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Abstract. Due to the increasing use of artificial intelligence for decision making
and the observation of biased decisions in many applications, researchers are
investigating solutions that attempt to build fairer models that do not reproduce
discrimination. Some of the explored strategies are based on adversarial learn-
ing to achieve fairness in machine learning by encoding fairness constraints
through an adversarial model. Moreover, it is usual for each proposal to assess
its model with a specific metric, making comparing current approaches a com-
plex task. In that sense, we defined a utility and fairness trade-off metric. We
assessed 15 fair model implementations and a baseline model using this metric,
providing a systemically comparative ruler for other approaches.

1. Introduction
Due to the increase of available data, machine learning (ML) algorithms have become a
standard approach for building decision making software in the most diverse areas such as
health, finances, security, and education. However, this increasing importance of ML al-
gorithms as decision making resources, mainly in critical areas, brought about some prob-
lems embedded in such algorithms. These concerns raised a new research area focused on
socio-algorithmic problems in AI solutions such as fairness, transparency, accountability,
explainability and privacy [KEARNS and ROTH 2019].

The fairness subarea concerns building models that mitigate bias and discrimina-
tion problems in algorithms. We consider a model fair when it can avoid discrimination in
its results (i.e., it is not biased). Discrimination can be understood, in general, as having a
prejudice against an individual or a group in decision making based on some characteristic
(e.g., gender, sexual orientation, ZIP code and race).

We observe discrimination problems in the most diverse applications. For ex-
ample, [ANGWIN et al. 2016] showed how a decision system about crime recidivism
used in the United States of America was biased with racial prejudice. [GARCIA 2016]
demonstrated how applications to determine online advertisement delivery had a sexist
bias. [BOLUKBASI et al. 2016] also demonstrated the sexism in the computational task
of generating analogies in natural language processing. Recently, we could observe a
case of algorithmic discrimination while the United Kingdom universities incorporated a
system for students admission due to the coronavirus pandemic [HAO 2020].

Therefore, researchers have tried to define bias and fairness to build fair ma-
chine learning solutions. For example, the study of [LEAVY 2018] aimed to describe



a process for reducing sexist bias in natural language processing. Similarly, the work of
[BOLUKBASI et al. 2016] defined a framework for treating sexist bias in word embed-
dings. Moreover, the study of [LUM and JOHNDROW 2016] used a statistical strategy
to reduce racial discrimination in predictions about criminal recidivism.

Adversarial learning has been used in representation learning tasks and
showed to be helpful to increase models’ predictive performances for different tasks
[BOUSMALIS et al. 2016, GANIN et al. 2016]. We refer to adversarial learning as the
learning process that uses a second predictor, the adversary, that plays a minimax game
with the main predictor (i.e., the one which aims to learn how to predict Y given the
attributes X). This minimax game occurs because the adversary aims to maximize its
performance while the main predictor aims to minimize it. Moreover, the main predictor
wants to maximize its performance.

In that sense, we can encode fairness constraints into our models through an
adversary, for example, in the works of [BEUTEL et al. 2017], [ZHANG et al. 2018]
and [MADRAS et al. 2018]. Both [BEUTEL et al. 2017] and [MADRAS et al. 2018]
worked in fair models focusing on learning fair representation. [ZHANG et al. 2018], on
the other hand, worked in structuring a model-agnostic adversarial debiasing architecture.
In general, they use an adversary and a classifier, where the adversary aims to correctly
predict the protected attribute from a fair representation or the classifier’s outcomes.

Moreover, it is common to works of the fair ML area to define a specific metric to
evaluate their models in relation to the model fairness. In that sense, there is no standard
benchmark for comparing the models and evaluating new proposals in the current litera-
ture. In order, [JONES et al. 2020] presented a benchmark model for evaluating fair ML
algorithms. However, this work does not include adversarial strategies and, principally,
presents some weaknesses that we discuss in Section 2.

As known, benchmarks are necessary for the maturity of research in any area, but
especially in those new ones [WAZLAWICK 2020], such as machine learning fairness.
Thus, it is essential to develop a benchmark that includes the adversarial learning ap-
proaches to systematically evaluate these proposals, proposals with other strategies, and
new proposals that emerge like those proposed in this work.

