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Abstract. Events are phenomena that occur at a specific time and place. Its
detection can bring benefits to society since it is possible to extract knowledge
from these events. Event detection is a multimodal task since these events have
textual, geographical, and temporal components. Most multimodal research in
the literature uses the concatenation of the components to represent the events.
These approaches use multi-class or binary learning to detect events of interest
which intensifies the user’s labeling effort, in which the user should label event
classes even if there is no interest in detecting them. In this paper, we present the
Triple-VAE approach that learns a unified representation from textual, spatial,
and density modalities through a variational autoencoder, one of the state-of-
the-art in representation learning. Our proposed Triple-VAE obtains suitable
event representations for one-class classification, where users provide labels
only for events of interest, thereby reducing the labeling effort. We carried out
an experimental evaluation with ten real-world event datasets, four multimodal
representation methods, and five evaluation metrics. Triple-VAE outperforms
and presents a statistically significant difference considering the other three rep-
resentation methods in all datasets. Therefore, Triple-VAE proved to be promis-
ing to represent the events in the one-class event detection scenario.

1. Introduction
Nowadays, social networks and news portals share and publish on different events affect-
ing our daily lives [Chen and Li 2020]. Social protests, pandemic effects, natural disas-
ters, political and economic actions are examples of events that occur in a specific time and
place [Deng et al. 2020]. Event analysis is the field that investigates how to organize and
extract knowledge from large event databases [Radinsky and Horvitz 2013, Zhao 2021].
Such knowledge is useful for exploratory analysis tasks, building decision-making in-
dicators, and improving machine learning models by providing new (extra) features
on the world’s external factors. A crucial step in event analysis is filtering which
events are interesting for a given application, as thousands of events are published
daily. Event classification methods usually carried out this step considering the tex-
tual information of an event, as well as its geographic information and other metadata
[Setty and Hose 2018, Zhao 2021].



Recent event classification methods have some limitations [Zhou et al. 2020,
Chen and Li 2020, Zhao 2021]. The first limitation is to propose event classification con-
sidering a multi-class scenario, a decision that makes the practical use of the model unfea-
sible. In this case, the event dataset’s volume, diversity, and frequent update rate surpass
the human capacity to label and maintain a training set. Some studies model the event
classification as a binary problem [Zhou et al. 2020], in which the positive class identi-
fies events of interest and the negative class defines non-relevant events. However, both
classes require significant labeling of training examples. In this sense, the one-class learn-
ing paradigm is a promising alternative as it requires labeling only of events of interest
[Alam et al. 2020].

A second limitation is the event representation model [Zhou et al. 2020]. Events
are composed of textual information, geographic location, names of people, organizations,
and other metadata. Traditional methods usually concatenate these different features into
a single representation that is used to train a model. More recent methods explore repre-
sentation learning, such as deep autoencoders, to extract a new latent space (embeddings)
from the concatenated representation of features [Blandfort et al. 2019]. Although both
strategies obtain competitive results, few studies evaluate the performance of these rep-
resentation strategies for event analysis. We argue that different information from events
represents different data modalities misused through concatenation strategies. Thus, our
focus is to explore event representation as a multimodal representation learning task.

This paper presents an approach to learning multimodal representation for one-
class classification of events. Our approach is called Triple-VAE and explores three main
event modalities: textual information, geographic location, and topic metadata. First, we
propose a multimodal variational autoencoder capable of learning a single representa-
tion from triple modalities. Unlike concatenation-based methods, our approach merges
modalities more naturally, automatically learning the importance of modalities in the final
representation. Second, we also argue that our approach is more appropriate for one-class
classification since it learns a representation space that approximates events of interest
in high-density regions — which significantly improves the event classification step. In
short, our proposed approach has the following contributions:

• We naturally incorporate latitude and longitude data into the embedding space,
along with textual and topic information. Previous works use geographic location
only as extra features in the concatenated representation.

• We leverage pre-trained neural language models to represent events. In particu-
lar, we use the DistilBERT Multilingual model, which is trained in a large textual
corpus and has some general-purpose knowledge. In practice, this is a strategy to
carry out transfer learning from the pre-trained model for our multimodal repre-
sentation learning.

