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Abstract. Collaborative Filtering (CF) can be understood as the process of pre-
dicting the preferences of users and deriving useful patterns by studying their
activities. In the survey context, it can be used to predict answers to ques-
tions as combinations of other available answers. In this paper, we aim to test
five CF-based algorithms (item-item, iterative matrix factorization, neural col-
laborative filtering, logistic matrix factorization, and an ensemble of them) to
estimate scores in four survey applications (checkpoints) composed of 700,000
employee’s ratings. These data have been collected from 2019 to 2020 by a
large Brazilian tech company with more than 10,000 employees. The results
show that collaborative filtering approaches provide relevant alternatives to
score questions of surveys. They provided good quality estimates. This result
can be further explored to eventually reduce the size of questionnaires, avoiding
burden phenomena faced by respondents when dealing with large surveys.

1. Introduction

Startups dedicated to collect and analyze data from employees in order to provide a better
understanding of the work environment, the so-called Human Resource Techs (HR Techs
for short), are gaining visibility in the market. Periodically assessing employees’ percep-
tions and sentiments about several aspects of the organization is helping companies to
grasp people behaviors and (hidden) patterns inside the organizations. Furthermore, this
data-driven process allows human resource departments to make decisions quickly and
more reliably.

However, one of the most systematic ways to obtain information on people in-
side companies is still the survey application. A typical survey methodology is to pe-
riodically (e.g., every two quarters) apply an organizational climate survey that tries
to capture employee’s perceptions across a broad range of aspects from mental health
to teamwork. These surveys tend to be large (up to 300 questions) and frozen (in
terms of content, sequence, and amount of questions) for all respondents. Despite the
advantage of this kind of methodology, especially regarding design, application, and
sampling control, a surveying process based on immovable questions has several is-
sues. It is known, for instance, that there is an inversely proportional relationship be-
tween questionnaire size and response rate. It occurs because respondents are more
likely to not opening extensive questionnaires. If they do open it, they are more likely



to leave the questionnaire early (survey breakoff ) [Early et al. 2017, Zhang et al. 2020].
Moreover, respondents may give answers to finish the questionnaire more quickly to
reduce their cognitive effort. They either select arbitrary answers (such as the maxi-
mum score for all answers) or choose answers that allow them to shorten the question-
naire (“no” answers, for example). This behavior is called satisficing [Lavrakas 2008],
which is more frequent in large questionnaires occurring especially in the last questions
[Early et al. 2017, Zhang et al. 2020, Gonzalez and Eltinge 2008].

In short, companies can lose valuable data due to survey breakoff or lose data qual-
ity due satisficing since large questionnaires are more susceptible to respondent burden.
To overcome those issues, some works suggest adaptive survey frameworks that reduce
or reorder survey questions. For example, in [Zhang et al. 2020] the authors propose a
reduction strategy based on active learning by selecting questions that maximize the pre-
cision of a Matrix Factorization (MF) model. This model can be further used to recover
the scores that were missing due breakoff or reduction itself. [Boim et al. 2012] approach
takes the reduction problem as an optimization one, trying to minimize the uncertainty
present in systems due to the different distribution of answers of each question.

In the present work, as an attempt to learn the answering behavior, we focus on
building predictive models using collaborative filtering techniques. It is a first step for
building recommender systems, since accurate estimates are necessary to guide the further
recommendation step. We show that it is indeed possible to learn these estimates given
enough data, which could be used as a substrate of a recommending system capable of
designing smaller questionnaires toward well-defined objectives. In this way, we apply
five algorithms, four based on collaborative filtering (CF) and one ensemble approach,
using more than 700,000 employee ratings. These data were collected from four surveys
applied between 2019 and 2020 from a large Brazilian tech company with more than
10,000 employees. Results show that the scores given by employees have patterns that can
be explored to reduce the questionnaire eventually. The main contribution of the present
paper is applying collaborative filtering algorithms to surveys for estimating scores of
questionnaires answers. It is an expansion of the application frontier of this technique,
once there is no literature linking CF as a tool for assessing question scores in surveys,
particularly considering Likert scale responses.

2. Related works

Most surveys are often large and fixed in terms of sequence and number of questions
for all attendants because HR departments of companies wish to know as many aspects
as possible about the organization. Even though this kind of survey is simple to apply,
it suffers from user burden phenomenon. Such a phenomenon negatively impacts the
respondent’s experience of answering the survey and the posterior quantitative analysis
on the data because a poor experience leads to bad quality responses. To tackle these
issues, some works develop adaptive or dynamic questionnaire design strategies.

