
Short-term Inbetweening of 3D Human Motions

Fabio Neves Rocha1, Valdinei Freire1, Karina Valdivia Delgado1

1Escola de Artes, Ciências e Humanidades – Universidade de São Paulo (USP)
CEP: 03828-000 – São Paulo – SP – Brazil

fnrocha@usp.br, valdinei.freire@usp.br, kvd@usp.br

Abstract. Creating computer generated human animations without the use of
motion capture technology is a tedious and time consuming activity. Although
there are several publications regarding animation synthesis using data driven
methods, not many are dedicated towards the task of inbetweening, which con-
sists of generating transition movements between frames. A modified version
of LSTM, called Recurrent Transition Network (RTN), solves the inbetweening
task for walking motion based on ten initial frames and two final frames. In this
work, we are interested on the short-term inbetweening task, where we need to
use the least amount of frames to generate the missing frames for short-term
transitions. We are also interested on different kinds of movements, such as
martial arts and Indian dance. Thus, we adapt the Recurrent Transition Net-
work (RTN) to require only the two firts frames and the last one, called ARTN,
and propose a simple post processing method combining ARTN with linear in-
terpolation, called ARTN+. The results show that the average error of ARTN+
is less than the average error of each method (RTN and interpolation) separately
in the martial arts and Indian dance dataset.

1. Introduction

Due to human movement has many degrees of freedom and stochastic nature, usually it
represents a complex problem to model. For this reason, in order to produce humanoid 3D
animations, the use of motion sensors to record the movements of an actor is more com-
mon [Meredith et al. 2001]. This technology denominated Motion Capture (MOCAP) is
expensive and usually inaccessible [Harvey and Pal 2018]. An alternative solution in the
animation, movie and video game industries is to manually produce the animation poses
in a video or animation. Every picture in the image sequence is called a frame.

Recent advances in artificial neural networks have shown promising results in
animation synthesis specially for the tasks of motion prediction, motion automatic con-
trol [Harvey and Pal 2018]. Motion prediction can be defined as a task where the model
receives a number of past frames and attempts to predict the following movements
[Fragkiadaki et al. 2015, Martinez et al. 2017, Li et al. 2017, Chiu et al. 2019]. Whereas
motion automatic control is related to physics-based animations [Peng et al. 2018], an
approach more related to dynamics simulation. Another task in animation synthesis
is the process of creating intermediate frames between initial and final frames, called
inbetweening [Betrancourt 2005] or transition generation. The software tools avail-
able to automatically generate transitions are usually rudimentary and typically re-
quire manual editing which consists of a labor intensive and time consuming work
[Ciccone et al. 2019]. This task has only recently been receiving more attention

[Li et al. 2019, Harvey et al. 2020, Harvey and Pal 2018]. A Recurrent Transition Net-
work (RTN), a modified version of LSTM to synthesize transitions in human locomotion,
was proposed in [Harvey and Pal 2018]. This network was trained to generate a sequence
of intermediate frames of walking motion based on ten initial frames and two last ones,
they also take advantage of the cyclical and repetitive pattern inherent to the walking
motion.

In this work, we are interested on the short-term inbetweening task, where we
need to use the least amount of frames to generate the missing frames for short-term
transitions. We are also interested on different kinds of movements, such as martial arts
and Indian dance. Thus, we adapt the Recurrent Transition Network (RTN) to require only
the two firts frames and the last one, called ARTN. The contributions of this work are:
(i) the adaptation of the RTN to produce short-term animations with minimal past context
frames; (ii) the proposal of combining RTN with linear interpolation, a common method
for generating intermediate transitions in practical applications; and (iii) an experimental
analysis in a dataset of martial arts and Indian dance movements that has a small quantity
of animations.

Section 2 introduces the main concepts of animation, describes the main anima-
tion synthesis tasks and defines the short-term inbetweening task. Section 3 describes
the proposed adaptation of the RTN. Section 4 describes our proposal that combines the
adapted RTN with linear interpolation. Section 5 describes the dataset used. Section 6
shows the experimental results and Section 7 presents the final conclusions.