In that sense, this work presents the development of a benchmark for the adver-
sarial based fair models. We present a fairness-utility trade-off metric and assess 15 fair
model implementations based on [MADRAS et al. 2018] and [ZHANG et al. 2018] pa-
pers and a baseline model using this metric.

The remainder of this paper is organized as follows. Section 2 presents the related
concepts to understand the fairness area, the adversarial approaches and the found bench-
mark. Section 3 presents the methods and details behind the models’ implementation.
Section 4 presents and discusses the results for the chosen approaches. Finally, Section 5
concludes the work.

2. Related Concepts
2.1. Discrimination and Fairness Definitions
Discrimination can be understood, in general, as the fact of having prejudice or harm
against an individual or a group in decision making [MEHRABI et al. 2019]. A dataset



can contain some attributes with specific information about individuals or groups. A
model trained with this data could use these attributes as a discrimination source. Then,
these attributes should be considered as protected attributes in the learning process. How-
ever, before defining techniques to mitigate discrimination, it is necessary to define the
concept of fairness. Formal definitions are how we translate the human understatement
of fairness to the machine. Different definitions have been formulated and presented in
the literature regarding ML fairness, so there is no universal definition. Some commonly
used fairness definitions are:

• Demographic Parity (or Statistical Parity) defines a fair model by P (Ŷ =
1|A = 0) = P (Ŷ = 1|A = 1), that is, the probability of the predictions must
be equal for both groups of the protected attribute, being the decision independent
of the protected attribute [CALDERS et al. 2009, DWORK et al. 2012].

• Equalized Odds (or Equal Odds) defines that the rates of true positives and
false positives must be equal for the two groups of the protected attribute
[HARDT et al. 2016]. Mathematically it is defined as P (Ŷ = 1|A = 0, Y = y) =
P (Ŷ = 1|A = 1, Y = y). Thus, Equalized Odds impose equal bias and accuracy
for all groups, punishing models that only perform well for most individuals.

• Equal Opportunity, also defined by [HARDT et al. 2016], is a more specific
case of equal odds when working on “advantage” problems. For example, we
understand the advantage when Y = 1 in problems such as admission to a
university, promotion receipt, and credit release. In this case, the true positive
rates must be equal for the two groups of the protected attribute, mathematically,
P (Ŷ = 1|A = 0, Y = 1) = P (Ŷ = 1|A = 1, Y = 1).

Other definitions of bias and fairness are summarized in [MEHRABI et al. 2019].
The study of [VERMA and RUBIN 2018] also summarizes and presents different fairness
definitions, in addition to evaluate a logistic regression classifier for the UCI German
Credit dataset1 with respect to those fairness definitions.

2.2. Fair Adversarial Strategies

As pointed in Section 1, some proposals are taking advantage on the use of ad-
versarial learning to build fairer models. The works of [ZHANG et al. 2018] and
[MADRAS et al. 2018] are examples of works that include an adversary into the ML
model to encode a fairness constraint and also the base for our work. We better review
them over the remainder of this Section.

In [MADRAS et al. 2018] work, the authors present the Learning Adversarially
Fair and Transferable Representations (LAFTR) model. LAFTR (Figure 1) uses an en-
coder (f(X)) in order to learn fair representations Z from the input attributes X . It also
uses a Decoder (k(Z,A)) that can reconstruct X from Z and the sensitive attribute A. To
predict A, an adversary (h(Z)) is trained, as well as a classifier (g(Z)) to predict Y .

In the LAFTR model, the adversary aims to maximize its objective, while the
encoder, decoder and classifier jointly aim to minimize the classification loss and re-
construction error, and also, to minimize the adversary’s objective. All LAFTR model
elements are neural networks that alternate gradient descent and ascent steps to optimize

1https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)



Figure 1. LAFTR model from [MADRAS et al. 2018] (adapted)

their parameters according to Equation 1. LC is the classifier loss, LDec denotes the re-
construction loss and LAdv is the adversary loss. Firstly f , g and k take a gradient step to
minimize L while the adversary h is fixed. Then h takes a step to maximize L with fixed
f , g and k. The hyperparameters α, β, γ in Eq. 1 respectively specify a desired balance
between utility, reconstruction of the inputs, and fairness.