Adaptive survey design (ADS) found in [Chun et al. 2018, Schouten et al. 2013,
Wagner 2008] is a related study field that uses data-driven information to build high-
quality surveys. However, ADS has a more generic appealing as it considers several
aspects of the survey to engage more participants to attend and finish them. For example,
ADS may study the expected decrease in the nonresponse rate (the proportion of nonre-



spondents with respect to those who were contacted) with a change in the contact mode
employed (telephone, e-mail, etc.).

A different line of research tries to select questions that reduce uncertainty over
the answers. [Early et al. 2017] chooses questions that maximize the information gain
measured by conditional entropy in a cost-sensitive strategy. In that work, questions that
require more cognitive effort are given more penalty and have less probability of being
sampled. The same idea is followed by [Boim et al. 2012], but it approaches the problem
using a constraint optimization formulation with no cost penalties.

Some works treat the problem of generating reduced questionnaires through an
active learning perspective. Active learning is a learning approach that tries to select the
most informative data for a prediction model. In this context, [Zhang et al. 2020] pro-
poses a reduced questionnaire engine that selects questions to the user based on their
capacity to maximize the precision of an MF learning model. This model can then recon-
struct the user-question table, filling the empty entries with accurate estimates. Similarly,
[Early et al. 2017] aims to maximize survey completion by selecting questions that most
reduces the prediction uncertainty of an auxiliary model that predicts a variable of interest.
In this case, if a breakoff occurs, the model has maximized its learning from the submitted
answers. Finally, in [Ortigosa et al. 2010], a decision tree is built with questions as nodes.
The tree classifies learning styles from students’ answers, a task that originally demands
a large number of questions to be made. By using this model to guide the sequence of
questions, one can only ask the relevant questions for the prediction problem of interest.

Perhaps the most similar work to ours is found in [Zhang et al. 2020]. Unlike our
work that is meant to be used during the questionnaire to estimate unknown answers, the
model proposed in that work is useful to understand hidden relationships on data. For
instance, it is possible to identify the most informative questions.

The present paper focuses on training collaborative filtering models that try to
predict employees’ answers from a set of Likert scale questions, each one evaluating a
particular aspect of the company. It differs from model-oriented approaches (that use
active learning) that try to classify some other quantity from the obtained answers rather
than the answers themselves. In these works, questions are selected to make accurate the
predictions on that quantity, even with less information.

3. Problem Description

The most common way of large organizations assessing employees’ perceptions is from
survey application. The goal of these surveys is to capture employees’ feelings and review
about a broad set of aspects of the company. Although there are several survey method-
ologies and a heterogeneous set of question types ([Krosnick 2018]), HR departments
usually focus on surveys with Likert scale questions. In this type of question, the audi-
ence receives a range of options (often 5 or 7) to measure how favorable each respondent
is about a particular aspect. In this setup, respondents are called “favorable” to the aspect
being assessed when they answer 4 or 5 in a scale of 1-5, or 6 or 7 in a scale of 1-7.

The literature of recommender systems is vast, and several algorithms have been
proposed to estimate an unknown event rij between a user i and an item j. There are
several possible events that rij may model, such as click events, number of purchases,



or explicit ratings given by users to items in the past. Therefore, the signal type of rij
depends on the type of information available to the system. If the system has access to
explicit ratings of users on items, then the interaction captured and generalized by the
system is how people give ratings to items in this scale. For instance, rij ∈ {1, 2, 3, 4, 5}
if ratings are given in a scale of 1-5 stars. If only implicit information is available, such
as item purchases or views, rij ∈ {0, 1} and estimates represent the likelihood of user
interacting with an item. The implicit interaction embeds less information because a zero
(“0”) value does not mean a user doesn’t like an item. In this case, she may not know
the item exists. However, implicit data is easier to get being the usual signal available to
recommender systems because most people do not explicitly rate items [Johnson 2014].

In this work, we use employees’ answers from questionnaires to build a prediction
model using collaborative filtering algorithms. Each question maps to a numeric answer
that explicitly measures the favorability of the employee to an aspect of the company. By
knowing estimates of answers to the questions that were not asked, one could reduce the
questionnaire size by focusing on questions that are relevant, e.g., the ones that would be
given low scores.

