Optimization Matters: Guidelines to Improve Representation
Learning with Deep Networks

Aline R. Becher', Moacir A. Ponti'

nstituto de Ciéncias Matematicas e Computacio
Universidade de Sdo Paulo, Sdo Carlos/SP 13566-590, Brazil

becher.aline@usp.br,moacir@icmc.usp.br

Abstract. Training deep neural networks is a relevant problem with open ques-
tions related to convergence and quality of learned representations. Gradient-
based optimization methods are used in practice, but cases of failure and suc-
cess are still to be investigated.In this context, we set out to better understand the
convergence properties of different optimization strategies, under different pa-
rameter options. Our results show that (i) feature embeddings are impacted by
different optimization settings, (ii) suboptimal results are achieved by the use of
default parameters, (iii) significant improvement is obtained by making educa-
ted choices of parameters, (iv) learning rate decay should always be considered.
Such findings offer guidelines for training and deployment of deep networks.

1. Introduction

Representation learning is the ability to infer a model capable of transforming an input
space into a representation of it, which can be, for example, a vector space of characte-
ristics that are relevant to a particular task or application [Bengio et al. 2013]. There is a
known potential in Deep Neural Networks (DNN) to find useful representations of signals
and images [Ponti et al. 2017]. However, there are challenges related to the convergence
and generalization of the parameters of models [Bottou et al. 2018, Zhang et al. 2016].

Optimizing parameters of Convolutional Neural Networks (CNNs), the most
relevant architecture for classification, is not trivial due to the non-linear and non-
convex characteristics, the high dimensionality of parameters, the presence of lo-
cal minima and saddle points, as well as lack of theoretical guarantees of conver-
gence [Goodfellow et al. 2016]. Also, even for small networks, training is still known
to be NP-hard [Bottou et al. 2018]. Therefore it is paramount to make educated choices
of optimization methods and training strategies [Ponti et al. 2021]. Many studies focus
on finding the best network architectures, while neglecting the optimization details, with
unjustified or arbitrary choices, e.g. using default values. In this context, investigating
the behaviour of parameter optimization methods is of critical importance to obtain an
improvement of the models for learning general representations.

The most popular class of optimization algorithms are gradient-
based methods [Andrade et al. 2018, Serpaetal. 2019, Rodrigues et al. 2017,
Abello and Hirata 2019], but there is lack of empirical evidence on cases of fai-
lure and success in terms of optimization choices. This motivated the use of
computational power to find adequate parameters by meta-heuristics or grid-
search [Dombhan et al. 2015, Zhang et al. 2015, Miikkulainen et al. 2019], since the

choices are dependent on the network architecture and the initialization or starting
point [Li et al. 2018].

The classic Gradient Descent algorithm [Cauchy 1847] calculates the gradi-
ent over all samples of the training set, while stochastic versions are faster by
using a single training instance (or a batch). The Stochastic Gradient Descent
(SGD) [Robbins and Monro 1951] have good convergence results for both convex and
non-convex functions, but have high variance stretched algorithms fluctuate between
local minima, which may be inefficient. Although there are methods to reduce va-
riance, such as Stochastic Averaged Gradient (SAG) [Schmidt et al. 2017] and SAGA
[Defazio et al. 2014], interestingly, those are not often used in the recent literature.
Instead, another class of gradient-based algorithms that applies strategies to control
the step size during optimization are much more popular, including Adaptive Gra-
dient Algorithm (Adagrad) [Duchi et al. 2011] that adapts the learning rate according
to the parameters under optimization by storing the gradient history for parameters:
a smaller step is defined for more common parameters, and larger ones for those
which characteristics are less frequent. The spread of Root Mean Square (RMS-
prop) [Tileman and Hinton 2012] was proposed to improve over Adagrad. Howe-
ver, its main assumption is difficult to hold, i.e. the signal of the gradient is si-
milar for examples in a batch [Bottou et al. 2018]. The Adaptive moment estima-
tion (Adam) [Kingma and Ba 2015] combines benefits of both Adagrad and RMSprop,
without unrealistic assumptions. But it stills has high variance in the early stages of
training. To try to get around this problem, Rectified Adam (RAdam) [Liu et al. 2020]
proposes a warm-up term to reduce such early variance. It is noteworthy that ne-
arly every state-of-the-art computer vision model was trained using regular SGD, inclu-
ding AlexNet [Krizhevsky et al. 2012], VGGNet [Simonyan and Zisserman 2014], Res-
Net [He et al. 2016], SqueezeNet [landola et al. 2016], Faster R-CNN [Ren et al. 2015],
Single Shot Detectors [Liu et al. 2015] and RetinaNet [Lin et al. 2017]. Thus, each
gradient-based algorithm has advantages and disadvantages and the choice of the algo-
rithm and their setup for a given problem is still a matter of investigation, with the com-
plexity of the problem raising questions [Sun 2019]. Concerns about overfitting and re-
gularization as well as the impact of initialization [Sutskever et al. 2013, Le et al. 2011]
still lack answers.