2. 3D human motion
An animation is classically defined as a sequence of pictures with progressive small
changes that would generate the illusion of motion as they are scrolled over. Nowadays
modern animation is produced using computational methods to generate movements in
tridimensional space. Let a denote an animation representing a movement with frames
[x1, x2..., xf], where each frame xt is a vector of J joints [jrt, j1t, j2t, ..., jJt]. Each joint
j represents a tridimensional cartesian position with components x, y, z in R3, and the
first one jrt represents the hip joint which is considered the global position or root joint
that acts as the center of gravity. The most well-known automated animation synthe-
sis tasks are motion prediction, motion automatic control and generation of intermediate
transitions.

2.1. Motion prediction

Motion prediction is defined as the inference of future frames based on a past context.

Definition 1 (Motion prediction) Given a set of frames [x1, . . . , xf] as input, a solution
should be able to generate k future frames x̂f+1, x̂f+2, · · · , x̂f+k.

Some works that focus on this task are [Fragkiadaki et al. 2015, Bengio et al. 2015,
Martinez et al. 2017, Butepage et al. 2017, Jain et al. 2016, Li et al. 2017].

2.2. Motion automatic control

In some applications the objective is to generate controlled animations, providing control
parameters to guide the algorithmic solution into reaching a certain desired result. These

approaches can be split mainly into three general tasks: physics-based animations, mo-
tion manifold solutions and parameter based approaches. Recent physics-based animation
approaches such as [Liu and Hodgins 2018] use deep reinforcement learning techniques,
creating a sort of physics simulation using mass, center of gravity and other data re-
lated to mechanical dynamics. Motion manifold approaches such as [Holden et al. 2015,
Zhou et al. 2019, Xu et al. 2019] use techniques to prevent the production of inconsis-
tent outputs. Some works use autoencoders to constrain the algorithmic solution into
the subspace of valid motions. Parameter based approaches use customized constraints
or external variables, for example, specific joint velocity, center of gravity trajectory or
positions. These parameters are applied as a way to guide the model generated output.
There are also solutions [Safonova and Hodgins 2007, Heck and Gleicher 2007] that use
search algorithms in movement graphs. These techniques involve reproducing and mixing
previously generated animations.

2.3. Generation of intermediate transitions (Inbetweening)

Learning transitions is defined as the process of creating intermediate movements between
frames. This task is often called Inbetweening or Tweening.

Definition 2 (Inbetweening) Given a set of initial frames [x1, x2, · · · , xt], and a set of
final frames [xt+k, xt+k+1, · · · , xf] as input, a solution should be able to generate the
intermediate frames [x̂t+1, ..., x̂t+k−1] connecting the initial and final frames.

Studies specifically focused on this task are scarce. Some works use Markov mod-
els [Chai and Hodgins 2007], Gaussian processes [Wang et al. 2007] and posterior prob-
ability optimization [Lehrmann et al. 2014] and show satisfactory results, but are lim-
ited to predetermined actions, such as jumps and specific kicks. Other works use neural
networks [Zhou et al. 2020, Harvey and Pal 2018, Harvey et al. 2020]. Harvey and Pal
[Harvey and Pal 2018] proposed the Recurrent Transition Network (RTN) which consists
of combining LSTM neural networks and autoencoder network. The RTN is trained to
generate transitions of walking motion. Based on a fixed number of initial frames called
past context (t = 10) and two final frames, RTN generates a sequence of intermediate
frames of a fixed length. An application of an adversarial recurrent neural network is
proposed in [Harvey et al. 2020] also to synthesize transitions of locomotion movements
(i.e walking and running) which tend to have a cyclical and repetitive nature. The archi-
tecture proposed in [Harvey et al. 2020] is actually more robust in terms of performance
than [Harvey and Pal 2018]. However this model requires a significantly larger amount
of data due to being a much more complex architecture.

In this work, we are interested on different kinds of movement (e.g. martial arts
and Indian dance). Differently than [Harvey et al. 2020, Harvey and Pal 2018], we only
consider the two initial frames and the final frame, this is supposed to emulate a scenario
of manual animation authoring.

Definition 3 (Short-term Inbetweening) Given the first frame x1, the last frame xf and
the initial global velocity g2 = x2− x1 as input, a solution should be able to generate the
intermediate frames [x̂2, ..., x̂f−1] connecting the frames x1 and xf .

