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Abstract. The development of new communication networks to offer 
innovative services has increased the volume of data.  With the introduction of 
Deep Reinforcement Learning and Service Function Chaining architecture, 
new research opportunities have emerged to propose solutions to the new 
challenges. This work proposes a model to demonstrate through 
computational simulations how these techniques can be applied. The model 
was evaluated using two variations of the Deep Q-Network algorithm over the 
CIC-Darknet dataset. Results showed that both variations are a promising 
mechanism to make the networks more autonomous and intelligent. 

1. Introduction 
Communication systems such as the Internet have been developing quickly and due to 
this evolution, the infrastructure, devices, and resources of networked systems have 
become more complex and heterogeneous. Fifth-generation mobile networks (5G) have 
been designed to be the key element that will enable the offer of new services and 
technologies, such as Big Data and the Internet of Things (IoT). However, a deep 
change in how the networks are designed is necessary, both in the access layer and in 
the core of the network, to deploy the emergent networks architectures [Li et al. 2018]. 

 To support the 5G networks and help them to deal with new traffic 
characteristics, such as the dynamic behavior and high volume of data required by new 
services, some technologies have arisen as candidates: Software Defined Networks 
(SDN) [Haleplids et al. 2015 and ITU-T 2014], Network Function Virtualization (NFV) 
[ETSI ISG 2014] and Service Function Chaining (SFC) [Fu et al. 2019].  
 The SFC technology allows the flow of information to travel through Virtual 
Network Functions (VNFs) which offers better flexibility in terms of resources usage 
[Li et al. 2020].  The SFC architecture definitions are found in RFC7665 [Halpern and 
Pignataro 2015] and in the ITU recommendation Y.2242 [ITU-T 2018]. However, such 
technologies bring with them some challenges for their implementation, such as: the 
efficient use of the radio spectrum, the use of hardware computing resources that 
support the virtualized functions and new security threats. Therefore, it is crucial in this 
new scenario that efforts are directed towards investigating how to use resources 
efficiently and intelligently [Li et al. 2018].  

 Deep Reinforcement Learning (DRL) methods have been used successfully to 
solve the most diverse computational problems [Luong et al. 2019]. Therefore, it is 



  

natural that they are also used in environments related to communication systems [Fu et 
al. 2019]. Given the complexity and size of the networks and the size of the volume of 
traffic generated, defining the parameters used by Reinforcement Learning (RL), such 
as state spaces and actions can become tough, as the RL may not find the policy ideal in 
a reasonable time, which limits its application in the dynamic environment of the new 
networks. The combination of Deep Learning with Reinforcement Learning helps to 
overcome these limitations.   
 Part of the process for achieving the goals of optimizing computing resources 
and responding to security threats is to identify and handling network traffic 
intelligently.   This work aims to investigate how Deep Reinforcement Learning 
techniques can be combined with the Service function Chaining architecture in order to 
provide a mechanism for identifying and routing traffic based on profiles by forwarding 
the packets to the correct path according to decisions made by a learning agent. The 
main contribution of this paper is the implementation of a model to evaluate the 
application of these techniques with real network traffic. 
 This work is organized as follows: section 2 presents the theoretical background 
of Service Function Chaining and Deep Reinforcement Learning. In section 3 some 
related works are discussed. In section 4 the proposed architecture and methodology are 
described. Section 5 presents our experiments and results. And Section 6 presents 
conclusions and suggestions for future works. 

2. Background 
The main concepts of Service Function Chaining architecture (its components and 
terminology) and Deep Reinforcement Learning are presented in this section. 

2.1. Service Function Chaining (SFC) 
In order to create a virtual chain of network functions for packet forwarding the SFC 
architecture establishes a mechanism that orders the Virtual Network Functions 
(firewalls, load balancers and routers) to form the SFC or a chain of service functions. 
SDN and NFV technologies are the pillars that allow the deployment of SFC to offer a 
method of allocating network resources efficiently and flexibly and using DRL methods 
allows it to do so dynamically without the need for manual configuration. This provides 
advantageous options for new networks, such as 5G systems and virtual network 
services in data centers [Zhang et al. 2018]. Efforts by standardization bodies such as 
the Internet Engineering Task Force (IETF) and the International Telecommunications 
Union (ITU) have been made to propose the concepts of how to implement the SFC 
[Halpern and Pignataro 2015 and ITU-T 2018]. 