L(f, g, h, k) = αLC(g(f(X,A)), Y ) + βLDec(k(f(X,A), A,X) −
γLAdv(h(f(X,A)), A)

(1)

Demographic parity, equalized odds and equal opportunity are the fairness defi-
nitions encoded into LAFTR’s learning process. The choice of which fairness constraint
is encoded is defined by the suitable adversarial objective that varies its functional form
depending on the desired fairness criteria.

On the other hand, the study of [ZHANG et al. 2018] presents a general architec-
ture for achieving fairness through the adversarial process. The model (Figure 2) consists
of training a predictor, with the objective of predicting Y from X , and an adversary, with
the objective of predictingA from Ŷ . For each fairness definition to be achieved, different
input data is used for the adversary.

Figure 2. [ZHANG et al. 2018] general architecture (adapted)

The predictor is associated with its weights W and the adversary with its weights
U . The model is trained by attempting to modify weights W to minimize the predictor
loss LP (ŷ, y), using a gradient-based method such as stochastic gradient descent. The
prediction ŷ is then used as the input to the adversary, which attempts to predict a. In
addition to the weights U , the adversary has the loss term LA(â, a).

To achieve demographic parity, the adversary uses only the predicted Ŷ labels. For
equalized odds, in addition to Ŷ , the adversary also uses the real labels Y as input. For
equal opportunity, for a given class y, the adversary’s training is restricted to training data
where Y = y. For example, when treating advantage problems, we restrict the training
data to the examples where Y = 1.

[ZHANG et al. 2018] define the weights update formulation for U and W . Each
training step U is updated to minimize LA according to the gradient ∇ULA. W is up-
dated according to Equation 2. The term proj∇ULA

∇WLP prevents the predictor from



moving in a direction that helps the adversary decreasing its loss. Furthermore, the last
term, α∇ULA, attempts to increase the adversary’s loss, α is a tunable hyperparameter to
balance this attempt.

W = W −∇WLP − proj∇ULA
∇WLP − α∇WLA (2)

2.3. Evaluating Fair Models

In fair machine learning area, the proposals evaluate their models from two perspectives,
utility and fairness, i.e., the model’s predictive and fairness performances. When mea-
suring the model utility, the works use standard metrics, such as overall accuracy, false
positive and false negative rates and area under the ROC curve. Differently, each of these
works presents specific metrics to measure the fairness in its proposed models. Then, it is
hard to compare the approaches presented in the literature to other literature approaches
or to new proposals. That was the motivation for the [JONES et al. 2020] work.

To bring to the fairness community a benchmark of fair models,
[JONES et al. 2020] evaluated 27 baseline and fairness algorithms considering 4
real datasets (Titanic, German, Adult and Adult with race as protected attribute) and 3
generated datasets. In their work, all considered datasets have only one binary protected
attribute and the target label is also binary. They also explicitly take into account a
decision-threshold policy, i.e., the predicted value is compared to a threshold τ and the
predicted label is given by Ȳ = I(Ŷ > τ), where I is the indicator function. Lastly,
they consider models that present a fairness parameter λ, indicating the model trade-off
between fairness and classification performance.

[JONES et al. 2020] assess the algorithms through 3 different policies. Argmax
policy, which fixes the decision threshold in 0.5. The PPR policy, in which the threshold
is determined so that the positive predictive rate matches a pre-determined value of 20%
within a fixed tolerance. Finally, the Policy Free evaluation considers all possible values
in a range for the threshold. For this latter aspect, they define and apply the fair efficiency
metric (Equation 3).

Θp,f = 2
KpKf

Kp +Kf

(3)

Km =

∫ 1

0

∫ 1

0

m(λ, τ) dτ dλ (4)

Fair efficiency metric evaluates jointly the model classification performance p
(e.g., accuracy, area under the ROC curve, positive and negative rates) and fairness f
(e.g., demographic parity, equal odds and equal opportunity) by computing the harmonic
mean between Kp and Kf . Km (Equation 4) is a additional integral that considers all
possible values for m, i.e., the full range for all combinations of τ and λ. Fair efficiency
metric penalizes models that score highly for fairness but are not highly useful, and vice
versa. If the model is maximally unfair or non-useful, then Θ = 0. Whereas when the
model is maximally fair and useful Θ = 1 and the model is optimal.