• We explore event topic information as a visual modality, in which each topic rep-
resents high-density information in a given dimensional space. In fact, density
information facilitates visual exploration of the spatial distribution of events, thus
providing useful information about related events.

We carried out an experimental evaluation involving ten real-world event datasets.
We compared our proposed approach with the other three multimodal strategies, from
simple feature concatenation to representation learning strategies via autoencoders and



variational autoencoders. Our proposal outperforms the other three strategies considering
the precision, F1-Score, accuracy, and area under the receiver operating characteristic
curve metrics in all datasets. Furthermore, a statistical analysis of the results indicated
that our approach is statistically different from the other three strategies in one-class event
classification tasks.

2. Related Works
The proposal presented in [Zeppelzauer and Schopfhauser 2016] uses texts and images
as modalities to perform event detection. Both modalities are unstructured and therefore
need preprocessing. The authors preprocessed the text using the Bag-of-Words (BoW)
and the dimensionality reduction technique Latent Dirichlet Allocation. The work uses
the bag-of-visual-words for representation in the image modality. After representing the
text and image, the authors explored both modalities through early and late fusions. Early
fusion is made through the concatenation of the representations, while late fusion is made
through additive and hierarchical late fusion. The approach uses a binary classifier to
ignore non-relevant events, and then multi-class learning is applied to built classification
models. The experimental evaluation shows that using two modalities improves the event
classification task. It is worth point out that early fusion outperforms late fusion.

In [Kang and Kang 2017], the authors use multi-class learning to predict crime
events defined by visual (neighborhood appearance), spatial and temporal information.
First, the work uses a Convolutional Neural Network (CNN) to represent the images,
and the spatial and temporal data are already structured. Then, a Deep Neural Network
(DNN) is used to predict if the event is a crime. In the DNN, the authors use the early
fusion with the concatenation operator and a softmax activation function in the output
layer. Results show that the DNN outperforms the Kernel Density Estimation and Support
Vector Machines (SVM) algorithms with a simple concatenation of modalities.

[Blandfort et al. 2019] explores the detection of gang violence events through
Twitter. The authors use text and image modalities to represent the events. The work uses
Linguistic features, word embeddings, and a CNN to learn text representations. Further-
more, the authors use the Faster R-CNN and global image features generated by the deep
convolutional model Inception-v3 to represent the images. The work uses the early fusion
considering the concatenation operator, and the late fusion is performed considering an
ensemble of algorithms trained on each modality. The authors use the multi-class SVM
learning algorithm. Results show that multimodal representations outperform unimodal
ones. Early fusion presents high results than late fusion.

[Zhou et al. 2020] is a survey of multimodal event detection. The authors com-
pare works that make event detection through multi-class or binary learning, clustering,
and other tasks considering unimodal and multimodal representations. The work shows
that multimodality can be promising with representation learning through artificial neural
networks. Furthermore, the work concludes that concatenate the modalities can result
in a representation with a high dimension which can negatively affect event detection.
The survey also points that future work should involve information enrichment, i.e., news
modalities to enrich the representation learned and the use of different state-of-the-art
neural network architectures in representation learning.

We observed that existing multimodal studies for event detection (i) use multi-



class learning, which generates more user’s effort on labeling, and if a new class arises,
the classifier will make wrong predictions since it was not trained on that event class; (ii)
use binary learning, which generates less user’s effort on labeling, and the chance of the
user not labeling events of one of the classes is smaller in comparison with the multi-
class learning. However, labeling uninteresting events requires knowing a wide range of
classes so that the user cannot label enough examples; (iii) do not explore other early
fusion operators such as addition, subtraction, multiplication, and average; (iv) use the
event image as a modality and, consequently, its models only work on events with images
(note that many events do not have associated images); and (v) shows that early fusion
outperforms late fusion.

Given all these facts and gaps mentioned in this section and the future works pre-
sented in the survey [Zhou et al. 2020], we propose an event detection approach consider-
ing one-class learning (OCL) over a multimodal representation. OCL avoids multi-class,
and binary learning limitations since the user labels only one class and classifies a new ex-
ample as belonging to the class of interest or not. Also, we propose the generative model
variational autoencoder (VAE) to learn a representation from a set of three modalities:
the event text, geolocation, and density information. We considered a VAE because it is
a powerful method to learn representations since it is one of the state-of-the-art in rep-
resentation learning. Furthermore, we propose to use early fusion with different fusion
operators. We present the details of the proposed approach in the next section.