The problem of estimating events can be stated as follows. Consider a partially
filled matrixRN×M ofN users (respondents) andM items (questions). Each known entry
rij of R, with i = 1 . . . N and j = 1 . . .M , is a rating that measures some kind of positive
perspective user i took from a past experience with item j. More pleasant experiences
have higher ratings. In general, rij is taken from a fixed, small and ordinal set of values
such as {1, 2, 3, 4, 5} or {0, 1}. In most problems, R is sparse (with missing data) because
most users do not rate most items. We consider the set Ψi of items rated by user i, the set
Ωj of users who gave rates to the item j, and the set Ω of user-item pairs whose ratings
rij are known. The problem is building a predictor model that estimates unknown ratings
of R (unanswered questions in our problem). A proxy R̂ is built from R so that an error
metric between R and R̂ is minimized. Elements of R̂ are denoted by r̂ij and are used for
guiding the recommendation engine.

When a new questionnaire is released, no answers about users and questions are
known, i.e., the matrixR is completely empty, and no recommendations are possible. Two
conditions are necessary for the system to start making meaningful recommendations for
a user u: (i) a substantial amount of people has submitted their answers before u has
started to answer the questions, and; (ii) u has already answered a few questions.

We foresee three solutions to this problem. The first solution is to apply a content-
based approach, such as the one proposed by [Al-Shamri 2016]. It uses respondents’
demographics to generate recommendations. This approach dismisses the second con-
dition above, being possible to generate recommendations for u from the first question
of the questionnaire. A second solution is to use active learning and exploration tech-
niques to guide the recommendations for the first answers. For example, the proposal
of [Zhang et al. 2020] could be used to guide the recommendation engine with the goal
of maximizing the performance of an MF prediction model. The engine could switch
to a second recommender that uses the prediction of the model being learned if the
performance of such model achieves a certain level. Other algorithms seeking optimal
exploration-exploitation trade-offs (with and without contexts) can be used in this sense
[Li et al. 2016, Wang et al. 2017, Wu et al. 2016, Song et al. 2014]. The third possible



solution is to use the history of answers from old questionnaires. [Koren 2009] presents
an approach that embeds meaningful former events by including additional biases in the
MF formulation.

4. The Addressed Predictor Models
There are two main steps for making recommendations. The first one is to estimate un-
known interactions between users and items. The second step is to rank the items based on
estimates. This step is more qualitatively involved and depends on the problem and busi-
ness interests. A common approach for explicit problems is to sort items in descending
order of estimates.

The literature on recommender systems focuses on the first step. Then, explicit
or implicit benchmark data sets such as MovieLens1 are used to assess the relative per-
formance (usually RMSE) of approaches against each other. Predictor models receive as
input a built-in matrixR that, even know is sparse, it contains millions of known user-item
events. From R, the algorithms build models capable of generating predictions (R̂) that
ultimately can be used for recommendations.

These algorithms are often categorized into two broad classes: collaborative fil-
tering (CF) and content-based algorithms. In CF, every past interaction (known val-
ues from R) collaborates with the system in understanding how user u interacts with
item i. More explicitly, all ratings r ∈ R are used to evaluate r̂i,j; not only those
related with u or i. These systems have great performances in benchmark data sets
[Su and Khoshgoftaar 2009], being the most common choice. As a consequence, most
of the current State-of-the-Art of RS is built on CF systems or hybrid systems that com-
bine CF with other techniques. Thus, CF is the methodology we approach in this paper.

CF differs from content-based approaches, in which each item (or user) is mapped
to a profile of known features values [Pazzani and Billsus 2007]. For example, a question
can be mapped (by a specialist) to a vector of values, each value measuring the degree
of intersection between the question and semantic concepts, such as leadership, manage-
ment, etc. A separated model Mu is learned for each user u from a set of examples (old
answers) in a supervised framework. Inputs are the feature vectors of items rated by u
while the outputs are the ratings. Only the past behavior of user u on items i ∈ Iu is
used for predictions; i.e., there’s no collaboration. Content-based approaches are less ap-
pealing than CF mainly because 1- it is difficult to access an appropriate set of features
for items (which is even more critical for a growing set of items), and 2- the system is
overspecialized, never recommending items outside user’s tastes.

Hybrid approaches that combine CF and content-based are also possible.
[Melville et al. 2002] first uses a content-based approach to estimate the unknown values
of R from vector abstractions of each item. Then, they feed this pseudo-ratings matrix to
a collaborative algorithm that refines the estimates.