The weakness of their work, which we intend to address, is that any evaluated
model is an adversarial strategy. Moreover, the benchmark evaluation is limiting because
[JONES et al. 2020] considers that all fair model proposals present a λ to indicate the
model trade-off between predictive performance and fairness, which is not valid. For
example, the LAFTR model, presented by [MADRAS et al. 2018], does not have a unique
parameter to address this trade-off. Instead, LAFTR considers 3 different parameters to
take this trade-off into account.

Furthermore, most of adversarial works pointed in Section 1 consider the trade-off
coefficients as tunable hyperparameters. Thus, it is essential to any comparative proposal
to enable the assessment between different models or algorithms and between the same
model or algorithm with this trade-off hyperparameter changed. Therefore, one could
evaluate this hyperparameter’s best value, which will assist in learning a better fair model.

3. Research Method
This Section presents the methodological aspects used to develop the benchmark to assess
the adversarial based fair models. To benchmark all models, we used the dataset presented
in Section 3.3 following the detailed train/validation/test split and pre-processing. For
each model training, we evaluated the utility and fairness metrics presented in Section 3.2
and computed the FU -score (Section 3.1).

3.1. Fairness-Utility Trade-off Metric
To assess the literature models and the approach proposed by this work with a fairness-
utility metric, we present the FU -score (Equation 5). FU -score is a fairness-utility trade-
off metric inspired on the F1-score2, but is also a simplification from the fair efficiency
metric proposed by [JONES et al. 2020].

FU -score = 2
pf

p+ f
(5)

Similar to the fair efficiency metric, FU -score jointly evaluates the model fairness
f and predictive performance p by the harmonic mean of the chosen utility and fairness
metrics. In this sense, also like the fair efficiency, FU -score penalizes models that score
highly for fairness but do not present a good utility and vice versa. In addition, FU -score
takes into accounts the fairness and utility metrics that we want to maximize, i.e., achieve
results near to 1. Then, FU -score = 0 means that the model is whether maximally unfair
or non-predictive. Whereas when the model is optimal, i.e., the model is maximally fair
and useful, FU -score = 1.

FU -score do not consider the additional integral Km proposed by
[JONES et al. 2020]. Thus, we can use this metric to compare the same model but
changing its fair hyperparameter that is tunable. With this more general form, FU -score
can assist in the model’s tune process where one could compare the same model to find
the better value for the fair parameter. It also turns possible to assess models that use fair
hyperparameters that are different from that considered in [JONES et al. 2020] work like
the LAFTR model proposed by [MADRAS et al. 2018].

2F1-score is a utility metric commonly used to access machine learning models. F1-score takes the
harmonic mean from two other performance metrics, Precision and Recall.



3.2. Fairness and Performance Metrics

To assess the models’ predictive performance, we used the overall accuracy defined by
Equation 6. The accuracy measures the overall model utility by looking at the prediction’s
hit rate over the total number of classifications.

Acc =
TN + TP

TN + FP + FN + TP
(6)

In order to evaluate the model’s fairness, we considered the three commonly used
fairness definitions, demographic parity, equalized odds and equal opportunity. Thus, we
can measure this by the demographic disparity (Eq. 7), disparity in equal odds (Eq. 8)
and disparity in equal opportunity (Eq. 9).

DemDisp = |P (Ŷ = 1|A = 0)− P (Ŷ = 1|A = 1)| (7)

DispEqOdds = |P (Ŷ = 1|A = 0, Y = y)− P (Ŷ = 1|A = 1, Y = y)| (8)

DispEqOpp = |P (Ŷ = 1|A = 0, Y = 1)− P (Ŷ = 1|A = 1, Y = 1)| (9)

But there is a problem with these disparity definitions (Equations 7, 8 and 9). The
FU -score treats both fairness and utility metrics that we want to maximize, i.e., achieve
values next to 1. However, our disparity metrics are defined as we want them smallest as
possible, i.e., next to 0. This can be easily solved by adding a difference by 1 in those
metrics. Thus, we rewrite the fairness metrics as in Equations 10, 11 and 12. We can
apply this modification to any fair definition or metric when necessary.

DemDisp = 1− |P (Ŷ = 1|A = 0)− P (Ŷ = 1|A = 1)| (10)

DispEqOdds = 1− |P (Ŷ = 1|A = 0, Y = y)− P (Ŷ = 1|A = 1, Y = y)| (11)

DispEqOpp = 1− |P (Ŷ = 1|A = 0, Y = 1)− P (Ŷ = 1|A = 1, Y = 1)| (12)

3.3. Dataset

To assess the models on the benchmark procedure, we used the UCI Adult Income
dataset3. The original Adult dataset is separated into two sets, training with 32561 ex-
amples and test with 16281 examples.

