conditionate generator and discriminator to label matching, resulting in
the so called Conditional Deep Convolutional GANs (cDCGANSs). Deep Convolutional Neural
Networks (CNNs) are the state-of-art solution for classification, localization and segmentation
tasks in Computer Vision problems [Khan et al. 2018]. When adopted into GAN framework
as in DCGAN:, it results in hyperrealistic image generation, recuperation, restoration, among
other tasks [Ganguly 2017, Langr and Bok 2019, Foster 2019].

Upon investigating the literature on the applications of GANs to handwriting signature
authentication, there are three remarkable related work. We will discuss them considering the
chronological order. In the first work, a DCGAN is used in an unsupervised feature extraction
phase followed by a hybrid WI-WD classification using a Gentle Adaboost classifier [Zhang
et al. 2016]. Wang and Jia [2019] designed an architecture called SIGAN based on dual
learning aiming at authenticating signatures in Chinese handwriting with different pen types
(neutral, black, blue, pencil and ballpoint). The authors evaluated their solution on a dataset
with 640 images where half of them were positive examples from a single author. According
to the experimental evaluation, the discriminator is able to identify the validity of a signature
with accuracy of 91.2 %. In the work of Yapict ef al. [2020] a Cycle-GAN is used to artifi-
cially augment signature data, since few samples may be available in realistic scenarios both
for training and testing. The signature verification step is performed with a CapsNet CNN.
Authors compared their DCGAN data augmentation method with other existing solution and
obtained best validation accuracy.



In the next section we will introduce our contribution to the handwriting signature
verification problem to which we considered the use of cDCGANs framework with a different
strategy from prior work found in the literature.

3. Proposed Solution

The proposed solution for the problem under consideration aims at authenticating offline hand-
written signatures in a WD ¢cDCGAN-based approach. Each user is associated with a label
and there are multiple authentic signatures examples for each user, aiming at capturing the
intra-variability of the features found in this biometric data [Hafemann et al. 2017b]. In our
solution, user labels will be assigned to their respective signatures in the training set, adding
an extra-layer of control for both generator and discriminator [Mirza and Osindero 2014].

In our solution, G and D are CNNs and there is a training set 7' with authentic sig-
natures of each user. The training dynamics of the cDCGAN proposed is given as follows:
a noise vector z and a user label 7 are independently randomly drawn; G synthesizes a fake
signature of the i-th user, i.e., G(z|i) = (z],4); an authentic signature of user 7 is randomly
chosen, resulting in the pair (z;,4); D is called to classify (z,4) and (z;, i), what can be de-
noted as D(&;|i) where & is a given signature (real or fake) and i is the user label; D wins
when D(z;|i) = 1, D(z}|i) = 0, and when D(x;|i) = 0,7 # j, and loses otherwise; at the
end of each iteration, classification errors are used to adjust trainable parameters in D and G
according to their respective goals. This dynamic is illustrated in the architecture drawn at Fig.
2. Upon convergence, D can then be used to discriminate authentic signatures.
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Figure 2: Architecture diagram of the proposed solution.

User labels

After training, D will be validated as solution to the signature authentication problem.
To do so, it will be tested both against non-previously seen authentic signatures and skilled
forgeries. Automatic discrimination of such kind of forgery is considered a challenging task,
what enables a realistic evaluation of the proposed solution. The following subsections will
depict the solution in terms of its experimental data, cDCGAN architecture, parameters and
hyperparameters, performance metrics and fine-tuning strategies.

3.1. Experimental Data

The experimental data used in this work is the CEDAR dataset [Kalera et al. 2004]. It con-
tains offline handwritten signatures from 55 users, with 24 authentic signatures per user and
24 skilled forgeries for each author produced by different forgers. Offline signatures are im-
ages resulting of the signing process, without any dynamic information like pen position or
inclination at a given time, etc.



The examples in dataset were used in this work in the same way as reported in many
findings in literature [Hafemann et al. 2017b]: for each authentic author, ten of his/her signa-
tures were used for training, and the rest for testing the discriminator; authentic signatures per
user were randomized before assignment to partitions; all forged signatures were only used for
testing purposes. Test data was then organized into binary classes: authentic (positive class)
and forged (negative class). It’s important to notice that classes in test partition are imbalanced
and that is a typical occurrence in authentication scenarios because few forgeries examples
are available. To overcome such problem, performance metrics that took such imbalance into
account were preferred. Data partition is depicted in Fig. 3.

Authentic samples per user All authentic samples
Train Test Train Test
10 14 41.6% 58.4%

Figure 3: Data partition per user and general data partition overview.