Since different kinds of movements (e.g. martial arts and Indian dance) follows
different paths from x1 to xf , we create a separated model, one for each movement style.

In order to solve this short-term Inbetweening problem, we adapted the RTN architec-
ture [Harvey and Pal 2018] and combined it with an interpolation method. In section 3,
the adapted RTN architecture is described and in section 4, the proposed combination is
introduced.

3. Adapted RTN Architecture to Short-term Inbetweening
In a simplified way, the RTN [Harvey and Pal 2018] joins a recurrent neural network
trained to generate frames with an autoencoder to define valid human movements. In
this section this network is adapted to solve the Short-term Inbetweening problem. This
adapted architecture is called ARTN (adapted RTN). Figure 1 shows the architecture of
the ARTN network at a given time step t.

Figure 1. Adapted RTN Architecture (adapted from [Harvey and Pal 2018]).

3.1. Input data pre-processing
The input data pre-processing is carried out in 3 steps. In the first step, the global velocity
gt = jrt+1 − jrt is computed in which only the hip joints of the frame xt and xt+1 are
considered. In the second step, the hip position jrt is subtracted from each joint of the
frame xt, which results in [0, j1t − jrt, j2t − jrt, ..., jJt − jrt]. Thus now each joint is a
representation of the relative position. The first coordinate is then replaced by the value
of the global velocity gt, obtaining x̃t = [gt, j1t − jrt, j2t − jrt, ..., jJt − jrt]. In the third
and last step, the usual normalization procedure is carried out to make the distribution of
variables a zero-centered Gaussian, obtaining the vector it = (x̃t − µt)/σt. The input
vector vt is computed every time step, as the difference between the frame at time t and
time f . To perform the inversion of this pre-processing process, we need to save the value
of jr1, in order to revert the velocity value gt to the positional value xt.

3.2. Components
E1, E2 and E3 represent MLP neural networks with the function of encoders, these en-
coders act by transforming the input data into another representation of latent space. Tem-
poral dynamics is modeled by the LSTM element, which represents a recurrent neural

network. Finally, D1 represents an MLP network with decoder function, responsible for
transforming the data back to the original format. The number of neurons in each layer
is in parentheses and the vector ît+1 is the inferred output frame. Each component of this
architecture is described next.

State encoder (E1). The frame corresponding to each instant of time t is transformed
into a new representation he1t by the E1 state encoder, which consists of an MLP network
with an input layer of J size, one hidden layer and an output layer with 512 neurons each.

Future context encoders (E2 and E3). Future context encoders work analogous to the
state encoder previously explained. The final frame if only needs to be processed once,
remaining constant throughout the animation. The vector vt on the other hand must be
processed at each iteration. The outputs of E2 and E3 are he2t and he3t .

Recurrent neural network. The LSTM component is a recurrent neural network with
one layer with 512 neurons and has the function of generating the sequence of frames
considering the current state and the state to be reached. The output of LSTM is hRt .

Decoder (D1). The output hRt of the recurrent neural network is the input of the last
MLP decoding network D1, which has two hidden layers of 256 and 128 neurons respec-
tively, and an output layer of 66 neurons. The function of D1 is to transform the data to
the original representation. The output vector of D1 is hd1t .

3.3. Output data
The output of the decoder D1, hd1t , can be considered as the estimate displacement be-
tween the instants t and t+1. The transformation of ît+1 into x̂t+1 is performed by invert-
ing the pre-processing, i.e., inverting the normalization, adding the velocity and adding
the global position.

4. Combining the ARTN Architecture with Interpolation
In the conducted experiments the ARTN architecture did not generate animations that
would reach the target frame perfectly. In [Harvey and Pal 2018] a post processing
method called target blend was used as a way to correct the gap between the last frame
and the target position. However this method of target blend in the ARTN generated un-
natural movements as the generated animations would slide abruptly during animations.
On the other hand a simple linear interpolation works well in the last frames. So in this
article, the target blend method was discarded and we propose the combination of the
adapted network with the interpolation. We call this algorithm ARTN+ (ARTN plus in-
terpolation).

