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Abstract. The use of Artificial Intelligence and Machine Learning algorithms in
everyday life is common nowadays in several areas, bringing many possibilities
and benefits to society. However, since there is room for learning algorithms to
make decisions, the range of related ethical issues was also expanded. There are
many complaints about Machine Learning applications that identify some kind
of bias, disadvantaging or favoring some group, with the possibility of causing
harm to a real person. The present work aims to shed light on the existence of
biases, analyzing and comparing the behavior of different learning algorithms –
namely Decision Tree, MLP, Naive Bayes, Random Forest, Logistic Regression
and SVM – when being trained using biased data. We employed pre-processing
algorithms for mitigating bias provided by IBM’s framework AI Fairness 360.

1. Introduction
Artificial Intelligence (AI) permeates various aspects of the daily life of most people living
in the 21st century. It is pervasive because of the transparency to the user experience,
that is, the user has only the result of processing a large mass of data in his hands,
without understanding or even not being interested in how this processing is done, often
having the feeling of AI impartiality through blind trust [Maybury 1990], because, if it
is artificial intelligence, it does not have the biases that humans have. In this sense, so
much trust is placed in the technology that search engines have become one of “one
of our most trusted sources of information and, in many ways, have become arbitrators
of truth” [Howard and Borenstein 2018]. Machine Learning (ML) is a subarea of AI,
its algorithms are based on inductive learning, which consists of analyzing examples
provided, so that pattern recognition and generalization can be carried out based on them
[Bishop 2006]. Since the sample data that is used in the training of an ML model is
produced through design and human action, they are not free from possible bias. Authors
[Howard and Borenstein 2018] define “bias” as the act of “thinking about or treating
another person differently based on perceived characteristics of the individual”, and may
also be unconscious, which is given the name of implicit bias.

The development of applications using AI has already generated many cases in
which the bias was identified, disadvantaging or favoring some group. Cases range
from problems in recognizing the faces of non-white people to better performance in
recognizing the male voice at the expense of the female [Howard and Borenstein 2018].
There are also some known episodes, like the Google image search for “three white
teenagers” that returned happy white teenagers while the search for “three black
teenagers” in the same platform returned mugshots, or the case of COMPAS (Correctional



Offender Management Profiling for Alternative Sanctions), an auxiliary tool in the judicial
system of some states in the United States (USA), such as Nova York and California,
which aims to measure the likelihood of a defendant becoming a recidivist offender.
A survey conducted by the agency ProPublica [Angwin et al. 2019] concluded that
COMPAS tends to give a higher risk score for black people than for Caucasians with
the same profile, when the reverse may be true.

In the face of so many cases of prejudice, discrimination and injustice in the form
of bias in applications that use ML, it is necessary that the developers of such applications
become aware of the existence of biases - both explicit and implicit - that can exist and
be transferred to their creations, looking for ways to minimize them. This is because
“given how much trust is placed in the technology, designers and coders carry with them
significant ethical responsibilities for their creations” [Howard and Borenstein 2018]. In
view of the ethical implications arising from the lack of representativeness in the data or
even the introduction of prejudices in them, reflected in the ML models, the goal of this
work is to analyze how various algorithms in this area behave when receiving a set of
biased data as a training set. In this way, a comparison will be made between each of
them through performance measures, trying to observe if there is any difference between
them in relation to the bias - that is, if any of them would be more suitable than others
to mitigate it. In addition, it is also intended to make an analysis of the algorithms after
the data set has been altered by the pre-processing algorithms that have the objective of
mitigating bias provided by IBM’s framework AI Fairness 360.

The remaining of this paper is organized as follows: Section 2 presents the
materials and methods employed in this work. Section 3 presents the results obtained
in the classification. Section 4 presents the concluding remarks and future works.

2. Material and methods
2.1. Data sets
The data sets considered in this work contain bias and are generally used in research to
address the issue of bias and justice in the ML [Mehrabi et al. 2019]. The following is a
brief description of them.