3.2. ¢cDCGAN: Architecture, Parameters and Hyperparameters

When considering the cDCGAN architecture, both G and D were built as sequential deep neu-
ral networks with convolutional, fully connected, regularization, and pooling layers. Although
some authors suggest to use the same architecture for both generator and discriminator [Berth-
elot et al. 2017], we opted out to built each component respecting their own specificities. The
generator adopted in our solution is depicted in Fig. 4. We used batch normalization after
bidimensional transpose convolutional layers in order to normalize the input to the activation
function, preventing single point collapsing, but it was not applied to the output layer to avoid
sample oscillation. Pooling layers were not used to allow the network to learn its own spatial
downsampling [Radford et al. 2016]. Hyperbolic tangent activation function in output layer
was used because it tends to produce crisper images [Langr and Bok 2019]. The discrimina-
tor, on its turn, is detailed in Fig. 5 and uses Leaky ReL.U as activation functions in internal
layers, no pooling — based on the same argument considered for the generator, and fully con-
nected layers in output to classify the features previously extracted, producing a probability
p with sigmoid activation function. The layers choice and organization for discriminator also
considered best practices for CNNs on Computer Vision applications [Khan et al. 2018].
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Figure 4: Generator architecture diagram.
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Figure 5: Discriminator architecture diagram.

Some architecture details were ommited in Figs. 4 and 5 for the sake of simplicity, but
they are mostly related with the conditional behaviour: the use of label embedding with the



noise vector z in the generator, and reshape of label embeddings followed by concatenation
with the input image for creating a joint representation prior classification by the discriminator.

Parameters choice, such as convolutional units, were empirically obtained after in-
specting training stability on a few epochs. The dimension of latent space was defined as
being equal to the number of authors multiplied by the number of authentic signatures for
each author in the training set, resulting in dim(z) = 550. Even with simple GANSs, there
are a large number of hyperparameters to tune in order to avoid model collapse and unstable
training. GANs are highly sensitive to very slight changes and finding a set of hyperparame-
ters that works is often a case of educated trial and error, rather than following an established
set of guidelines [Foster 2019]. Therefore, we proposed three experimental setups aiming at
optimizing results:

1. Regular Training Setup. In this setup, we only used authentic signatures to train
the proposed cDCGAN. Discriminator uses binary cross entropy as loss function. The
cDCGAN will be trained for 2,000 iterations with batches containing 64 examples;

2. Extended Training Setup. After training the cDCGAN in the previous setup, discrim-
inator D will be detached and it will undergo a supervised training with all authentic
signatures and their respective correct labels, but also with authentic signatures associ-
ated with wrong labels, as in (x;, j) where i # j. There will be 1,000 training iterations
according to this strategy. It aims at enhancing the discriminator on learning represen-
tative features of a certain signature meanwhile associating it with the matching label.
It can be noticed that in the previous setup only forgeries produced by the generator
where considered, what would leave a gap for random signature attacks.

It’s important to notice that both setups have same space cost, but the second is more
expensive in terms of processing because of the additional discriminator training iterations
epochs.

3.3. Performance Evaluation

We assessed False Acceptance (FAR) and False Rejection Rates (FRR). FAR occurs when
we accept a user whom we should actually have rejected, also reffered to as a false positive.
FRR is the problem of rejecting a legitimate user when we should have accepted him. The
Equal Error Rate (EER) is the point where FAR and FRR lines intersect, denoted here as 1,
sometimes used as a measure of the global accuracy of biometric systems [Andress 2014]. The
Detection Error Tradeoff (DET) curve will also be obtained.

Performance evaluation was also analysed under a binary classification perspective
with non-previously seen examples. Given a signature = and an author 4, D(z|:) returns the
probability p of = be an authentic signature of user . With output p from discriminator, we
took the threshold ¢ for classification, where p > 9 stands for authentic signature, and p < ¢
indicates a forgery. We have four possible results for this classification task: TP (true posi-
tive), TN (true negative), FP (false positive) and FN (false negative), where the positive class
corresponds to the authentic case. The balanced accuracy score in Eq. (1) was considered to
evaluate the proposed solution, respecting the imbalance between classes.

1 TP TN
Balanced Accuracy = 3 ( TP EN + op n TN> , (D



Besides the previously mentioned metrics, we also evaluated the Area Under the ROC
curve (AUC) of discriminator . AUC is an averaged minimum loss measure, where the
misclassification loss is averaged over a cost ratio distribution which depends on the score
distribution of the classifier in question [Hand 2009].