 Halpern and Pignataro [2015] described in RFC 7665 the components and 
functions, leaving it up to the implementations how they will be done, for example in a 
single module or separately. Such components can be interconnected using the 
encapsulation (SFC encapsulation) defined by Quinn et al. [2018] and form a path 
called SFP (Service Function Path) that establishes the route to be taken by the packets. 
Figure 1 illustrates a generic topology of the SFC architecture.  
 



  

 
Figure 1. SFC Architecture, adapted from [Halpern and Pignataro 2015] 

 According to RFC 7665, 4 logical components form the SFC architecture: 

 - Classifiers (Service Classification Function): entry point into the SFC domain. 
Its function is to establish the criteria for classifying packets based on policies, the 
traffic that complies  with such policies has its data encapsulated (VLAN tags, MPLS 
labels, etc.) and then forwarded to the SFF (Service Function Forwarder) function. Such 
classification can be done by criteria such as 5-tuple (source/destination IP addresses, 
source/destination ports and transport protocol) or with Deep Packet Inspection (DPI).    

 - Forwarders (SFFs): after defining the classification policy, the SFF directs 
traffic to the Service Functions (SFs) connected according to the assigned 
encapsulation, besides processing the  traffic received from the SFs. You can also 
change the information on packages so that they are reclassified or even close the SFP.  

   - Service Functions (SFs): a component that can be implemented in hardware or 
software, whose function is to handle the packets received by the forwarding function 
(SFF). Such functions can be   performed at any layer of the protocol stack.  

 - SFC Proxies: responsible for communication between SFC domains and those 
that are not part of this architecture (legacy networks) allowing interoperability between 
them, for that they remove or add header   information according to the traffic direction 
(adds in the direction from non-SFC to SFC and remove in the opposite direction). 

2.2. Deep Reinforcement Learning (DRL) 
In Reinforcement Learning (RL) an autonomous agent learns to make the best decisions 
based on the interaction with the environment. This is done through random 
experimentation (trial and error) given a set of actions (a), such actions change the state 
(s) of the environment, and based on their consequence, the agent receives a reward or 
penalty (r). This illustrated in Figure 2 [Nguyen and Reddi 2019]. 

 

 
Figure 2. Reinforcement Learning [Nguyen and Reddi 2019] 



  

 An RL problem can be described as a Markov Decision Process (MDP) 
[Arulkumaran et al. 2017]. An MDP can be defined as a tuple (S, A, T, R), where: S is a 
set of states, A is a set of actions, T is the transition probability function that maps the 
state-action pair at time t in a state distribution at time t + 1 and R is the function that 
gives the cost (or reward) for making a decision a Î A when the process is in a state s Î 
S [Pellegrini and Wainer 2007]. The agent's objective in RL is to learn a policy (p) that 
maximizes rewards or minimizes accumulated penalties after choosing a sequence of 
actions. In general, policy (p) is the mapping of states to a distribution of probabilities 
about actions, p : S à  p(A = a | S). A commonly used algorithm in RL is the Q-
Learning, in which a value known as Q-value = Q(s, a) is iteratively estimated for each 
pair (s, a), its objective is to maximize the accumulated reward after the sequence of 
actions, equation (1) describes this process, in which g Î [0, 1] is the discount factor 
[Nguyen and Reddi 2019]: 

 

Q(st, at) = E[rt+1 + g. rt+2 + g  2. rt+3 + … | st,at]           (1) 
 

 Although Q-learning has been shown to be important in several RL applications, 
it needs to use a table called a Q-table to store the expected rewards (Q-values) of 
actions given a set of states. As the action/state pair increases, the Q table also increases, 
which requires greater amounts of memory and processing, which can make Q-learning 
application prohibitive in some real-world scenarios. This feature is known as a “state-
space explosion” [Restuccia and Melody 2020].  

 To allow Reinforcement Learning to deal with this limitation, one of the main 
characteristics of Deep Learning (DL) is used, which is able to find low-dimensional 
data representations from high-dimensional data through the approximation of learning 
functions. Therefore, the combination of DL and RL techniques leveraged research in 
the area known as Deep Reinforcement Learning (DRL). With DRL, problems 
considered intractable in RL can now be solved through Deep Neural Networks 
(DNNs). In the case of Q-learning, instead of a Q-table, a DNN is used in order to 
efficiently approximate the value Q(s, a), this network is known as Deep Q-Network 
(DQN) [Mnih et al . 2015]. 