2.1.1. Adult Data Set

It deals with the extraction from the 1994 census database. It contains attributes such
as age, education, occupation, marital status, race, sex and the classification is whether
a person has an annual income of up to $50,000 or if their annual income exceeds this
amount. It has 48,842 instances and 14 attributes. With this data set, it is possible to
observe the bias in relation to gender and race [Kohavi and Becker 1994]. This data set
is also unbalanced, the information regarding the number of instances per class can be
found in Table 1.

2.1.2. COMPAS

It contains two-year information on people who have committed crimes. Among the
attributes, there is the name, age, gender, race, criminal record and the classification



Table 1. Quantity of instances by class for the Adult Data set

Group\Class >50K <=50K
Female, Non-Caucasian 227 2,938
Female, Caucasian 853 3,062
Male, Non-Caucasian 1,542 11,485
Male, Caucasian 9,065 19,670

is if a person was a recidivist offender in two years. This same data set was used for
the development of a software called Correctional Offender Management Profiling for
Alternative Sanctions (COMPAS) that is used by courts in some states in the USA to
predict the risk of recidivism [Angwin et al. 2019]. As already mentioned, this data set is
known to contain bias in relation to race and gender. This data set is also unbalanced, the
information regarding the number of instances per class can be found in Table 2.

Table 2. Quantity of instances by class for the COMPAS Data set

Group\Class Non-Recurrent Recurrent
Female, Non-Caucasian 529 299
Female, Caucasian 368 199
Male, Non-Caucasian 1,946 1,986
Male, Caucasian 1,120 767

2.2. Metrics of fairness

The fairness metrics for ML are those that propose to evaluate the algorithms in relation
to the bias. To present such measures, it is necessary to keep some concepts in mind:
protected attribute is the attribute that separates pre-processing into different groups that
are historically favored and disadvantaged - gender and race are examples of protected
attributes that may exist in pre-processing. A favorable label is the label that indicates
that the output of the algorithm for a given instance can mean an advantage - getting a
loan and not being identified as a possible recidivist offender are examples of a favorable
label [Bellamy et al. 2018, p. 2].

2.2.1. Disparate Impact (DI)

It is a rate calculated from dividing the probability of instances having an unfavorable
value of a protected attribute X being classified with a favorable label C = 1 by the
probability that instances with favorable value for the same protected attribute X receiving
the same label C = 1, that is:

DI =
Pr(C = 1|X = 0)

Pr(C = 1|X = 1)
(1)

It is said that there is Disparate Impact when the measure DI has a value ≤ 0.8,
that is, if DI > 0.8 the measure points to a fair value [Feldman et al. 2015].



2.2.2. Statistical Parity Difference (SPD)

Measures the difference between the probability of instances with an unfavorable value of
a protected attribute X being classified with a favorable label C = 1 and the probability of
instances with favorable value for the same protected attribute X receiving the favorable
label in C = 1:

SPD = Pr(C = 1|X = 0)− Pr(C = 1|X = 1) (2)

The fairest value measured for SPD would be 0 and negative values would
indicate a bias for the group X = 1.

2.3. AI Fairness 360

AI Fairness 360 (aif360) is a tool developed and maintained by IBM with the aim of
generating confidence in AI, hoping to contribute to the mitigation of discriminatory bias.
It consists of a library for Python - also available for R - which includes “a comprehensive
set of metrics for data sets and models for testing biases”, in addition to algorithms to
mitigate biases [aif 2018].

The algorithms are divided into three categories, which are:

• Pre-processing: contains four bias mitigation algorithms that must be used before
training the classifier;

• Processing: consists of six algorithms that contain mitigation measures during
classifier training;

• Post-processing: there are three algorithms that can be used after training, working
with the classifier outputs and changing them to mitigate bias.