In this paper, we analyze in practice the behaviour of SGD, Adam, and its variation
RAdam in light of feature learning. As far as we know, this is the first work focusing
on how optimization choices impact the discriminative power of such representations
including scenarios of transfer learning. By exploring CNNs and AEs, as well as popular
algorithms and tasks, we offer relevant discussion on why optimization matters and how
to narrow down choices depending on the task at hand.

2. Related Work and Contributions

Some recent studies aimed at analyzing a large number of optimizers and pos-
sible parameter choices [Wilson et al. 2018, Choi et al. 2019, Sivaprasad et al. 2019,
Schmidt et al. 2020]. In [Wilson et al. 2018] the authors found that Adam, Adagrad and
RMSprop converged to worse solutions than SGD and GD, but for general applications.
Later, [Choi et al. 2019] proposed a comparison protocol with manual choice of hyper-
parameters. The SGD, Momentum, Nesterov, Adam, RMSprop and Nadam optimizers

are evaluated. They concluded that RMSprop and Adam never underperformed SGD,
Momentum and Nesterov methods. Along similar lines, [Sivaprasad et al. 2019] evalu-
ated natural image datasets and architectures taking into account the computational cost
to find such parameters. They concluded Adam works best without much tuning, while
SGD may have superior performance but require finding its proper configuration. More
recently, [Schmidt et al. 2020] also evaluated multiple optimizers and hyperparameters.
They could not identify which optimizer had the better performance, pointing out the
importance of narrowing down the hyperparameter search space.

This paper does not intent to find the best optimization algorithm. Instead, we
start by introducing a formulation for optimizing deep networks, the algorithms under
study, and then show empirical evidence that shed light on improving the process of
feature learning by relating different choices of optimizer, batchsize and learning
rate value/schedule. Therefore, our contributions are mainly:

I. evaluate performance with 3 optimizers considering different values of batch size,
learning rates choices and decay strategies, as well as different datasets;
II. showing how standard choices usually result in poor generalization capacity;
III. defining guidelines for the appropriate selection of parameters when training from
scratch and for finetuning of pre-trained models to improvement generalization
and discriminative capacity of the learned representations.

3. Theoretical background of deep learning optimization

3.1. SGD (Stochastic Gradient Descent)

SGD is an approximation of GD that allow calculating the gradient of the cost function
based on a single example or a small subset (minibatch), X}, selected for the iteration k.
The parameters are updated as follows:

Ort1 = O — arg(Xy, O),

where ¢(.) is the gradient of the cost function. It has theoretical results for convex and
non-convex functions, ensuring that the sequence of the iterates generated by the algo-
rithm has gradients that converge to zero. Also, the sum of the squares remains finite,
which is a necessary condition for convergence.

3.2. Adam

Adam calculates individual learning rates for different parameters using first and second
gradient estimates, as follows:

my,
O = 01 — ap—F—,
VU + €
where 7 and ¢ are corrected estimates of the first and second moment of the gradient,
respectively. Adaptive methods also have theoretical results of convergence, ensuring

that the gradient norm remains small in a finite number of iterations and converges to a
critical point.