3. Related Work 
The topic about applications of Deep Reinforcement Learning in the context of 
emerging networks, such as 5G networks, has been the subject of research by the 
academic community. The SFC architecture with the ability to dynamically adapt and 
provision resources has been applied in research environments in order to make such 
networks more autonomous. This section briefly discusses some of these efforts.  

 Sethi et al. [2020] proposed an adaptive IDS (Intrusion Detection System) 
architecture in the cloud based on Deep Reinforcement Learning, which tries to deal 
with some limitations of the systems studied so far: scalability and autonomy to self-
adapt. The architecture consists of three components: the devices are in the host 
network, the architecture's intelligence is in the agent network responsible for executing 
the algorithm based on Deep Q-Network [Mnih et al. 2015], the administrator network 



  

detects the state of the system in the presence of malicious activities and interacts with 
the agent network. The dataset by Moustafa and Slay [2015] was used to simulate 
attacks and, through a Python script, the intrusion detection model was implemented. 
The experiments balanced accuracy and a low false positive rate. The Service Function 
Chaining technology was not addressed, this work has chosen it because it offers a 
better flexibility from the point of view of packet classification and forwarding.  

 The NFQ (Neural Fitted Q-learning) algorithm [Riedmiller 2005] was used by 
Akbari et al. [2020] to implement an autonomous threat mitigation framework in SDN 
(Software Defined Networks). Threat mitigation was formulated as a Reinforcement 
Learning issue. The prototype has three modules: the SDN infrastructure where is 
located the network observer, responsible for traffic monitoring and for providing 
information about the state of the network for autonomous management module. In this 
module is the solution's intelligence made up by the Reinforcement Learning agent that 
uses API (Application Programing Interface) commands to establish policies to be 
implemented in the network via SDN controller. Such policies define the path that 
traffic from a given host must take. The third module called host behavior profiling 
accommodates both benign and malicious traffic generating devices. The SDN 
paradigm adopted by the authors can be adapted for use in the environment of this 
research through the Service Function Chaining. 
 Ning et al. [2020] implemented a network model to solve the Service Function 
Chaining optimization problem in a multiservice environment, a method based on Deep 
Reinforcement Learning to obtain optimized operations was introduced. The network 
was modeled as a directed graph, where the Virtual Network Functions (VNFs) are the 
vertices and the network links compose the edges, this is important to adapt the 
objective functions. To verify the experiment's results, the data obtained by the author 
were compared with those resulting from the Mixed-Integer Linear Programming 
(MILP) method [Taskin, 2008]. The solution based on Deep Reinforcement Learning 
achieved an almost ideal performance when compared to MILP and proved better when 
compared with traditional solutions (without learning mechanisms). The work did not 
address the topic of packet classification, an opportunity that was used in this research.  
 An intelligent provisioning framework for VNFs was proposed by He et al. 
[2020] to optimize resource scheduling in a cloud environment. A traffic identification 
mechanism based on Deep Learning was combined with a Virtual Network Functions 
path selection based on Deep Reinforcement Learning. The simulation was performed 
in two phases: the first to assess the accuracy of the traffic identification, where a 
dataset with 8 types of traffic classes was used. The second part consisted of VNFs' 
provisioning using PyTorch to build the test architecture. It was demonstrated that the 
proposed solution obtained a superior performance when compared to other Deep 
Reinforcement Learning algorithms, improving the Quality of Service (QoS) parameters 
of the users. The concept of VNF path selection is widely used in Service Function 
Chaining environments, reason why it is used in this work 

 A limitation in applying Deep Reinforcement Learning in dynamic Service 
Function Chaining implementation according to Xiao et al. [2019] is to assume that 
network resource requests are predetermined, regardless of real-time variations. The 
authors' proposal consists of NFVDeep, an adaptable and online approach based on the 
Policy Gradient [Peters and Bagnell 2010] that treats dynamic network state transitions 



  

as a Markov Decision Process (MDP). In this way, the SFC requests are automatically 
implemented according to their QoS characteristics. The results showed that the 
architecture significantly outperforms the solutions found in other research. Although 
the focus is on QoS parameters, with correct adaptation the concepts can also be applied 
to the issue of traffic routing using SFC.  