As the aim of this work is to evaluate the performance of different algorithms in
relation to the bias present in the data set, it was decided not to use the processing and
post-processing techniques, so the focus remains in aif360 pre-processing algorithms.

2.3.1. Pre-processing algorithms from aif360

The first one is Reweighing which is an approach that does not change the labels of the
training data set, but instead assigns a weight to each instance in order to reduce the
measure Statistical Parity Difference to 0 and maintain the probability of positive output.
Instances that belong to the disadvantaged group of the protected attribute and have a
positive label receive higher weights than those that have a negative label, and those that
belong to the favored group and have a positive label receive lower weights than those
with a negative label [Kamiran and Calders 2012].

This algorithm considers the expected probability (Pexp) - if the data set D was
unbiased and the protected attribute and class were statistically independent - and the
observed probability (Pobs) in the actual data set D, which are:

Pexp(C = 1|X = 0) =
|{d ∈ D|C(d) = 1}|

|D|
· |{d ∈ D|X(d) = 0}|

|D|
(3)



Pobs(C = 1|X = 0) =
|{d ∈ D|C(d) = 1 ∧X(d) = 0}|

|D|
(4)

Keeping the probabilities in mind, the assignment of weights is done from the
following equation:

W (X) =
Pexp(C = 1|X = 0)

Pobs(C = 1|X = 0)
(5)

The next is the Disparate Impact Remover (DIR) algorithm, which works with
the measure Disparate Impact, as the name suggests, aiming to mitigate it, trying to
approximate it to 1. To achieve this goal, the training data set has the values of its
unprotected attributes changed, keeping both the protected and the labels with their
original values [Feldman et al. 2015]. The main idea of the algorithm is that the bias can
be embedded in the attributes of the data set even if you remove the protected attribute,
that is, you can infer the group of the protected attribute of an instance through its other
attributes, so they need to be changed.

To make this change, it is necessary to look at the Yx distribution of each Y
unprotected attribute in relation to the Xi groups of the protected attribute and find a new
Ay distribution such that

∑
x ∈ Xd(Ay, Yx) is minimal, that is, the sum of the distances

between the Ay distribution and each of the Yx distributions is minimal.

2.4. Learning

The learning step consists of performing all the experiments using the pre-processed
data sets. This work focused on the use of two of the pre-processing algorithms with
the objective of mitigating bias offered by the aif360 library, namely Reweighing and
Disparate Impact Remover (DIR). For each data set used, several experiments were
performed, as indicated in Table 3.

Table 3. Experiments performed by data set - disadvantaged groups

Dataset Experiment1 Experiment2 Experiment3

Adult Gender (female) Race (non-Caucasian)
Gender (female) and
Race (non-Caucasian)

COMPAS Gender (male) Race (non-Caucasian)
Gender (male) and
Race (non-Caucasian)

Each of the experiments consists of three steps, the first of which is the training
carried out without bias mitigation pre-processing algorithm, as a control experiment
so that the results obtained in subsequent training could be observed; the second stage
consists of training with the pre-processed data set using the Reweighing algorithm and
the last stage, using the Disparate Impact Remover algorithm.

For the development of training, validation and test scripts, both the aif360 library
documentation and the notebooks made available by the team that developed it were used.



2.4.1. Data set pre-processing

Adult Data Set has three attributes - workclass, occupation and native-country - with
many instances that have the value ‘?’. The value ‘?’ was exchanged for NaN, and then
all instances that had any NaN value were removed. The attribute age, which has several
continuous values, was transformed and the ages were grouped into different age groups.
This procedure was done for all age groups, from 10 to 69 years old, and all instances with
70 years old or more were grouped into an age group ≥ 70. Thereby, seven age groups
were obtained. The attribute education-num, in which all possible values for education
are ordered according to the level of education, has also been transformed by grouping, all
those containing a value < 6 have been grouped, and all that had a value > 12 were also
grouped, while the intermediate values remained the same. Thus, nine educational groups
were created. The protected attribute race had the values White, AsianPacIslander,
AmerIndianEskimo, Black and Other, it was transformed into binary by assigning
the value 1 for White, representing the favorable group, and the value 0 for all other,
representing the unfavorable group. The attributes capital-gain, capital-loss, hours-per-
week from the original data set have a lot of noise and outliers, so they have been removed.
The attribute fnlwgt, which consists of a weight created by the Census Bureau, does not
make sense for this analysis and, for this reason, has also been removed. At the end,
the attributes used for analysis were those that contained the information of the original
attributes age, education, race, sex and income.