3. Proposal: One-Class Multimodal Event Detection
According to [Zhou et al. 2020], an event is: “A story related to some news topic compris-
ing of patterns that occurred at some specific time and space”. Based on this definition,
we define an event (e) as its text representation (γ), its density information (λ), its geolo-
cation (ι), and its date (τ ). Therefore, we formally define an event ei by the quadruple:

ei = {γi,λi, ιi, τi} (1)

In this multimodal scenario, we propose a pipeline to detect events through one-
class learning via multimodal representation (Figure 1). The pipeline has six steps. The
first step consists of collecting events with description, geolocation, and date. In the sec-
ond step, we represent the event’s text through a neural language model. In the third step,
we use a modality based on density information generated from the text’s representation.
In the fourth step, a variational autoencoder learns a multimodal representation from the
three modalities (γ,λ and ι), considering events that occurred prior to date τ . We use
events that occur after date τ to evaluate the event classification model. The fifth step
consists in using one-class learning to learn a decision function. Finally, in the sixth step,
we make the detection of the events of interest.

3.1. Event Geolocation

We obtain the event geolocation through the Latitude and Longitude coordinates. Latitude
and Longitude refer to the position or geographic coordinates of a place on Earth. Latitude
ranges from −90 to 90, in which −90 represents the south pole, 90 represents the north
pole, and 0 represents the Earth’s equator. Longitude ranges from −180 to 180, in which
values ∈ [−180, 0) represent places in the west, values ∈ (0, 180] represent places in the
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Figure 1. The Pipeline of multimodal representation Learning to detect events of
interest through one-class learning.

east, and 0 represents the Greenwich meridian. Therefore, modality ι is a vector with two
dimensions in which the first is the Latitude and the second is the Longitude.

3.2. Text Embeddings

One of the states-of-the-art to represent text is the context-dependent neural language
model Bidirectional Encoder from Transformers (BERT) [Devlin et al. 2019]. It is note-
worthy that this model obtains better results in natural language processing tasks than
other models, such as based on word embeddings models or traditional models (e.g.,
BoW) [Otter et al. 2020]. Therefore, we use the Distilled version of BERT in its multi-
lingual version (DBERTML) [Reimers and Gurevych 2020] to represent the event’s text.
First, we use the sentence-transformers library1 to use the model DBERTML. Then, we
make the preprocessing, providing the text to the pre-trained DBERTML model, and it re-
turns an embedding γi with 512 real values. Details of the model DBERTML and its train-
ing parameters to obtain the embeddings are available in [Reimers and Gurevych 2020].

3.3. Density Information

We explore a modality based on density information. This modality is based on a one-
class learning assumption, which assumes that high-density regions contain examples of
the interest class [Krawczyk et al. 2014, Sharma et al. 2018]. To obtain the events density
information, we apply a clustering algorithm and use a statistical technique that calculates
the consistency within data clusters.

We use the silhouette coefficient [Rousseeuw 1987] to generate the density infor-
mation (λ). In this modality, the density representation λi of an event ei is given by the
concatenation of silhouette values computed considering a different number of clusters.

1https://www.sbert.net/



Thus, given u different clustering settings, λi = {si,1, si,2, . . . , si,u}, in which si,j is the
silhouette of γi in j-th setting, and s(γi, k) is given by:

s(γi, k) =
β(γi)− α(γi)

max(α(γi), β(γi))
(2)

in which k is the number of clusters, 2 ≤ k < m and m is the number of events, α(γi)
is the average distance of γi to the centroid of its cluster, and β(γi) defines the average
distance of γi to all γ of the closest cluster.

The event scenario has high-density regions representing well-defined topics of
the events [Bide and Dhage 2021]. Furthermore, density information can be explored as
a visual modality to analyze the spatial distribution of events. However, we highlight that
the use of density information as a modality for events is still unexplored in literature.