CF algorithms can be categorized into memory-based or model-based
[Su and Khoshgoftaar 2009]. Memory-based CF algorithms explicitly rely on the cor-
relations of the ratings between the most similar users or items to generate predictions for
user-item pairs. In contrast, model-based algorithms try to approximate R with R̂ so that

1https://grouplens.org/datasets/movielens/



an error between the R and R̂ is minimized. R̂ is factorized into a user and item matrices
that have reduced dimensionality k. These matrices are multiplied to build R̂. Each user
u and item i are described with k latent factors that are learned iteratively from the known
ratings of R.

We have selected one memory-based algorithm (item-item), three matrix (model-
based) factorization algorithms and one ensemble approach encompassing all of them.
Each one is representing a relevant approach of the literature for recommender systems
using collaborative filtering [Rendle et al. 2020, Kulkarni et al. 2020]. The following sec-
tions explain the particularities of each chosen approach.

4.1. Item-item Collaborative Filtering
Item-item CF is a memory-based model that relies on the similarity of item ratings to
guide recommendations. An item is recommended for a user if the user has liked similar
items in the past. Two items are similar if users have given similar ratings to them. Simi-
larity is often measured by cosine similarity or Pearson correlation. [Al-Shamri 2016] and
[Su and Khoshgoftaar 2009] describe several other similarity measures that can be used
to compare items or user profiles. Although its conceptual simplicity, it is a very compet-
itive approach as it provides similar performance results compared to matrix factorization
predictors. Formally, the estimate r̂ij is given by (1),

r̂ij = r̄j +

∑
j′∈Ψi

wjj′(rij′ − r̄j′)∑
j′∈Ψi

|wjj′|
(1)

with wjj′ being the similarity measure between items j and j′, Ψi being the set of items
rated by user i, and r̄j being the average rating of item j (same for r̄j′). Notice that
the score given by this method is the average rating of the item plus a weighted average
of rating deviations instead of pure ratings. In this case, each user has its own bias of
rating items: a conservative user may consider only five (5) as a good score, while a more
flexible user may consider three (3) as good enough. Thus, it measures how much user i
likes j′ compared to how much the population of users likes j′. The similarity measure
can be given by the Pearson-correlation coefficient between rating distributions of j and
j′ provided by all users who rated both j and j′.

User-user CF works similarly to item-item, but it recommends items for users
based on user similarities instead of item similarities. Nevertheless, item-item CF is of-
ten preferred because its weights are more accurate. That is the case because, in most
problems, two items have a lot more users in common than two users have items in com-
mon. Item-item is also computationally faster for problems where N >> M , which is
the general case.

4.2. Iterative Matrix Factorization

In the matrix factorization algorithm, the goal is to build R̂ as a low-rank approximation
of R. R̂ is then factorized into two matrices, as shown in (2).

R̂N×M = WN×kU
T
M×k (2)

In the user matrix W , each row represents a vector of k latent features of a user.
Similarly, the item matrix U has rows that hold items representations. Users and items



are then projected into a latent shared space with dimensionality k. This factorization
approach is similar to a truncated SVD (Singular Value Decomposition) that approximates
a matrix A to UN×kSk×kV

T
M×k if A is full rank and N > M . By substituting W = US,

we get the same approximation of (2).

One possible way of building R̂ is to iteratively update the vectors representations
of W and U towards the minimization of the mean square error between R and R̂. To
assess the individual error between a prediction r̂ij and the true rating rij , the regularized
loss function of (3) could be used,

J =
∑
i,j∈Ω

(rij − r̂ij)2 + λ(||W ||2F + ||U ||2F + b2
2 + c2

2) (3)

with L2-regularization penalty λ, Frobenius norm || · ||2F and r̂ij built according to (4),

r̂ij = wT
i uj + bi + cj + µ (4)

with the user vector wi, the item vector uj , the bias for user i bi, the bias for item j cj
and µ as the average rating of R. Equation (4) is the most common way of designing the
prediction rating for matrix factorization models. The biases are included to model exist-
ing phenomena related to user-item ratings, such as user optimism or item popularity, and
usually increase performance [He et al. 2017]. In [Koren 2009], the use of these biases
was developed to capture temporal dynamic effects, such as users’ perception changes
about items. Alternating least squares (ALS) can be used to find the model parameters
that minimize J from the closed-form solutions built from its derivative.