For COMPAS data set, pre-processing starts by deleting attributes that are
not relevant for the analysis, such as name and surname, date of birth and case
number. The attributes kept were: age, c charge degree, race, age cat, score text, sex,
priors count, days b screening arrest, decile score, is recid, two year recid, c jail in,
c jail out. Then, only the instances that have the days b screening arrest attribute value
between -30 and 30 are selected - the rest of the instances are excluded - and a new
attribute called length of stay which considers the difference between the date of release
from prison (c jail out) and the entry date (c jail in) is created. The amount of data for
Asian and Native American is very low in relation to the other races, while the quantities
for African American and Caucasian are much larger. For this reason, only the last two
are maintained. Finally, the attributes days b screening arrest, c jail out and c jail in
are removed and the attributes priors count, length of stay, score text and age cat are
categorized into different ranges. The protected attributes of this data set are race and
gender, and the disadvantaged groups are the African American and the male gender,
respectively.

2.4.2. Training without bias mitigation algorithm

This step starts with dividing the data set into a training set (70%), validation, and testing
(both with 15%). For training, the separate data set for this purpose is scaled - using the
StandardScaler method or MinMaxScaler from sklearn.preprocessing, depending on the
type of classifier used - and then the .fit() method is trained using the set of training data,
and a set of weights with all instances with a value equal to 1.

Then, the validation step begins by calling the .predict proba() method, passing as



a parameter the separate data set for validation, returning to each instance the probability
that it will be classified in each class. At this point, a vector is generated with 100 different
class thresholds - from 0.01 to 0.99 - and for each of them, the balanced accuracy is
calculated for this validation set. The threshold that obtains the highest balanced accuracy
is chosen as the best class threshold, which will guide the test stage. This methodology
alone is already a methodology that aims to reduce the discrimination that can come
from an unbalanced data set, for when it is presented to train a classifier, it may tend
to get it right more for the class containing the most examples and less for the others
[Brodersen et al. 2010]. Balanced accuracy (BA) can be defined as follows:

BA =
1

2
·
(

V P

V P + FP
+

V N

V N + FN

)
(6)

Therefore, when BA is used in training, the aim is to find the best balance
threshold for classifying an unbalanced set. Once trained and with the best threshold
calculated, the next step is the test, which consists of calling the function predict proba()
passing the test set, obtaining the probabilities for each instance to be classified in each
class. Using the best class threshold calculated in the previous step, the instances are
classified and, comparing the original and predicted labels of the test set, the metrics that
will be presented are calculated. In this step, there is also a direct prediction using the
function .predict() which, instead of returning the probabilities, already returns the labels
predicted by the classifier, without validation.

All this described processing of training, validation and testing, is performed thirty
times with thirty different seeds - that is, random number generation “seeds” to ensure the
reproducibility of the experiments - generated from an initial seed, of arbitrary value 13.
The metrics presented in this work consist of the average of the metrics obtained in these
experiments.

2.4.3. Training using the Reweighing algorithm

This second step is performed using the Reweighing method from the aif360 library.
It starts by dividing the data set into a training set (70%) and a test set (using the
remaining 30%). The validation for the best class threshold is not done, since the best
class thresholds are used for each seed, calculated in the previous step.