3.3. RAdam

RAdam is a variation of Adam that adjusts the adaptive learning rate to correct the effects
of the large variance in the initial training stage, since it can result in bad local minima
at the beginning of the training with Adam or SGD. A warm-up term seeks a learning
rate to avoid falling into bad local minima. Since this varies according to the data set, its
adaptive approach shown to improve results over Adam.

4. Experiments

Our experiments evaluate feature spaces learned by CNNs when using as optimizes SGD,
Adam and RAdam, under different learning rates (LR) and batch sizes. Note we are not
interested in beating state-of-the-art results, but rather studying the effects of such choices
in learning. We focus on representation learning, studying feature spaces obtained from
the trained models. The Support Vector Machine (SVM) classifier is used to evaluate the
linear discriminative capability of such spaces since it is the classifier with the strongest
bias and learning guarantees [Mello and Ponti 2018]. Therefore, the SVM (no kernels,
and cost=1), is trained on the feature spaces learned by the CNNs (output of the layer
before prediction). We use the original training/test split of the datasets.Experiments were
repeated 5 times with the same 5 fixed seeds for all models (11, 27, 44, 86 and 104), which
also test how each optimization setup behaves under different starting points.

The initial experiments use a smaller CNN architecture for Cifar-10 and Fashion-
MNIST with fully connected and convolutional layers. Each experiment is a variation
of:

¢ Datasets: Fashion-MNIST and Cifar-10;
e Batch sizes: 8, 16, 32, 64, 128, 256 and 512
* Learning Rates (LR): 0.5, 0.1, 0.01 and 0.001.

Later we also explored ResNet-50 and MobileNetV2, both with random weights
and pre-trained in ImageNet to investigate optimization on transfer learning and Learning
Rate scheduling approaches: Step Decay (SD), which consists of decreasing the learning
rate by a factor of 0.5 every five epochs and Exponential Decay (ED), which consists of
drop learning rate by an exp factor ezp(—0.1). In summary, those experiments evaluated:

Architectures: Resnet50 and MobileNetV?2;

e Optimizers: SGD and RAdam;

Datasets: Cifar-10 and Flowers;

Batch sizes: 32, 64, 128, 256;

* Learning Rates: 0.5, 0.1, 0.01 (SGD) and 0.1, 0.01, 0.001 and 0.0001 (RAdam);
Weights: Random Initialization and Weights Pre-Trained from Imagenet;

* Scheduling: Step Decay (SD) and Exponential Decay (ED).

5. Results and discussion

5.1. Evaluating separability of feature spaces

— Fashion-MNIST classification (Table 1): all methods achieved ~ 92% accuracy, but
different configurations are required. SGD require higher learning rates, e.g. 0.5 and
0.1, and batch sizes from 16 to 64. Except for LR = 0.5, the accuracy decreases as
the batch size increases. For Adam and RAdam, smaller learning rates, e.g. 0.001 and

larger batch sizes, up to of 512, are allowed and may improve results. Overall, SGD was
more robust regarding learning rate variation, while Adam/RAdam are negatively affected
higher learning rates.

— Cifar-10 classification (Table 2): SGD is also favoured by larger learning rates and
smaller batch sizes (even 8). Adam/RAdam were overral better than SGD, with smaller
learning rates and large batch sizes preferable.

Tabela 1. Classification accuracy (%) for Fashion Mnist features comparing lear-
ning rates and batch sizes. Values in bold are accuracies of 91 or higher.