3.4. Multimodal Representation Learning
After we have ι, γ and λ represented, we use a variational autoencoder with multi-
modal representation learning to learn a joint representation. An autoencoder (AE) is
a neural network that learns data representations using two steps: encoding and decoding
[Aggarwal 2018]. First, the encoder (f()) compresses ei to a latent space zei . Then, the
decoder (g()) reconstructs ei from zei in the output rei . Thus, the training of AE consists
of making rei ≈ ei. The encoder and decoder, and the AE optimization function are
respectively given by:

autoencoder =
{
zei = f(Φ; ei)
rei = g(Θ; zei)

(3) J(Φ;Θ) =
1

m

∑
ei

‖ei − rei‖2 (4)

in which Φ is the weights and biases of neurons in the encoder,Θ is the weights and biases
of neurons in the decoder. Thus, the AE is adequate in scenarios with examples belonging
to one class because it trains in an unsupervised way.

There are variations of the AE that impose constraints on the hidden units
[Aggarwal 2018]. For instance, the Variational Autoencoder (VAE) constraint that the ac-
tivation in the hidden units should be drawn from the standard Gaussian with zero mean
and unit variance [Xu and Durrett 2018]. This constraint also allows generating samples
of the training data just feeding the decoder with samples generated from a normal distri-
bution. Formally, the VAE assumes that a variable zei generates the data ei (Equation 5).

p(zei |ei) =
p(ei|zei)p(zei)

p(ei)
(5) p(ei) =

∫
p(ei|zei)p(zei)dzei (6)

VAE approximates p(zei |ei) to another treatable distribution q(zei |ei) using the
Kullback-Leibler (KL) divergence, which is responsible for measuring the divergence
between two distributions. To optimize the marginal likelihood (p(ei)), you can use the
log of the marginal likelihood [Xu and Durrett 2018]:

log pΘ(ei) = KL(qΦ(zei |ei)||pΘ(zei |ei)) + L(Θ,Φ; ei) (7)

in which

L(Θ,Φ, ei) = EqΦ(zei |ei) log pΘ(ei|zei)−KL(qΦ(zei |ei)||pΘ(zei)) (8)



We implement a VAE using a neural network. Thus, it learns the encoder’s Φ pa-
rameters and the decoder’s Θ parameters through the weights of the neurons of the neural
network layers. The first term of Equation 8 is related to the neural network reconstruction
error. In the second term, we want to minimize the difference between the learned dis-
tribution qΦ(zei |ei) and pΘ(zei) (prior knowledge). It is worth mentioning that literature
studies replace the term pΘ(zei) by a multivariate Gaussian distribution N (zei ; 0, 1).

In this paper, we propose a Triple-VAE: a VAE that learns from three modalities.
Therefore, the Triple-VAE has three inputs and three outputs. To learn a representation
from three modalities, Triple-VAE combines them through early fusion. We opt to use
the early fusion because of the advantage of using only one representation for the events
in the classification step. Furthermore, to deal with the challenge of combine modalities
with different dimensions, we use three dense layers with the same number of neurons
that receive the inputs of Triple-VAE (Figure 1). The proposed architecture allows us to
combine the modalities with different literature fusion operators.

Our proposed Triple-VAE aims to maximize Equation 9. Given an event ei, the
first term calculates the reconstruction errors of γei ,λei , ιei . The second term wants to
approximate the learned distribution qΦ(zei |γei ,λei , ιei) from pΘ(zei).

L(Θ,Φ,γei ,λei , ιei) = EqΦ(zei ||γei ,λei ,ιei ) log pΘ(|γei ,λei , ιei |zei)
−KL(qΦ(zei |γei ,λei , ιei)||pΘ(zei))

(9)

3.5. One-Class Learning to Detect Events of Interest
After we have a multimodal representation for events, we are able to classify them. We
use one-class learning (OCL) [Tax 2001] to detect events of interest. In the OCL, the
algorithms train using only examples of the class of interest. Thus, we do not suffer from
new event categories or not knowing a non-relevant event category. Moreover, even if the
user is interested in a single event category, the OCL is most appropriate since OCL does
not label examples of classes that are not the class of interest [Alam et al. 2020]. Another
advantage of OCL over multi-class or binary learning is (i) the user has less effort in data
labeling; and (ii) it is more appropriate in unbalanced scenarios [Fernández et al. 2018].