ARTN+ first trains the ARTN architecture with the trained set of animations creat-
ing a model called NNmodel. Then ARTN+ calls Algorithm Frame Selection (Algorithm
1). This algorithm identifies the frame index, f/2 ≤ index ≤ f , that yields the minimum
value of the average error of combining the ARTN with interpolation. Frame Selection
receives a training set with n animations, the number of frames f that the animations have
and the NNmodel. For each trans index f/2 ≤ trans ≤ f , the algorithm computes the
error of using the combination for each animation ak (line 5) by:

errorak =

f∑
j=1
||îj − ij||2

f
(1)

And then the algorithm computes the average error over all the animations in the training
dataset (line 8). Each trans index and the average are saved in a map. Then, in line 12,
the algorithm get the frame index that has the minimum value between the averages that
are in the map.

Algorithm 1 Frame Selection (trainingDataSet = {a1, a2, . . . , an}, f, NNmodel)
1: for trans = f/2, . . . , f do
2: for k = 1 to n do
3: Generate î1 to îtrans using NNmodel with i1 and if of ak
4: Generate îtrans+1 to îf using interpolation with itrans and if of ak

5: errorak =

f∑
j=1

||îj−ij ||2

f

6: errListAnimations.add (errorak)
7: end for
8: avg=average(errListAnimations)
9: errMap.add(trans, avg)

10: end for
11: //frame index that yields minimum value of errMap
12: index=getTransMinAvg(errMap)
13: return index

With the index computed by Frame Selection and the NNmodel, algorithm Tran-
sition Generation (Algorihtm 2) is called to generate the intermediate transitions for a test
instance ak.

Algorithm 2 Transition Generation (ak, NNmodel, index)

1: Generate î1 to îindex using NNmodel with i1 and if of ak.
2: Generate îindex+1 to îf using interpolation with i1 and if of ak.
3: return î1 to îf

5. Dataset and Training
The experiments were performed in the Carnegie Mellon University Mocap (CMU)
dataset. Creating animations using only the first two frames and the last frame in the
original format would not be possible since this dataset consists of long and diverse an-
imations. As a solution, every animation file was subdivided in multiple smaller anima-
tions of length f , which were treated as independent observations. Aiming to extract the
maximum amount of information from the data provided by the CMU dataset, a sliding
window approach was used with padding of ∆ = 15 frames. Each frame has J = 22
joints, therefore there are 3× 22 = 66 coordinates to represent each frame xt.

The datasets for specific martial arts and indian dance are notably smaller than
the ones used in other studies such as [Fragkiadaki et al. 2015, Martinez et al. 2017,
Li et al. 2017, Chiu et al. 2019, Harvey and Pal 2018, Harvey et al. 2020]. Therefore, in
order to expand the training and prevent overfitting, a data augmentation approach was
used. This approach consists of a simple rotation of every original training anima-
tion in angles of 900. This implementation was adapted from the code provided in

[Li et al. 2017]. Note that this approach improves the inference on the global displace-
ment (root joint movement), since the joint coordinates are already relative to the root
joint and would not be affected by such rotations.

5.1. Weight initialization

A novel initialization method for weights in recurrent neural networks was proposed
in [Harvey and Pal 2018]. An auxiliary single layer MLP is used to generate the ini-
tial weights of the recurrent neural network. This MLP is responsible for estimating the
weight h0 which corresponds to the time before the initial frame. The goal is to ensure
that the initialization of the weights starts from a valid values at time t = 0. This network
is trained alongside the main recurrent neural network, although in this case inference
only happens in the first frame of the animation.

5.2. Scheduled sampling

While generating multiple elements of a sequence, a recurrent neural network will pro-
duce an inference ît+1 using a previous observation ît as input. The model would try to
produce the frame it+1 from ît, thus generating an output ît+1 by: RNN(it) = ît+1 =
it+1 + δt, where RNN represents the recurrent neural network solution and δt the error
between the inferred output and the ground truth at time t+ 1.