We use the continuous attributes as real-valued. The attribute “fnlwgt” was dis-
regarded. Age was the only continuous attribute bucketized at boundaries [18, 25, 30,
35, 40, 45, 50, 55, 60, 65]. The categorical features were converted to one-hot encoding
vectors. Finally, the binary categorical attributes, i.e., the protected attribute sex and the
target attribute income, were binarized. We discharged examples with missing values and
then remained 30162 examples from the training set and 15060 from the test set.

Training data was split into training and validation sets. To this, we randomly
shuffled data and took 20% from this to the validation set. The test set was not changed
from the original split.

3http://archive.ics.uci.edu/ml/datasets/Adult



3.4. Implemented Models

In this work, we implemented and benchmarked some adversarial strategies present in the
literature, which are the LAFTR model [MADRAS et al. 2018] and the model proposed
by [ZHANG et al. 2018]. We also implemented a baseline model without any fairness
constraint. Like in [ZHANG et al. 2018], our baseline model is a logistic regression that
computes the predictions through Equation 13.

ŷ = σ(wx+ b) (13)

For the approach proposed by [ZHANG et al. 2018] we provided three implemen-
tations. Each implementation aims to incorporate in the model a fairness constraint. We
followed their implementation for a model that enforces equal odds. This model has a
predictor model like in Equation 13 and an adversarial model to predict the protected
attribute defined by Equations 14a and 14b.

s = σ[(1 + |c|)σ−1(ŷ)] (14a)
â = u[s, sy, s(1− y)] + b (14b)

The model that enforces equal opportunity is similar to the last one but differs
by using only data examples where y = 1. Finally, the implementation to add the demo-
graphic parity constraint has an adversarial model that is a simplified model from the last
one, we define this adversary by Equations 15a and 15b.

s = σ[(1 + |c|)σ−1(ŷ)] (15a)
â = us+ b (15b)

In these Equations, σ is the sigmoid function and σ−1 is its inverse function, the
logit function. c is a learnable parameter that weighs the use of the prediction ŷ and 1 is
added to c to make sure the adversary does not try to ignore ŷ by setting c = 0.

For the LAFTR model, we followed the implementation provided in its paper.
We also have three neural network models, one for each fair definition. The network
structure is similar between all implementations, we use a single hidden layer for each of
our encoder, classifier and adversary, with 8 hidden units and a latent space of dimension
= 8. We applied the Leaky ReLU function as activation function for all layers.

For the equal odds constraint, our adversary uses as input the latent representation
and the real label y. For demographic parity and equal opportunity constraints, our adver-
saries use only the latent representation as input. However, to compute the loss function
for the last, it considers only the examples with a positive outcome, i.e., y = 1.

All models were trained with 100 epochs and a minibatch equal to 64 examples,
using the Adam optimizer. Also, using a learning rate = 0.001, except the baseline model
that seemed to take advantage in the use of the approach adopted by [ZHANG et al. 2018]
to avoid local minimum problems, decrease the learning rate (lr) for each epoch setting it



to lr = 0.001/t, where t is the step/epoch counter. The weights u and w in Equations 13,
14b, and 15b and the weights for the layers in the neural networks were initialized with
zeros. On the other hand, the b’s in Equations 13, 14b, and 15b and c’s in Equations 14a,
15a and the bias parameters for the neural networks were initialized with ones.

We also defined the model specific parameters as follows. For all models based
on [ZHANG et al. 2018] work we used α = 1/t, where t is the step counter. This worked
better than the α =

√
t used in the original work and keep the guarantee that αlr → 0.

For each LAFTR model we kept the reconstruction coefficient β = 0 and the classifier
coefficient α = 1. Also trained and evaluated the model with different values for the
fair/adversarial coefficient γ, these values were γ = [0.2, 0.5, 0.7, 1].

As technological resources for this implementation, we used the programming
language Python (version 3.8.5) and the packages TensorFlow (version 2.2.0) and NumPy
(version 1.19.2). The parameters related to these packages and not specified here were
used as default. For reproducibility, we provide our code as well the training, validation,
and test split at this work GitHub repository4.