Let the domain of events be E , and the domain of labels be Y , in which yi =
{+1,−1} for yi ∈ Y and +1 represents the label of the interest class, while -1 represents
the label of the non-interest class. Then, given a set of m training events {(ej, yj)}mj=1,
in which yj = +1, the goal of OCL is to learn a function f : E → Y given only labeled
events from the interest class. After learning the function f , the classifier is able to predict
yi for a new event ei comparing f(ei) with a threshold as presented in Equation 10.

yi =

{
+1 (Interest) if f(ei) ≤ threshold
−1 (Non Interest) otherwise (10)

Among the OCL algorithms [Gôlo et al. 2019], we chose the One-Class Support
Vector Machine (OCSVM) [Tax and Duin 2004] since it is considered state-of-the-art in
OCL [Alam et al. 2020]. The training of OCSVM consists of finding and hypersphere
of minimum volume that involves the training events. The center of the hypersphere is
defined in Equation 11 [Tax and Duin 2004]:

µ(c) = argmin
µ∈U

max
1≤i≤m

‖ϕ(ei)− µ‖2 (11)



in which m is the number of events of interest, U is the feature space associated with the
function kernel ϕ, µ(c) is the center of the hypersphere. Since the goal is to obtain the
hypersphere with minimum volume, we minimize the radius (r), i.e., r2. Slack variables
(εi ≥ 0) can also allow a trade-off between hypersphere volume and coverage of the
training events. Then, the constraint that almost all training events are within the sphere
is given by Equation 12. OCSVM aims to minimize Equation 13 subject to Equation 12.

‖ϕ(ei)− µ(c)‖2 ≤ r2 + εei ,

∀i = 1, ...,m, εei ≥ 0
(12) min

µ,ϕ,r
r2 +

1

m

m∑
i=1

εei
ν

(13)

In which ν ∈ (0, 1] is a parameter to control the trade-off between the radius and the
errors so that the hypersphere is not too large and the false positive rate increases. We will
consider an event as belonging to the class of interest if its distance from the center is less
than the radius r of the hypersphere, i.e., f(ei) = dist(ϕ(ei), µ(c)) and threshold = r.

4. Experimental Evaluation
We compared our proposed Triple-VAE with the other three literature multimodal repre-
sentation methods in the experimental evaluation. We want to demonstrate that the repre-
sentations generated by Triple-VAE outperform others usually explored in the literature
for event detection. We use the OCSVM algorithm to compare all the events representa-
tion methods. The next subsections present the event collections, experimental settings,
results, and discussion. All source codes that we use in the experimental evaluation are
available online2.

4.1. Event Collections and Experimental Settings
We obtain the event collections from the GDELT project, which monitors real-time events
worldwide. Each dataset represents a theme and contains 6000 events. We populate the
datasets by using the google cloud big query.

We compare our Triple-VAE with three multimodal strategies. The first consists
of the concatenation of the modalities (γ, λ, and ι). The other two learn a representation
using an AE and a VAE from the concatenated representation. The parameters from the
three multimodal strategies, our proposal (Triple-VAE), and the OCSVM algorithm are:

• Triple-VAE, VAE, AE and Concatenate: we used the k-Means with the sets of
k = {{3, 6, 9, 12}, {2, 4, 6, 8, 10}, {3, 5, 7, 9, 11}, {2, 3, 4, 5, 6, 7, 8, 9, 10, 11}};

• Triple-VAE, VAE and AE: learning rate = 0.001, optimization algo-
rithm = {Adam}, linear activation function, dimensions of the dense lay-
ers = {(512, 384, 128, 384, 512), (512, 256, 64, 356, 512), (512, 64, 2, 64, 512) and
(512, 128, 512)}, tensorflow seed = 1, maximum number of epochs = {5, 10, 50}
and batch size = 32;

• Triple-VAE: fusion operators = {addition (add), subtraction (subtract), concate-
nation (concat), average and multiplication (multiply)};

• OCSVM: kernels = {rbf, linear, sigmoid, polynomial}, the kernel coeffi-
cients degree ={2, 3, 4} and gamma = {1/(na), 1/n}, in which n is the di-
mension of the input data and a is the variance of the representations, and
ν = {0.001, 0.01, 0.05 ∗ h, h ∈ [1..18]}.