While generating sequences, it is imperative to worry about the error δt accumu-
lation between each time step t. In a test or validation scenario the past observations
must be past inferences, however during training this is not always the case. A very use-
ful technique frequently used in temporal supervised learning is to replace the model’s
past inference ît by the actual ground truth for that given time step it [Jordan 1990].
This concept is often called teacher forcing and its goal is to ensure that the model in-
ference does not produce large deviations from the original ground truth during training
[Williams and Zipser 1989]. This technique should not be overused as it could prevent
the model from learning from it’s accumulated errors, making it useless in practice. With
this consideration in mind, the schedule sampling methodology that uses two kinds of
inputs during the training phase was proposed in [Bengio et al. 2015]. The methodology
consists of sampling the input based on a probability p of selecting the previous ground
truth frame it and 1 − p for selecting the past inference frame ît. At each time step a
random choice is made based on p that would decrease over time [Bengio et al. 2015]. In
our work, we used a fixed p = 0.2 throughout the whole sequence.

5.3. Loss function and hyperparameters

The loss function used is the Mean Square Error: MSE = 1
f

f∑
t=1
||̂it − it||2. Training was

done using stochastic gradient descent with minibatches of 32. All the experiments were
run for 400 epochs with 0.0005 as learning rate.

6. Experiments
The experiments were performed on two movement styles: Martial Arts and Indian Dance
with one and two seconds of motion for each style. For one and two seconds of motion we
have 30 frames (f = 30) and 60 frames (f = 60), respectively. The original animations
in the data set was divided in 90% for training and 10% for test. Note that even using

90% of the data for training, we do not have the sufficient amount of data for learning.
The training set input data has a large number of dimensions and a small amount of
observations to train the network. Thus, the process of data augmentation was necessary
due to the curse of dimensionality [Bellman 1966].

Table 1 shows the number of original and augmented animations in the training set
(using the procedure described in section 5) and the number of animations in the test set.
It is important to notice that a different model is created for each movement and seconds
of motion.

Table 1. Number of animations used in the training set and test set

Movement Training Augmented Test

Style set training set set

Martial Arts (2sec) 1721 6884 191

Martial Arts (1sec) 1732 6928 192

Indian Dance (2sec) 2985 11940 331

Indian Dance (1sec) 3006 12024 334

6.1. Analyzing the error over all animations

Table 2 shows the average of errorak (Equation 1) considering all the animations ak in
each test set using interpolation (INTER), ARTN and ARTN+. The last column shows the
average of the index frame found by the ARTN+ to combine ARTN with interpolation.
The results show that ARTN+ and ARTN have better average than INTER. Additionally,
ARTN seems to fail more in the final frames of Indian Dance than in Martial Arts move-
ments. For the Martial Arts, the index found is equal to f minus 2 or 3 frames in average.
For the Indian Dance, the index found is equal to f minus 6 or 7 frames in average. We
observe that for Indian Dance (1 sec) 6 frames represents 20% of f = 30.

Table 2. Average of errorak
considering all the animations ak in each test set

using INTER, ARTN and ARTN+

Movement style INTER ARTN ARTN+ index

Martial Arts (2sec) 13.17 5.43 5.34 57

Martial Arts (1sec) 7.72 3.17 3.11 28

Indian Dance (2sec) 23.86 16.69 16.48 53

Indian Dance (1sec) 9.90 8.40 8.28 24

Figures 2 show the boxplot of the error errorak obtained by INTER, ARTN and
ARTN+ for Indian Dance considering 30 and 60 frames. We can observe that the mini-
mum error excluding any outliers (0th percentile) is almost the same for INTER, ARTN
and ARTN+, but the maximum (100th percentile) and third quartile is greatest for INTER.
The median of INTER is greater than ARTN and ARTN+.

Figure 2. Error obtained by INTER, ARTN and ARTN+ for Indian Dance consider-
ing 30 (left side) and 60 (right side) frames.

Figures 3 show the boxplot of the error errorak obtained by INTER, ARTN and
ARTN+ for Martial Arts considering 30 and 60 frames. The behavior is similar with
the one described for Indian Dance. However, the range of the error for Martial Arts is
less than for Indian Dance. By comparing the error range it is clear that the Martial Arts
dataset is an easier problem than the Indian Dance dataset. This can be explained by the
fact that the Martial Arts movements into CMU dataset are much more similar among
themselves than the Indian Dance movements.