An instance of Reweighing is initialized, passing the parameters of privileged
and non-privileged groups. The weights are then assigned to the instances, using
the Reweighing.fit() method, and then the set is scaled, using MinMaxScaler or
StandardScaler depending on the algorithm used.

The classifier is then trained, passing the set of scaled training data, the respective
labels and the weights per instance calculated by Reweighing. In the same way as in
the previous step, the best class threshold calculated is used to make the prediction of the
labels of the test set and the metrics are calculated, using the original and predicted labels;
the experiments are also carried out using the thirty different seeds.



2.4.4. Training using the Disparate Impact Remover algorithm

This last step is very similar to the previous one, with the difference that the tool Disparate
Impact Remover (DIR) does not calculate weights, but makes changes to the attributes of
the data set. Therefore, the set is divided into a training and test set in the same proportion;
the training set is scaled and changed by the DIR tool and passed as a parameter to
the algorithm that develops the classifier, along with the original class labels. Once the
classifier is trained, the test is performed using the best class threshold calculated in the
first stage. In the same way as in the two previous steps, the experiments metrics are
calculated with thirty different configurations of the sets.

2.5. Algorithm settings

As the objective of this work is to focus mainly on the results obtained through the
modifications made by the pre-processing algorithms provided by aif360, the predefined
parameters of the learning algorithms for sklearn’s classifiers were used - Logistic
Regression, DecisionTreeClassifier, Bernoulli NB, Random Forest Classifier. For SVM,
the Linear SVC class was used instead of SVC, since it is similar to the first one when the
kernel is set to ‘linear’ and is faster for large amounts of samples. The dual parameter
was changed to ‘False’, as the documentation suggests that this is the setting that should
be used when the number of samples is greater than the number of attributes, which is the
case. A calibrator was also used for this classifier - Calibrated Classifier CV - as well as
for MLP Classifier, in order to obtain the prediction probabilities for each class.

3. Results

The following algorithms are used in the experiments: DT (Decision Tree), MLP (Multi
Layer Perceptron), NB (Naive Bayes), RF (Random Forest), LR (Logistic Regression),
SVM (Support Vector Machine). The bias mitigation algorithms used are DIR (Disparate
Impact Remover) and Reweighing. The evaluation metrics: Acc (Accuracy), SPD
(Statistical Parity Difference) and DI (Disparate Impact).

3.1. Adult Data Set

The analysis of the adult data set corroborates a very important point, which concerns
the trade-off Accuracy-Justice. Authors in [Kamiran and Calders 2012, p. 2] state that
“on the one hand, the more discrimination we allow for, the higher accuracy we can
obtain while on the other hand, in general, we can trade the accuracy in order to reduce
the discrimination”. For all experiments carried out with the original data set, without
applying algorithmic measures to mitigate bias - also called debiasing - a relatively high
accuracy was obtained, with the lowest being 73% and the highest 80.3%, as can be seen
in Table 4.

In contrast, regarding the fairness DI metric, which corresponds to the relationship
between the probability that instances belonging to disadvantaged groups (women and
non-Caucasians) will be predicted as the favorable class - in this case, earning more than
50K annually - and the probability that the favored groups (men and Caucasians) will
be predicted as the favorable class, there is a difference. As can be seen in Figure 1, in
(a), which corresponds to the experiment that obtained the highest accuracy metrics, the



Table 4. Adult Data Set - Accuracy obtained in the experiments

Experiment DT MLP NB RF LR SVM
Without debiasing/validation 0.803 0.803 0.796 0.803 0.73 0.803
Without debiasing/with validation 0.734 0.734 0.738 0.734 0.737 0.728
Reweighing (Gender) 0.722 0.717 0.745 0.725 0.725 0.729
Reweighing (Race) 0.733 0.733 0.74 0.731 0.735 0.726
Reweighing (Gender and Race) 0.758 0.751 0.766 0.758 0.762 0.763
DIR Gender 0.718 0.712 0.72 0.717 0.72 0.729
DIR Race 0.732 0.731 0.74 0.731 0.734 0.726
DIR Gender and Race 0.718 0.711 0.735 0.718 0.723 0.734

values are lower than the results in (b), which brings the metrics to the experiment made
with modification of the data set through the DIR algorithm.