2https://github.com/GoloMarcos/TripleVAE-OCL-ENIAC2021.git



We used 2000 events with the oldest dates for the training set and the other 4000
for the test set for each event dataset. Also, we randomly selected 4000 events from
different event datasets and added them to the test set in order to have counter-examples
of the interest class during the evaluation process.

The classification performances were analyzed using the precision (Equation 15),
recall (Equation 16), F1-Score (Equation 14), accuracy (Equation 19), and Area Under
Curve Receiver Operating Characteristic (AUC-ROC). F1-Score is a harmonic average
between precision and recall. AUC-ROC (Equation 18) computes the area under curve
ROC. A ROC curve presents the relation between the tpr (equivalent to recall) and false
positive rate (fpr) (Equation 17) at different threshold settings.

f1 =
2 · p · r
p+ r

(14) p =
tp

tp+ fp
(15) r =

tp

tp+ fn
(16) fpr =

fp

fp+ tn
(17)

auc-roc =
∫ −∞
∞

tpr(t)fpr′(t) dt (18) acc =
tp+ tn

tp+ tn+ fp+ fn
(19)

In the equations presented above, tp (true positives) is the number of events of interest that
the algorithm has correctly classified; tn (true negatives) is the number of non-interest
events that the algorithm has correctly classified; fp (false positives) is the number of
non-interest events that have been classified as interest; fn (false negatives) is the number
of events of interest classified as non-interest; and t is a classification threshold.

4.2. Results and Discussion

Table 1 presents the best results in the ten event datasets and four event representation
methods. The results consist in the highest F1-Score (f1), accuracy (acc), and AUC-
ROC (auc), among all representations method parameters and OCSVM parameters. The
precision (p) and recall (r) values are the ones that generated the highest F1-Score. Bold
values indicate that the method obtained the highest value considering each metric.

Table 1. Results in ten event datasets considering the OCSVM algorithm and the
metrics precision, recall, accuracy, auc-roc and F1-Score.

Concatenate Concatenate-Autoencoder Concatenate-VAE Triple-VAE
p r f1 auc acc p r f1 auc acc p r f1 auc acc p r f1 auc acc

Earthquake 0.53 0.92 0.67 0.63 0.64 0.55 0.85 0.67 0.67 0.65 0.56 0.86 0.68 0.69 0.66 0.81 0.84 0.82 0.83 0.82
Agriculture 0.52 0.93 0.67 0.59 0.57 0.62 0.88 0.73 0.75 0.68 0.63 0.87 0.73 0.74 0.68 0.82 0.90 0.86 0.90 0.85
Terrorism 0.54 0.92 0.68 0.65 0.63 0.54 0.91 0.68 0.68 0.64 0.54 0.91 0.68 0.68 0.64 0.89 0.89 0.89 0.94 0.89
Immigration 0.57 0.89 0.69 0.69 0.65 0.68 0.93 0.78 0.79 0.74 0.74 0.91 0.81 0.81 0.79 0.83 0.89 0.86 0.92 0.86
Racism 0.59 0.85 0.69 0.71 0.65 0.63 0.94 0.75 0.70 0.70 0.68 0.94 0.79 0.74 0.75 0.91 0.92 0.91 0.96 0.91
Inflation 0.55 0.89 0.68 0.62 0.61 0.52 0.90 0.66 0.61 0.58 0.51 0.93 0.66 0.60 0.58 0.85 0.88 0.86 0.87 0.86
Corruption 0.58 0.86 0.69 0.67 0.64 0.55 0.93 0.69 0.70 0.63 0.54 0.95 0.69 0.69 0.63 0.86 0.88 0.87 0.89 0.87
Covid 0.66 0.84 0.74 0.81 0.76 0.69 0.87 0.77 0.85 0.76 0.68 0.89 0.77 0.85 0.78 0.95 0.94 0.94 0.98 0.94
War 0.53 0.95 0.68 0.63 0.61 0.57 0.88 0.69 0.69 0.63 0.55 0.92 0.69 0.68 0.63 0.67 0.89 0.77 0.76 0.74
Tsunami 0.58 0.79 0.67 0.64 0.67 0.62 0.77 0.68 0.67 0.65 0.55 0.89 0.68 0.69 0.62 0.76 0.88 0.81 0.84 0.81