Batchsize

LR OPT

8 16 32 64 128 256 512
SGD 18.6£17 9140.2 91.5+0.2 91.7£0.2 91.4+0.3 91 +0.2 90.2+0.5
0.5 Adam 10£0 10£0 10£0 1040 10£0 10 £0 10£0
RAdam 100 10+0 10+0 10+0 10£0 10 £0 10+0
SGD 91.7£0.2 91.610.2 91.3£0.3 91.1E 0.3 90.1£0.6 88.9£0.6 87.7£0.3
0.1 Adam 100 10+0 10£0 10+0 10£0 1040 10£0
RAdam 10£0 10.3£0.6 10£0 10+0 10£0 1040 10.5+1
SGD 90.8£0.5 89.7£0.5 88.9£0.3 88.1 £0.3 87102 855+0.3 83.5£0.6
0.01 Adam 1040 10£0 16.1£6.5 17.8+15.6 243 £22.3 583+3.4 73.6£5.7
RAdam 100 10£0 109+1.9 11.8+3.7 10£0 10+0 58.6+4.2
SGD 87.7£0.3 86.5£0.3 85£0.4 82.5 £0.7 782E£22 60.2£14.9 3581228
0.001 Adam 56.61+6.9 539+ 25 79+ 2 90.3+0.9 91.4+0.1 91.8+0.3 91.9+0.1
RAdam 528492 52.9+46.8 75.7+£3.5 90.640.3 91.7+0.1 91.5+0.3 91.7+0.2

Tabela 2. Classification accuracy (%) for Cifar-10 features comparing learning
rates and batch sizes. Values in bold are accuracies of 61 or higher.

Batchsize

LR oPT 8 16 32 64 128 256 512
SGD 10.5£0.6 10.24+0.3 59.4 £0.8 61.5+1.1 61.4+2 60.5 £1.8 57.5+£35
0.5 Adam 100 10£0 100 10+ 0 10£0 10+0 10£0
RAdam 100 10£0 100 100 10£0 10£0 10£0
SGD 63£0.7 63£0.5 62.310.8 61.2 £14 60.3E£1.7 59.1E£1.9 56.4E1.4
0.1 Adam 10£0 10£0 100 10£0 10£0 10£0 10£0
RAdam 10£0 100 100 10£0 10£0 100 10£0
SGD 61.3E15 60.5 £1.4 598E14 56£0.9 50.8£0.8 457109 395E15
0.01 Adam 10£0 10£0 10£0 10£0 18.1+16.2 16.8£30.7 17+14
RAdam 10£0 1040 10£0 1040 10£0 1040 555+1
SGD 53.9£09 492109 437109 37.1£1.9 30.1£32 21.3+6 1577£6.6
0.001 Adam 54.1+£22 542426 521423 60.3+1.8 63.9+1.1 64.410.6 64.31+0.4
RAdam 56.9£0.9 54.440.9 51.3+2.7 59.241.2 63.31£0.6 64.31+0.6 63.9+1

The loss values over training epochs for Fashion-MNIST and Cifar-10 are shown
in Figure 1. Using the best choice of the learning rate and batch size: RAdam allows for
faster convergence when the size of the network is adequate to the problem (Fashion), but
slower for harder problems (Cifar-10).

- SGD
n ~— Adam
Ay —— RAdam

Loss
Loss
-

120044 0ss0sesessesnnsscssans

Epochs

Fashion-MNIST Cifar-10

Figura 1. Training loss for Fashion-MNIST (left) and Cifar-10 (right) datasets com-
paring optimizer’s best resulits.

t-SNE Visualization (Figure 2): evaluates projection of Fashion-MNIST test data by
varying the LR and optimizer choices and fixing the best batch size (64 for SGD; 256
for Adam/RAdam). This confirms SGD is less sensitive with respect to learning, while
Adam/RAdam require lower learning rates, failing to produce a reasonable feature space
for wrong choices, which includes LR=0.01, the default for many deep learning fra-
meworks.

sb

Figura 2. Projection of the characteristics space with t-SNE comparing the diffe-
rent learning rates, with CNN architecture and Fashion Mnist dataset con-
sidering the best results over all batch sizes.

5.2. A case-study with state-of-the-art CNNs

In this section we used a Residual Network with 50 layers (ResNet50) [He et al. 2016] an
a MobileNetV2 [Sandler et al. 2018], often used to perform Transfer Learning.