4.3. Neural Collaborative Filtering
The neural collaborative filtering (NCF) from [He et al. 2017] is an appealing approach
for implicit data sets that has been gained attention in recommender systems community
due to its high scalability and flexible network architecture.

In NCF, the dot product betweenwi and uj is replaced by a more complex function
that is learned by backpropagation. In its simplest form (used in this work), the network
receives the interaction vectors rowi(R) of user i, and colj(R) of item j. Then, it gen-
erates latent vectors from both inputs and concatenates them into a single vector. This
vector is passed to a sequence of fully connected layers. The activation function of the
output unit is a logistic function suitable for implicit data providing r̂ij ∈ [0, 1].

The network is trained to minimize the binary cross-entropy loss function of (5).
J is then minimized with stochastic gradient descent (SGD).

J = −
∑
i,j∈Ω

rij log r̂ij + (1− rij) log (1− r̂ij) (5)

An advantage of this model is that it can generate predictions for new users and
items directly from their ratings without retraining. It is not the case for matrix factor-
ization models (and item-item) as their embed representations that generate predictions
are learned during training. New training cycles that include new users (or items) are
required, or handcraft rules to handle these cases must be created. Making recommenda-
tions with new users or items is referred to as the cold-start problem [Lika et al. 2014].



4.4. Logistic Matrix Factorization algorithm

The logistic matrix factorization is a CF algorithm designed for implicit data problems
[Johnson 2014]. Similarly to NCF, it models the probability of a user preferring an item
by using a logistic function but restricting r̂ij to a linear function, as shown in (6).

r̂ij = wT
i uj + bi + cj (6)

Equation (7) shows the log-likelihood function of parameters wi, uj , bi, and cj .

L = log[p(W,U, b, c | R)] =
∑
i,j∈Ω

αrij r̂ij − (1 + αrij) log(1 + exp(r̂ij))−
λ

2
wi

2
2 −

λ

2
uj

2
2

(7)
with α being a hyperparameter that weights observations and λ being the usual L2-
regularization penalty (applied to the latent vectors only). The gradient descent method
is used for maximizing L. For training time reduction, [Johnson 2014] suggest using a
negative sampling procedure and an adaptive learning schedule with AdaGrad.

5. Experiments and Results

This section considers the application of the algorithms described in Section 4 to predict
employees’ answers that are not favorable to company aspects. Algorithms consider data
from four different questionnaires (called checkpoints as shown in Table 1) applied from
2019 to 2020 by a large technology Brazilian company. Those questionnaires were chosen
since they refer to the same periodic climate survey, providing a great intersection of
questions and respondents between checkpoints.

The original answers are given in 1-5 Likert scores. In this scale, respondents that
answer 1, 2, or 3 to a particular question are called “not favorable” to that aspect. To
identify this event, we approach the prediction problem as a binary classification problem
whose positive class (the one we want to identify) relates to answers 1, 2, and 3, while the
non-positive class relates to answers 4 and 5. It is still explicit data because the class zero
(“0”) is explicitly given by the employee - with the highest answers. That’s the first step
for building a reduced questionnaire that seeks to identify and suggest questions about
aspects that employees negatively view. Moreover, users that do not answer the most
common questions (i.e. the questions with less than 1% of breakoff rate) are removed.
This filtering process is applied to eliminate missing values, and it is enough to build a
user-question table with complete information. Table 1 presents filtered data information
with the questionnaires identified by a checkpoint ID given by cpt.

Table 1. Checkpoints covered in this work. Consecutive checkpoints represent
consecutive surveys periodically applied from 2019 to 2020.

Checkpoint # Respondents # Questions # Ratings
cp1 3512 25 87,800
cp2 5491 31 170,221
cp3 5299 41 217,259
cp4 5343 51 272,493



An exploratory analysis of data reveals that people are more likely to give higher
scores than lower ones. This behavior occurs for the whole survey counts and for indi-
vidual questions as well, with few exceptions. This makes the prediction problem imbal-
anced, as only 20% of the answers are 1, 2, or 3.