4. Results and Discussion
This Section presents and discusses the results for the proposed assessment in Chapter
3. Firstly, we present the understanding of the models’ behaviors for utility and fairness.
Thereon, we discuss the models’ results for the FU -score metric.

4.1. Models Utility and Fairness
Figure 3 presents the accuracy and fairness results for each implemented model and for
each chosen fairness metric. The expected behavior when building fair models is to face
a decrease in its accuracy while the fairness increases. In that sense, our baseline model
presents a higher accuracy than the fair models. On the other hand, for all fairness metric,
the fair models present a better result.

Figure 3. Accuracy and fairness results for each model

The LAFTR implementation for demographic parity (γ = 1) presented better
utility performance over the other fair implementations. The LAFTR implementations

4https://github.com/limafernando/falsb



for equal odds and equal opportunity presented a consistent behavior independent of the
chosen value for the fair coefficient.

The implementations based on [ZHANG et al. 2018] work presented a utility per-
formance slightly similar to the other fair models. Furthermore, this models’ implemen-
tations presented a slightly worse fair performance, however still better than the baseline
model.

4.2. Models Results for FU -score
Figure 4 presents the trade-off between utility and fairness, measured by the FU -score
metric, for each model and selected fairness metric. How LAFTR implementations for
equal odds and equal opportunity presented a consistent performance in accuracy and
fairness, the trade-offs measured for these models are also consistent independent of the
value for the fair coefficient.

Figure 4. FU -score for each model and each fairness definition

When we look at the FU -score results considering the demographic disparity,
we observe that ZHANGs implementations and LAFTR implementation for demographic
parity (γ = 0.2) are penalized due to its lower fairness results. On the other hand, LAFTR
implementation for demographic parity (γ = 1) presents a better trade-off result.

LAFTR model for demographic parity (γ = 1) also presents the better FU -score
when we look at the disparity in equal odds. However, the trade-off results are slightly
worse for both LAFTR implementation for equal odds and LAFTR implementation for
demographic parity (γ = 0.5).

Furthermore, when we look at the disparity in equal opportunity, we observe that
the LAFTR model for equal opportunity presents the better FU -score result, followed by
the LAFTR implementation for demographic parity (γ = 0.5). However, the FU -score
result of LAFTR implementation for demographic parity (γ = 1) considering the disparity
in equal opportunity metric is just 0.01 lower than the better model’s result for this fairness
definition. Then, we could consider using just this implementation for our classification
task that presents a good enough trade-off performance for all selected fairness metrics.

Finally, besides being penalized when considering demographic disparity, imple-
mentations based on [ZHANG et al. 2018] work present the inferior FU -score results for
the other fairness metrics among the assessed fair models.



5. Conclusions
The growing use of machine learning solutions, including in critical areas, has raised
serious concerns about the socio-algorithmic problems in AI solutions such as fairness,
transparency, accountability, explainability and privacy.

To build fairer models that mitigate bias and discrimination in its decisions, some
approaches are based on the use of an adversary to ensure a fairness constraint in the
model. Furthermore, it is common in the fair ML area to works evaluate their models in
a specific way, making it difficult to make a systematic assessment between the literature
approaches and/or new strategies. Therefore, we propose the FU -score, a fairness-utility
trade-off metric and initiate a systematic benchmark to provide a comparative ruler for
the adversarial based fair models.

The FU -score metric jointly evaluates the model fairness and predictive per-
formance given chosen utility and fairness metrics. In this sense, this trade-off met-
ric penalizes models that score highly for fairness but do not present a good util-
ity and vice versa. Through this metric, we assessed 9 implementations for the
LAFTR model [MADRAS et al. 2018] and 3 implementations for the model proposed
by [ZHANG et al. 2018]. We also implemented and assessed a logistic regression model
as a baseline without any fairness constraint.

Our implemented fair models behaved as expects, increased fairness at the cost
of decreasing accuracy. Looking at the FU -score metric, we found that the ZHANGs
models presented the lower trade-off results. While the LAFTR implementation for de-
mographic parity (γ = 1) worked well for all fairness definitions, despite not performing
the best trade-off result for the disparity in equal opportunity, it is just 0.01 inferior to the
best model for this fairness metric.
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