Figure 3. Error obtained by INTER, ARTN and ARTN+ for Martial Arts considering
30 (left side) and 60 (right side) frames.

Although the difference between ARTN and ARTN+ is imperceptible in boxplots,
the difference exists in each individual animation, specially in the final frames as we will
see in the next subsections.

6.2. Analyzing the final frames

Table 3 shows the average of errorak (Equation 1) considering all the animations ak in
each test set using INTER, ARTN and ARTN+, but from j = index to j = f . The last
column shows the average of the index frame found by the ARTN+ to combine ARTN
with interpolation. The results show that ARTN+ has better average than ARTN.

Figure 4 shows the last frame found by INTER, ARTN and ARTN+ and the ground
truth last frame for a 2 second Indian dance animation. Note that while INTER and
ARTN+ reach the same final pose, ARTN does not.

6.3. Analyzing the error at each frame in some Indian Dance animations

Figure 5 shows errort = ||̂it − it||2 at each frame t (1 ≤ t ≤ 60) of 4 indian dance
animations (sampled from the test set) with two seconds of motion (f = 60) using INTER,
ARTN and ARTN+, i.e., each curve represents the error along the frames of an animation

Table 3. Average of errorak
considering only the final frames from the index frame

onward in each test set using INTER, ARTN and ARTN+

Movement style INTER ARTN ARTN+ index

Martial Arts (2sec) 0.34 0.55 0.42 57

Martial Arts (1sec) 0.58 0.63 0.61 28

Indian Dance (2sec) 3.28 5.54 4.63 53

Indian Dance (1sec) 3.05 3.89 3.30 24

Figure 4. The last frame found by INTER, ARTN and ARTN+ and the ground truth
last frame for a 2 second Indian dance animation. The animations were
generated using the software Blender3D.

using INTER (red curve), ARTN (green curve) and ARTN+ (blue curve). Figure 6 shows
errort for 4 animations with one second of motion (f = 30).

Figure 5. Error at each frame for 4 Indian Dance animations with 60 frames us-
ing INTER (red curve), ARTN (green curve) and ARTN+ (blue curve). The
dashed black line represents the index frame found by the ARTN+.

The results show that ARTN works better than linear interpolation except in the
last frames. ARTN+ combines the best features of both, generating animations that would
reach the target frame better than ARTN.

7. Conclusion
This study has shown the capability of the RTN architecture in producing short-term re-
alistic animations using minimal information (the two initial frames and the final frame).
The experimental results have also demonstrated that the performance of this neural net-
work model in the final frames tends to be inferior than the naive linear interpolation.
Therefore, a post processing method is crucial for the completion of the Inbetweening
task. Thus, in this article we have proposed ARTN+ that combines the naive interpola-
tion method with the ARTN architecture and produces better overall results. One fact
that requires emphasizing is that the advantage of the proposed solution does not reside

Figure 6. Error at each frame for 4 Indian Dance animations with 30 frames us-
ing INTER (red curve), ARTN (green curve) and ARTN+ (blue curve). The
dashed black line represents the index frame found by the ARTN+.

only in the performance gain, but rather in ensuring the completion of the transition task
without losing general performance. The model comparison boxplots provide evidence
that the ARTN and ARTN+ architectures are strongly influenced by the movement style
and transition lengths.

References
Bellman, R. (1966). Dynamic programming. Science, 153(3731):34–37.

Bengio, S., Vinyals, O., Jaitly, N., and Shazeer, N. (2015). Scheduled sampling for se-
quence prediction with recurrent neural networks. In Advances in Neural Information
Processing Systems, pages 1171–1179.

Betrancourt, M. (2005). The Animation and Interactivity Principles in Multimedia Learn-
ing, page 287–296. Cambridge Handbooks in Psychology. Cambridge University
Press.

Butepage, J., Black, M. J., Kragic, D., and Kjellstrom, H. (2017). Deep representation
learning for human motion prediction and classification. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

Chai, J. and Hodgins, J. K. (2007). Constraint-based motion optimization using a statisti-
cal dynamic model. In ACM SIGGRAPH 2007 papers, pages 8–es.