4. Results and Discussion

Upon implementing the proposed solution using the Python programing language using Keras
and Tensorflow frameworks, the resulting scripts were executed in a dedicated computational
server with Intel Core i7 processor with 3.7 GHz, 32 GB of primary memory, 960 GB SSD
secondary memory and 2 NVIDIA GTX 1080 Ti graphic cards with 11 GB each. Each training
setup was repeated 10 times because of stochastic fluctuation in weight initialization. Results
obtained are synthesized in Table 1 and Fig. 6, where metrics are depicted in terms of mean
and standard deviation of values observed in the 10 runs.

Table 1: Experimental Results.

Experimental Setup EER Balanced Accuracy AUC ROC

Regular Training Setup 0.3068 £ 0.0294 0.6883 £+ 0.0294 0.7534 £ 0.0378
Extended Training Setup 0.1853 + 0.0153 0.8099 £ 0.0152 0.8791 £ 0.0148
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Figure 6: ROC and DET curves obtained from a randomly chosen run.

By setting the level of confidence to o = 0.05, the 95 % confidence interval to the
EER in the regular training setup is 0.3068 £ 0.0182 and in the extended training setup is
0.1853 £ 0.00948. Since confidence intervals do not overlap, it can be concluded that the
training setups proposed are statistically distinct besides using the very same training data.
Since the EER is lower in the extended training setup, it can be concluded that this approach
delivers better results for the experimental scenario considered. This conclusion can be re-
inforced by analyzing the curves of Fig. 6 where the extended training setup assymptotically
minimizes the error rates on DET curve and maximizes the AUC ROC when compared to the
regular training setup.



A further examination to explain the gains of the extended training setup performance
is necessary. The second setup takes advantage of all patterns captured in the first setup, but
exposes the discriminator to more training iterations under the Supervised Learning paradigm,
somehow using the CNN learning strategy. Besides that, by also showing examples with
wrong labels, as in (x;,j),7 # 7, it favours discriminator to learn more examples from the
negative class than only those sampled from the latent space. These two arguments are strong
hypothesis that justify such performance increase.

Upon quantitatively comparing the solution proposed to the findings in literature as
reported in the survey of Hameed ef al. [2021, vide Table 26], no DCGAN-based solutions
were reported for the CEDAR dataset. However, the current state-of-art performance for this
dataset comprises a model that combines both CNN and SVM, with EER of 2.33 % and using
10 authentic signatures per user. So, our results fall short with a 87.42 % EER performance
decrease. Comparing with prior work on the use of DCGANS to the handwritten signature
authentication problem, our contribution is architecturally simpler than SIGAN [Wang and Jia
2019], because the later has two pairs of generator and discriminator and further requires a
classifier meanwhile ours is restricted to the cDCGAN itself. We refrain from comparing our
solution with the proposition of Zhang et al. [2016] because they are fundamentally different
on the writer dependence, while their contribution aims at balancing WI and WD methods, ours
is strictly WD. Lastly, regarding the work which uses Cycle-GAN for data augmentation, from
a structural perspective it can be noticed that a DCGAN is not at the core of the authentication
problem as in our solution, since their classification is performed by a secondary CNN [Yapici
et al. 2020]. However, in terms of performance, a fair comparison would only be possible
with further experimentation using similar datasets. On the use of cDCGANSs for the problem
under consideration, as far as our best searchings efforts have gone, no similar propositions
were found in literature.

Although not surpassing the state-of-art performance, this work contributes with the
literature by proposing and validating the use of cDCGANSs, a Deep Learning framework, to
the handwritten signature authentication problem. We also contrasted our contribution with
recent findings in literature, explicitly indicating novel experimental scenarios for better eval-
uating our proposition. Further exploration needs to be carried out in order to compare and
contrast the performance of our contribution with existing datasets.

5. Final Remarks

The present work introduces a cDCGAN approach to the handwritten signature authenti-
cation problem. The solution proposed only makes use of authentic signatures in training
time and comprises a Non-Supervised Learning procedure followed by a CNN-fashion Super-
vised Learning procedure to enhance the discriminator proposed. Experimental results on the
CEDAR dataset show promising performance on a realistic scenario with skilled forgeries.

Aiming at providing further enhancements in the solution proposed to make it compet-
itive with state-of-art algorithms that make use of combined Machine Learning techniques, in
future work we will explore parameter and hyperparameter fine tuning, different architectures
for both Generator and Discriminator, and also validating the solution with other datasets with
more examples, such as the GPDSsyntheticSignature [Ferrer et al. 2013] and the MCYT75



datasets [Ortega-Garcia et al. 2003].
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