In general, considering the recall metric, the Concatenate and VAE methods get
the highest values in four datasets, outperforming AE and Triple-VAE that get the highest



values in two datasets and one dataset, respectively. However, considering precision, F1-
Score, accuracy, and ROC-AUC, Triple-VAE outperforms all other methods. Therefore,
Triple-VAE achieves a better balance among false positives and false negatives, given by
F1-Score and ROC-AUC, and a better classification considering both interest and non-
interest class, given by the accuracy.

We performed Friedman’s statistical test with Nemenyi’s post-test to compare the
approaches considering all metric scenarios and datasets [Trawinski et al. 2012]. Figure
2 presents a critical difference diagram3 generated through the results of the Friedman test
with Nemenyi’s post-test.

1 2 3 4

Triple-VAE
VAE AE

Concat

CD

Figure 2. Critical difference diagram with the average rankings of the Friedman
test with Nemenyi’s post-test considering all metrics and datasets.

In addition to obtaining the highest results, Triple-VAE presented a statistically
significant difference in relation to other methods. Furthermore, VAE also has a statisti-
cally significant difference considering the concatenation method. These results show that
Triple-VAE was better than the other methods in learning highly non-linear relationships,
redundancies, and dependencies between modalities. Thus, our proposal structures events
with more representativeness of their modalities in relation to the other three methods.

Analyzing the representation parameters that provided the best results for each
dataset, we highlight: (i) 5 and 10 epochs generate the higher results - 50 % of the datasets
each one, indicating that Triple-VAE behaves better when it uses the lowest number of
epochs, i.e., our model may be suffering overfitting when it uses a high number of epochs;
(ii) each clustering set provides the highest results in at least two datasets, i.e., any one of
the clustering sets can be an adequate choice; (iii) the concatenation operator in the neural
network provided the best results for most of the cases. We highlight that the operator
most used in the literature, i.e., concatenation, generates higher results in 50 % of the
datasets. On the other hand, other operators, which are scarce in the multimodal learning
literature for events, generate higher results in the other 50 %. Thus, the use of different
operators can improve multimodal representation learning. Another interesting point is
that the concatenation operator always gets higher results together with the architecture
with fewer layers ({512, 128, 512}), while the other operators always get higher results
together with the architectures with more layers.

5. Conclusions and Future Works
Event detection can be used to sense, analyze and comprehend important events that hap-
pen in our society. These social events have textual, geographical, and temporal compo-
nents. Thus, multimodal representations have been investigated to represent the events
since these components directly influence the detection of events.

3The diagram presents the methods’ average rankings, and the methods connected by a line do not
present statistically significant differences between them.



This paper proposes a multimodal method (Triple-VAE) to learning a represen-
tation from three modalities (text, density, and geolocation), with different early fusion
operators (concatenate, add, subtract, and multiply), and using a variational autoencoder
to learn a unified representation from those modalities. We also applied the OCSVM in
order to perform OCL in the generated representations. The results obtained in our ex-
perimental evaluation show that Triple-VAE outperforms literature methods to represent
events on the OCL scenario considering precision, F1-Score, accuracy, and AUC-ROC.
Our proposal also presented better results with statistically significant differences con-
cerning all other techniques. It is noteworthy that the models built through OCL and
considering the representations generated by Triple-VAE were able to differentiate events
of interest and non-interest satisfactorily.

In future works, we intend to extend our Triple-VAE to handle incomplete modal-
ities. We note that some events may have incomplete or inaccurate information regarding
geographic information and other metadata. Thus, a multimodal representation learning
method must be robust to these scenarios. We also intend to use semi-supervised OCL
algorithms (Positive and Unlabeled Learning [Bekker and Davis 2020]) with the repre-
sentations obtained by Triple-VAE.
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