First, using ResNet50, the top layer was removed and replaced by four dense
layers (with size 1024, 512, 256 and 128) with Dropout (0.2) every two layers, followed
by a softmax classification layer with 10 classes. After training from scratch for 50 epochs
with Cifar-10, as expected, the results improve achieving up to 84% accuracy (see Table
3). From pre-trained weights, with 25 epochs a ~ 82% accuracy is achieved. Extreme
choices impact less SGD, e.g. see SGD with LR=0.01 and RAdam with LR=0.1, but both
are able to achieve similar accuracies with appropriate choices. For pre-trained weights,
it is necessary to start with a smaller step. There seems to exist a sweet spot: 0.1 for SGD
and 0.001 for RAdam, which resulted in slightly better accuracies than SGD.

The MobileNet was used for the Cifar-10 and Flowers Recognition datasets. The
top of the net was removed and replaced by a dense layer (with size 128) followed by
a softmax classification layer. As observed with the Resnet50 architecture, the learning
rates 0.1 for SGD and 0.001 for RAdam achieved the best results. With the Flowers
Recognition dataset, SGD behaves differently than we have seen before, but this time
favoured by lower learning rates, as shown in Table 5. This is because Flowers is a fine-
grained dataset so, in this case the general behavior is not repeated.

In all cases, the more LR is far from its ideal value, the more a large batch size
degrades results. Thus, even with a state-of-the-art CNN, a default or arbitrary choice
may result from suboptimal to near-random classification results.

Learning rate scheduling effects: we used a fixed batch size of 32, and inves-
tigate two types of learning rate decay. Table 6 shows that, with SGD, the exponential
type decay obtained slightly higher results when compared to the step type decay, high-
lighting those with pre-trained weights. For RAdam, exponential decay was better with
Random weights, while Step Decay stands out using Pre Trained weights reaching ~ 97%
accuracy with initial LR 0.0001.

Tabela 3. Classification accuracy (SVM) (%) of Cifar-10 dataset with a Resnet50
with SGD and RAdam optimizers from Random Initialization (Rnd) and Pre-
trained (PT) with ImageNet.

SGD
. Batchsize
Init. LR —; 64 128 756
_ 05 8I6408 805435 7193416 19117
E 00 78802 7621 G6AEL3 623429
001 620504 544102 487104 454503
05 807407 773431 798+i12 763424
= 01 812407 81405 799405 764 L5
001 802502 769104 39502 684L03
RAdam
. Batchsize
Init. LR -5 64 128 356
_ 001 573%6 660527 8734 722435
E 0001 SITE0T SLAE04 823404 781403

0.0001 64.6 £0.6 59.6 £0.9 53.2+0.7 48+04

0.01 13670 33.1£94 384+£13.7 39.3+24.3
E 0.001 63.0£264 76.3+2.3 75.8+£32 65.0+£254

0.0001 823+0.5 823+0.3 81.3+£03 784+0.3

Tabela 4. Classification accuracy (SVM) (%) of Cifar-10 dataset with a MobileNet
with SGD and RAdam optimizers from Random Initialization (Rnd) and Pre-
trained (PT) with ImageNet.

SGD
Batchsize
32 64 128 256
0.5 65.2 £15.5 67 £1.5 64.7 £1.2 60.4 £0.8

Init. LR

E 0.1 69.4+1.2 64+0.7 59.6+0.7 54.4+0.7
001 598+08 55.1+0.7 50.1+£04 453 £0.7
0.5 25.7+1.6 263409 21.7+16.3 25.8+18.8

=01 81.7+0.4 80.6+0.9 70.3+I18.2 67.3+17.4
001 79.7+£02 765+04 73+£0.2 67.8 £0.3

RAdam
. Batchsize

it LR 5 64 128 256

o 001 4814301 75916 74514 GO8E27

£ 0001 75508 741+0.7 68.3£13 592425
0.0001 547404 471404 39.3+£0.7 317 +L.1
0.01 100 10 £0 21.2£224 362 £25.5

& 0001 834+06 833+03 825401 81.8+0.4

0.0001 82.7+0.2 81.1£0.3 77.1 £0.3 71.4 £0.3

5.3. Guidelines

To summarize the results, we show color/bubble maps representing each combination of
learning rate and batch size. Color indicate the average accuracy, while the size of the

Tabela 5. Classification accuracy (SVM) (%) of Flowers dataset with a MobileNet
with SGD and RAdam optimizers from Random Initialization (Rnd) and Pre-
trained (PT) with ImageNet.