4. Methodology 
In this section we describe the dataset used to traffic generation and the proposed model 
to simulate the network based on the Service Function Chaining architecture. 

4.1. Darknet Dataset Overview 
The dataset for this research was the CIC-Darknet2020 from Lashkari et al. [2020]. The 
dataset consists of 141530 IP packets (raw data) with several types of traffic. There are 
85 columns representing the feature variables, but we used only the column with the 
destination port (dst.port), the application traffic that should be assigned an SFC path 
according to the policies received as actions from the Agent module by the Classifier 
module. Packets with dst.port = 0 or dst.port = 1 were deleted (data cleaning), since they 
do not represent a practical application. From these applications, three profiles were 
created according to the Table 1 that should be assigned to an SFC. In this study we 
followed the process as shown in the Figure 3 to handle the dataset. It was selected 
10000 packets randomly for the experiments each time we ran the simulations. 

 

 
Figure 3. Dataset Handling 

Table 1. Traffic Type per SFC 

Traffic Type Port Number SFC (Traffic Profile) 

HTTP/HTTPS 80/443 1 

FTP/SSH/Telnet/DNS/NTP/SNMP 21/22/23/53/123/161 2 

Other Other 3 

 

4.2. Proposed Model 
The proposed model is shown in Figure 4. It consists of four modules: 1-Traffic 
Generator, this module is responsible to simulate an access network that sends Internet 
Protocol (IP) traffic to the core network (module 2 and module 3). Here, we used the 
Darknet dataset, describe in the previous session. 2-Classifier, this module receives the 
traffic generated by the Traffic Generator module and assigns an SFC creating a tuple 
(IP destination port, SFC) where the SFC must be assigned according to the Table 1. 
This tuple is sent to the next module, 3-Monitoring Module, this one has two sub-
modules: Packet Processing and Get Reward, the first one calculates the percentage of 



  

packets processed successfully based on the SFC assigned by the module 2 and the later 
one calculates the rewards. The module 3 is also responsible to simulate the VNFs 
(Service Functions – SFs) that receives and processes the packet sent by the Classifier. 
Modules 1, 2 and 3 are the environment for the Deep Reinforcement Learning. 

 
Figure 4. Proposed Model 

 The percentage calculated by the Monitoring module is the state space 
(observations) in terms of the Deep Reinforcement Learning environment and consists 
of an array with two elements, percentage of packet processing successfully in SFC1 
and SFC2 [SFC1%, SFC2%], we discarded the information for SFC3 just for the sake 
of simplicity, since most part of the application types is relevant to SFC1 and SFC2. 
And the reward mechanism is shown in (2): 

 
Table 2. Reward Mechanism 

Parameter Reward Value 
If (SFC1% or SFC2%) = 100% +2 

If next state value after action is higher than 
actual state +1 

If next state value after action is lower than 
actual state -1 

If packets that supposed to be sent to SFC1 or 
SFC2 were sent to SFC3 -5 

  

 The information (states and rewards) provided by module 3 is sent to the module 
4-Agent Module. This one is the agent from Deep Reinforcement Learning perspective 
which function is to run the Deep Q-Network (DQN) algorithms. It calculates and sends 
the action to the Classifier module in order to move the packet to a new SFC. Here the 
action space is defined as shown in the Table 3.  
 

Table 3. Action Table 

Action Value Action Meaning 
0 Move packet to SFC1 

1 Move packet to SFC2 

2 Move packet to SFC3 



  

From here a new episode is started, the Classifier sends the new tuple (dst.port, SFC) to 
the Monitoring module, this module calculates the percentage as follow: 

 
SFC% = (packet_ok / (packet_ok + packet_nok)) * 100        (2) 

 

Where packet_ok is the correct packet in the correct SFC, and packet_nok is the packet 
in wrong SFC. This percentage is sent as an array [SFC1%, SFC2%] to the Agent 
module. The Monitoring module send to the Agent rewards evaluated for each step. All 
modules are running as Python scripts. We used the Python (version 3.7), OpenAI Gym 
as the tool for the Agent, PyTorch (release 1.9), Matplotlib (version 3.4.2) and Pandas 
(version 1.3.0).        