Chiu, H.-K., Adeli, E., Wang, B., Huang, D.-A., and Niebles, J. C. (2019). Action-
agnostic human pose forecasting. In 2019 IEEE Winter Conference on Applications of
Computer Vision (WACV), pages 1423–1432.

Ciccone, L., Öztireli, C., and Sumner, R. W. (2019). Tangent-space optimization for
interactive animation control. ACM Trans. Graph., 38(4).

Fragkiadaki, K., Levine, S., Felsen, P., and Malik, J. (2015). Recurrent network models
for human dynamics. In Proceedings of the IEEE International Conference on Com-
puter Vision, pages 4346–4354.

Harvey, F. G. and Pal, C. (2018). Recurrent transition networks for character locomotion.
In SIGGRAPH Asia 2018 Technical Briefs, SA ’18, pages 4:1–4:4, New York, NY,
USA. ACM.

Harvey, F. G., Yurick, M., Nowrouzezahrai, D., and Pal, C. (2020). Robust motion in-
betweening. ACM Transactions on Graphics (TOG), 39(4):60–1.

Heck, R. and Gleicher, M. (2007). Parametric motion graphs. volume 2007, pages 129–
136.

Holden, D., Saito, J., Komura, T., and Joyce, T. (2015). Learning motion manifolds
with convolutional autoencoders. In SIGGRAPH Asia 2015 Technical Briefs, page 18.
ACM.

Jain, A., Zamir, A. R., Savarese, S., and Saxena, A. (2016). Structural-RNN: Deep learn-
ing on spatio-temporal graphs. In Proceedings of the ieee conference on computer
vision and pattern recognition, pages 5308–5317.

Jordan, M. I. (1990). Attractor Dynamics and Parallelism in a Connectionist Sequential
Machine, page 112–127. IEEE Press.

Lehrmann, A. M., Gehler, P. V., and Nowozin, S. (2014). Efficient nonlinear Markov
models for human motion. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1314–1321.

Li, Y., Roblek, D., and Tagliasacchi, M. (2019). From here to there: Video inbetweening
using direct 3d convolutions. ArXiv, abs/1905.10240.

Li, Z., Zhou, Y., Xiao, S., He, C., Huang, Z., and Li, H. (2017). Auto-conditioned
recurrent networks for extended complex human motion synthesis. arXiv preprint
arXiv:1707.05363.

Liu, L. and Hodgins, J. (2018). Learning basketball dribbling skills using trajectory op-
timization and deep reinforcement learning. ACM Transactions on Graphics (TOG),
37(4):1–14.

Martinez, J., Black, M. J., and Romero, J. (2017). On human motion prediction using
recurrent neural networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2891–2900.

Meredith, M., Maddock, S., et al. (2001). Motion capture file formats explained. Depart-
ment of Computer Science, University of Sheffield, 211:241–244.

Peng, X. B., Kanazawa, A., Malik, J., Abbeel, P., and Levine, S. (2018). Sfv: Reinforce-
ment learning of physical skills from videos. ACM Trans. Graph., 37(6).

Safonova, A. and Hodgins, J. K. (2007). Construction and optimal search of interpolated
motion graphs. In ACM SIGGRAPH 2007 papers, pages 106–es.

Wang, J. M., Fleet, D. J., and Hertzmann, A. (2007). Gaussian process dynamical models
for human motion. IEEE transactions on pattern analysis and machine intelligence,
30(2):283–298.

Williams, R. J. and Zipser, D. (1989). A learning algorithm for continually running fully
recurrent neural networks. Neural computation, 1(2):270–280.

Xu, Y. T., Li, Y., and Meger, D. (2019). Human motion prediction via pattern completion
in latent representation space. arXiv preprint arXiv:1904.09039.

Zhou, D., Feng, X., Yang, X., Zhang, Q., Wei, X., Fang, X., and Yang, D. (2019). Human
motion data editing based on a convolutional automatic encoder and manifold learning.
Entertainment Computing, 30:100300.

Zhou, Y., Lu, J., Barnes, C., Yang, J., Xiang, S., et al. (2020). Generative tweening:
Long-term inbetweening of 3d human motions. arXiv preprint arXiv:2005.08891.