SGD
. Batchsize
Init. LR —; 64 128 756
_ 05 278418 262400 275+l 275424
E 00 389E%1 o7iEl5 BISEI42 I82ELT
001 805130 5.0i45 61214 3444
05 451 1128 4831146 337467 341451
= 01 4214127 475149 535+162 947 E05
001 930LL1 9I8Ll0 90Ll3 862104
RAdam
. Batchsize
Init. LR -5 64 128 356
_ 001 D553I%7 667476 53405 69.7L59
E 0001 9012 S28E76 TLAE00 855428
0.0001 866 108 364107 706123 S76Lld
001 332447 34143 336403 800428
= 0001 035+12 883433 SL8L52 008 Ll3
0.0001 96504 933506 91103 363102

Tabela 6. Classification accuracy (SVM) (%) of Cifar-10 and Flowers dataset for
a MobileNet architecture with Step Learning Rate Decay (SD) and Expo-
nential Learning Rate Decay (ED) and optimizers SGD and RAdam from
Random Initialization (Rnd) and Pre-trained (PT) with ImageNet.

SGD

. Cifar10 Flowers

Init. LR -5 ED SD ED
’g 0.1 62.7 £0.9 63.3 £1.1 28.4+3.4 28.7£3.1
[~ 0.01 51.7 £0.9 53 £0.3 74.4 +1.4 85.3 1.4
- 0.1 81.6 £0.6 81.9 £0.7 35.3 £5.5 38.7 £6.6
R 0.01 77.6 £0.1 78.2 +0.3 95.9 £0.5 96.2 £0.5

RAdam

= 0.01 60.9 £25.5 58 £24 94.1 +0.3 94.1 +0.8
é 0.001 69.1 £0.4 73.1 +£0.6 92.1 +£0.8 91.6 +0.6
0.0001 45.8 +0.5 54.6 +0.9 59.6 3.4 91.9 £0.8
0.01 10 0 10 £+0 34.9 +4.6 31.8 +£04
E 0.001 85.2 +£0.2 83.9 £0.7 97.21+04 96.1 1.2
0.0001 81 +0.2 82.9 +0.4 94.4 +0.3 96.7 +0.4

circle/bubble indicates the standard deviation. Thus, larger circles indicate scenarios that
are sensitive to initialization. Absent circles represent near random results. The horizontal
axis represents the batch size, while the vertical axis indicates the learning rate. Figure 3
shows the summary of SGD, Adam and RAdam in the first set of experiments. In Figure 4

H |] | e

Figura 3. SGD (top), Adam (middle) and RAdam (bottom): summaries of first set
of experiments considering mean and standard deviation of accuracies for
different batchsize and learning rate combinations.

° . °

[] [] . . ’ .

° o ° ° F ° [[s B
Random Pre Trained

Figura 4. SGD (top) RAdam (bottom) results with Resnet50 and MobileNet archi-
tectures and Cifar-10 and Flowers Recognition datasets. Random weight
initialization (left) and pre-trained weights (right).

we compare random and pre-trained weights initialization.
We summarize the guidelines as follows:

— Optimizer: all optimizers are capable of achieving good results for both tasks,
as long as we made appropriate choices. This corroborates previous studies that did not
find a single best optimizer. However, Adam/RAdam seem to have advantages in transfer
learning scenarios and for fine-grained datasets.