5. Evaluation 
To evaluate the solution’s performance, we used a Python application with the modules 
described in Section 4. It was executed experiments with two variations of the Deep Q-
Network algorithm with some improvements to the original DQN as suggested by 
Hasselt et al. [2015], the Double DQN, and as suggested by Wang et al. [2015], the 
Dueling DQN. The hardware set up used was a server with 2 Intel X5650 processors (6 
cores each, 2.66GHz), 32 GB RAM memory and a NVDIA card GeForce GTX 1050Ti 
(Graphical Processor Unit – GPU), running Ubuntu 20.04 LTS. 

 For each algorithm, it was executed 1000 episodes with 10000 steps each: this is 
the number of packets used for sampling from the dataset. We repeated the experiments 
5 times. Due to the fact they showed similar results, only one graph for each algorithm 
is presented. That means the solution selects an SFC (it takes action) for each packet 
based on the policy decision evaluated by the agent per step. The Packet Processing 
module calculates the percentage of successfully assigned pairs (dst.port, SFC number) 
and sends as an array [SFC1%, SFC2%] to the agent, and it also evaluates the rewards 
to inform the agent. The hyperparameters for the DQN algorithms are shown in the 
Table 4. 

 
Table 4. Hyperparameters Table 

Parameter Value 
Hidden Layers 1 

Neuron (Hidden Layer) 50 

Discount Factor (gamma) 0.9 

Learning Rate 0.01 

Exploration Rate (epsilon) 1 

Epsilon Decay 0.99 

Minimum Epsilon 0.1 

Batch or Replay size 20 

 



  

 The rewards received from the environment for each episode during the agent 
training are shown in Figure 5. The points in the graphic point out the sum of rewards 
received for each episode. 

 
Figure 5. Rewards according to training episodes 

We can conclude that the agent learns over the episodes, selecting the correct SFC path 
according to the traffic type. The shape of the figure is due to the randomness of the 
traffic in the training environment. It is also possible to check that for the last 50 
episodes (some episodes after the agent converged and started to show stability), the 
Double DQN showed a similar performance as the Dueling DQN, shown in Figure 6.   

 

 
Figure 6. Comparison for the last 50 episodes 

 Table 5 shows the average and standard deviation values for each algorithm for 
the last 50 episodes. It demonstrates that after the convergence both algorithms have 
similar behavior for the suggested scenario (10000 packets and 3 different SFCs). 
Student T-test [Student 1908] can be used to compare if the result of algorithms is 
statistically different or not.  The t-value computed for the results in Table 5 is 1.79, 
which gives a p-Value of 0.145. As the p-Value is larger than 0.05 (the threshold for a 
95% confidence interval), we can state that both results are statistically the same, 
confirming the null hypothesis. 
 

Table 5. Values for the last 50 episodes 

Algorithm Average Standard Deviation 
Double DQN 197.48 17.621 

Dueling DQN 203.20 14.035 



  

To compare how DQN variants are better than a random policy we present the Figure 7. 

 
Figure 7. Comparison Random Policy x Dueling DQN 

6. Conclusion and Future Work 
In this work, we proposed a model to combine Deep Reinforcement Learning 
techniques and Service Function Chaining architecture to effectively and intelligently 
route traffic through a path to reach the correct Virtual Network Function. We did that 
by deploying a modular Python application that simulates a network environment and 
used a well-known dataset to simulate the traffic generation with real IP packets.  

 To evaluate the proposed model, we executed a comparison between two Deep 
Q-Networks variants (Double and Dueling). The experimental results elucidate that the 
agent in charge of making the routing decisions can learn how to do that over time 
(episodes), applying DQN policies to get optimized rewards.  Such mechanisms aim to 
help the networks to be more resilient, intelligent, and secure. Both algorithms 
presented similar results. However, a possible choice to use in a real scenario would be 
the Dueling DQN since it has shown promising results in recent research. 
 For future work, we plan to run the agent in a more real network scenario 
composed of an SDN controller (OpenDayLight) running on a cloud environment based 
on Openstack to be compliant with the ETSI Network Functions Virtualization 
architectural framework. Besides we plan to use Docker containers and Kubernetes to 
be aligned with the newest technologies. Also, we will try to run the Deep-Q Learning 
with more hidden layers and other types of Deep Reinforcement Learning algorithms 
based on Policy Gradient, for example, to replace the random policy. 
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