Figure 2 brings the same SPD metric for the classifiers without bias mitigation
algorithm than in 1 (a) and the classifiers produced after the Reweighing (b). It is possible
to notice little variability between the metrics for all algorithms in each experiment, only
RL had high improvement, which can also be observed for the DIR experiment.

Figure 1. Adult Data Set - SPD: Gender and race without debiasing (a) and with
DIR (b)

Figure 2. Adult Data Set - SPD: Gender and race without debiasing (a) and with
Reweighing (b)

3.2. COMPAS
For the COMPAS data set, it can be observed in Table 5 that the accuracy obtained was
very similar for all stages of all experiments performed, the lowest accuracy obtained
was 64.7% and the highest was 66.3%. None of these results is high enough and for this
reason, it is not possible to discuss the trade off Accuracy - Justice, as was possible with
the previous data set, although it is possible to observe that there was some bias mitigation
in some of the experiments.



Table 5. COMPAS - Accuracy obtained in experiments

Experiment DT MLP NB RF LR SVM
Without debiasing/validation 0.658 0.66 0.649 0.658 0.654 0.66
Without debiasing/with validation 0.655 0.656 0.648 0.653 0.658 0.658
Reweighing (Gender) 0.652 0.661 0.647 0.652 0.656 0.657
Reweighing (Race) 0.649 0.66 0.647 0.649 0.652 0.653
Reweighing (Gender and Race) 0.656 0.659 0.651 0.654 0.657 0.656
DIR Gender 0.658 0.659 0.648 0.656 0.661 0.662
DIR Race 0.66 0.66 0.647 0.659 0.663 0.663
DIR Gender and Race 0.661 0.66 0.647 0.659 0.661 0.661

Regarding the fairness DI metric, in this case, the difference between the
algorithms without debiasing and with DIR is smaller, although DIR shows some
improvement, as shown in Figure 3. It is possible to see this debiasing algorithm
uniformized the DI among the classifiers.

Figure 4 shows the SPD without bias mitigation algorithm and the classifiers
trained after Reweighing. The bias is quite visible through the metric, which indicates
that the more negative, the greater the difference in the probability of favored groups
being classified with favorable labels than disadvantaged groups. After Reweighing, all
algorithms have some improvement in the bias, especially DT and RF.

Figure 3. COMPAS - DI: Gender and race without debiasing (a) and with DIR (b)

Figure 4. COMPAS - SPD: Gender and race without debiasing (a) and with
Reweighing (b)

4. Conclusion
The analysis presented in this work reinforces ML does not offer universal rules that can
be applied to all cases. Some applications that use ML have the potential to harm some
minority groups, so it is necessary to be very careful in the development stage. It was



possible to observe no algorithm excels at reducing bias by itself. One of our experiment
show an indication that the accuracy and justice (or absence of bias) may be inversely
proportional and, therefore, to mitigate the bias of a classifier, it will be necessary to
give up a higher accuracy. In this case, the situation of exchanging accuracy for justice
would not represent a loss, since the existing data sets have a high probability of reflecting
society’s prejudices, not representing a fair world. Nevertheless, the authors understand
that it is necessary to carry out such analysis on different and diverse other data sets to
deepen the discussion on the so-called accuracy-justice trade-off.

As future work, more algorithms from aif360 could be tested, encompassing pre-
processing, processing and post-processing. But mostly, the goal is to expand the analysis
of algorithm performance to other different data sets and, with that, to promote the debate
about the bias issue. If the role of ML and AI professionals is to carry out their work
ethically, one should not ignore the existence of data bias and conveniently contribute to
the perpetuation of inequalities, but, fight it.
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