— Learning rate starting value: when learning from scratch we recommend ex-
ploring higher values for SGD (0.01-0.5) and lower values for Adam and RAdam (0.001-
0.0001); values lower than the standard ones are recommended for pre-trained weights.

— Learning rate scheduling: both step and exponential decay are able to im-
prove the learned representations with respect with no decay.

— Batch size: SGD tends to perform better for smaller batch sizes (8-32) and it
is sensitive to larger batches, while Adam/Radam are better with larger batches (64-512).
This choice must also take into account that smaller values require more running time,
and larger values require more memory.

— Random vs pre-trained weights: SGD showed different behavior when used
to optimize smaller and larger architectures. RAdam tend to be better for pre-trained
weights, in this case we recommend investigating LR significantly smaller than the default

values.

6. Conclusion

Optimization choices matters when using deep networks for learning representations. As
main conclusions: first, we show that SGD, Adam and RAdam are sensitive to the learning
rate and batch size. Second, there is a non-obvious relationship between batch size and
learning rate, which changes depending on and initialization (random or pre-trained).
While larger batch size speeds-up training, it is paramount to adjusting the learning rate
properly.

In general, the classical SGD works best with larger steps, while adaptive methods
require smaller ones, in particular for fine-tuning. Although this is not a novel conclusion,
we note that in deep learning frameworks, the default batch size is 32, while default LR
is 0.01 for SGD and 0.001 for Adam/RAdam. Our results showed those to be suboptimal
in various cases.

We offer guidelines for researchers and practitioners. By knowing the behaviour
of optimization methods, one can significantly improve representation learning, without
an exhaustive search of parameters. Future work may use our conclusions to investigate
other phenomena such as overfitting, the role of augmentation methods and other learning
tasks.

Referéncias

Abello, A. A. and Hirata, R. (2019). Optimizing super resolution for face recognition.
In 2019 32nd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI),
pages 194-201. IEEE.

Andrade, N., Faria, F. A., and Cappabianco, F. A. M. (2018). A practical review on
medical image registration: from rigid to deep learning based approaches. In 2018 31st
SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pages 463—
470. IEEE.

Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: A review and
new perspectives. [EEE transactions on pattern analysis and machine intelligence,
35(8):1798-1828.

Bottou, L., Curtis, F. E., and Nocedal, J. (2018). Optimization methods for large-scale
machine learning. SIAM Review, 60(2):223-311.

Cauchy, M. A. (1847). Méthode générale pour la résolution de systemes d’équations
simul- tanées. C. R. Acad. Sci Paris, pages 25:536-538.

Choi, D., Shallue, C. J., Nado, Z., Lee, J., Maddison, C. J., and Dahl, G. E. (2019). On
empirical comparisons of optimizers for deep learning. CoRR, abs/1910.05446.

Defazio, A., Bach, F. R., and Lacoste-Julien, S. (2014). SAGA: A fast incremental
gradient method with support for non-strongly convex composite objectives. CoRR,
abs/1407.0202.

Dombhan, T., Springenberg, J. T., and Hutter, F. (2015). Speeding up automatic hyperpa-
rameter optimization of deep neural networks by extrapolation of learning curves. In
Twenty-Fourth International Joint Conference on Artificial Intelligence.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online
learning and stochastic optimization. J. Mach. Learn. Res., 12:2121-2159.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image re-
cognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770-778.

Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., and Keutzer, K.
(2016). Squeezenet: Alexnet-level accuracy with 50x fewer parameters and j0.5mb
model size.

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. CoRR,
abs/1412.6980.

Krizhevsky, A., Sutskever, 1., and Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. In Advances in Neural Information Processing
Systems, volume 25, pages 1097-1105.

Le, Q. V., Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., and Ng, A. Y. (2011). On
optimization methods for deep learning. In /ICML.

Li, H., Xu, Z., Taylor, G., Studer, C., and Goldstein, T. (2018). Visualizing the loss
landscape of neural nets. In Advances in Neural Information Processing Systems 31,
pages 6389-6399.

Lin, T., Goyal, P., Girshick, R. B., He, K., and Dollar, P. (2017). Focal loss for dense
object detection. CoRR, abs/1708.02002.

Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J., and Han, J. (2020). On the variance
of the adaptive learning rate and beyond. In International Conference on Learning
Representations.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S. E., Fu, C., and Berg, A. C. (2015).
SSD: single shot multibox detector. CoRR, abs/1512.02325.

Mello, R. and Ponti, M. A. (2018). Machine Learning: A Practical Approach on the
Statistical Learning Theory. Springer.

Miikkulainen, R., Liang, J., Meyerson, E., Rawal, A., Fink, D., Francon, O., Raju, B.,
Shahrzad, H., Navruzyan, A., Duffy, N., et al. (2019). Evolving deep neural networks.

In Artificial Intelligence in the Age of Neural Networks and Brain Computing, pages
293-312. Elsevier.

Ponti, M. A., Ribeiro, L. S. F., Nazare, T. S., Bui, T., and Collomosse, J. (2017).
Everything you wanted to know about deep learning for computer vision but were
afraid to ask. In 2017 30th SIBGRAPI conference on graphics, patterns and images
tutorials (SIBGRAPI-T), pages 17—41. IEEE.

Ponti, M. A., Santos, F. P. d., Ribeiro, L. S. F., and Cavallari, G. B. (2021). Training
deep networks from zero to hero: avoiding pitfalls and going beyond. arXiv preprint
arXiv:2109.02752.

Ren, S., He, K., Girshick, R. B., and Sun, J. (2015). Faster R-CNN: towards real-time
object detection with region proposal networks. CoRR, abs/1506.01497.

Robbins, H. and Monro, S. (1951). A stochastic approximation method. The Annals of
Mathematical Statistics, 22(3):400-407.

Rodrigues, L. F., Naldi, M. C., and Mari, J. F. (2017). Exploiting convolutional neural
networks and preprocessing techniques for hep-2 cell classification in immunofluores-
cence images. In 2017 30th SIBGRAPI Conference on Graphics, Patterns and Images
(SIBGRAPI), pages 170-177. IEEE.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C. (2018). Mobilenetv2:
Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4510-4520.

Schmidt, M., Le Roux, N., and Bach, F. (2017). Minimizing finite sums with the stochas-
tic average gradient. Math. Program., 162(1-2):83—-112.

Schmidt, R. M., Schneider, F., and Hennig, P. (2020). Descending through a crowded
valley - benchmarking deep learning optimizers.

Serpa, Y. R., Pires, L. A., and Rodrigues, M. A. F. (2019). Milestones and new frontiers in
deep learning. In 2019 32nd SIBGRAPI Conference on Graphics, Patterns and Images
Tutorials (SIBGRAPI-T), pages 22-35. IEEE.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale
image recognition. CoRR, abs/1409.1556.

Sivaprasad, P. T., Mai, F., Vogels, T., Jaggi, M., and Fleuret, F. (2019). On the tunability
of optimizers in deep learning. CoRR, abs/1910.11758.

Sun, R. (2019). Optimization for deep learning: theory and algorithms. arXiv preprint
arXiv:1912.08957.

Sutskever, 1., Martens, J., Dahl, G., and Hinton, G. (2013). On the importance of ini-
tialization and momentum in deep learning. In International conference on machine
learning, pages 1139-1147.

Tileman, T. and Hinton, G. (2012). Neural networks for machine learning. techinical
report.

Wilson, A. C., Roelofs, R., Stern, M., Srebro, N., and Recht, B. (2018). The marginal
value of adaptive gradient methods in machine learning.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. (2016). Understanding deep
learning requires rethinking generalization. arXiv preprint arXiv:1611.03530.

Zhang, C., Li, P,, Sun, G., Guan, Y., Xiao, B., and Cong, J. (2015). Optimizing fpga-
based accelerator design for deep convolutional neural networks. In Proceedings of
the 2015 ACM/SIGDA international symposium on field-programmable gate arrays,
pages 161-170.