As the set and number of users and questions for different checkpoints vary (al-
though there are intersections), we decided to evaluate the different checkpoints sep-
arately. Therefore, each checkpoint is considered a completely different instance of
the problem (eventually having the same employees as respondents in more than one
instance). The goal is to predict, for each checkpoint, if a user is not favorable
(score 1, 2, or 3) to a question that has not been answered yet. We know that there
are several complex CF algorithms in the literature for implicit and explicit problems
[Su and Khoshgoftaar 2009, Bokde et al. 2015]. However, to solve the addressed prob-
lem, we chose the simple and diverse set of CF algorithms described in Section 4, plus a
linear ensemble trained over the outputs of the algorithms. In the present paper, instead
of discussing which algorithm is the best one, we argue that it is possible to explore user-
question interactions aiming to recognize answering patterns. Ultimately, these patterns
can be used to build custom recommender systems.

For each given checkpoint, we perform a holdout technique: 20% of randomly
chosen answers of each user are placed in a holdout set. The remaining data (80%) are
used for training (70%) and validation (10%). The training data of 70% are then used
for hyperparameter optimization performed by a 5-fold cross-validation approach with
the validation data of 10% being used for early stopping training process. Each cross-
validation procedure is performed independently over a specific checkpoint, possibly re-
turning different hyperparameters. However, quite similar hyperparameters have been
found in the experiments. Hence, the same hyperparameters of a given model (except for
the matrix factorization model) have been used for all checkpoints. The matrix factoriza-
tion model was found to perform better with larger latent dimensionality k for larger ts:
k = 25, k = 40, k = 45 and k = 50 led to the best results for each checkpoint. All MF
models were trained with L2-regularization λ = 5 with 10 to 15 epochs. For the NCF
approach, it was found that k = 64, three fully connected hidden layers with sizes 64, 32
and 16, a learning rate α = 2×10−4 and ReLU (Rectified Linear Unit) activation function
(except to the output Logistic unit) returned best results. Only five epochs were required
for convergence. For the logistic MF model, the best hyperparameters were: k = 25,
λ = 35 and α = 2. The item-item model has no hyperparameters, a notable advantage of
this model.

A linear ensemble was also trained over the predictions of the individual CF mod-
els. Ensemble models are useful for handling imbalance effects, especially if applied
over a set of heterogeneous models [He and Garcia 2009]. The input of this model is the
predictions of the individual base models, while the output is the true scores. The linear
model was trained using SGD with a batch size of 128, α = 0.01, λ = 0.5 and MSE
(mean squared error) as loss function. [Jahrer et al. 2010] shows more complex ensemble
techniques applied to collaborative filtering algorithms.

The final models with the best hyperparameters were tested with the holdout set
(20% of the data). The area under the ROC curve (AUC) evaluated for all algorithms
and checkpoints are shown in Table 2. It measures the probability of a randomly chosen



negative example (scores 4 or 5) has a smaller estimated probability of belonging to the
positive class (scores 1, 2, or 3) than a random positive example [Huang and Ling 2005].
Therefore, it is better than accuracy or other classification metrics since it is unclear how
to define the ideal threshold between the negative and positive classes for this recommen-
dation task. Moreover, it is better than MSE or other related metrics since they have poor
performance for imbalanced problems.

Table 2. AUC values of five CF-based algorithms evaluated in the holdout set.

checkpoint Item-item CF ALS-MF NCF Logistic MF Linear ens.
cp1 0.833 0.858 0.815 0.818 0.845
cp2 0.841 0.856 0.830 0.834 0.847
cp3 0.859 0.872 0.837 0.846 0.864
cp4 0.874 0.893 0.851 0.864 0.883

Results show that it is possible to learn the discrimination between low and high
scores given by employees in large surveys, even in a very imbalanced setup. Even
though no significant differences between performances have been found, a straightfor-
ward discussion can be made. The ALS-MF algorithm is the best-performing algorithm
in all checkpoints, while the neural-based is the worst (in accordance with results of
[Rendle et al. 2020]), performing very similarly to item-item. We point out that the re-
sults of the item-item algorithm are very satisfactory, given its conceptual simplicity and
its fast and straightforward training procedure (compared with the others). Also, we be-
lieve that the great performance of ALS-MF is due to the use of bias terms that decouple
the true behavioral signal (the one to be learned) from the noise patterns of the available
ratings. Finally, it should be noted that NCF and logistic MF have been designed for im-
plicit problems and thus suffer from not being able to discriminate zero (“0”) values (high
scores) from missing values. Another option would be excluding zero values from the
training sets. However, the system would not be able to properly consider low scores due
to poor evaluation (instead of missing values). Thus, we believe that the choice of merg-
ing them into one label introduces not relevant bias to the results. Otherwise, it would be
possible to use hierarchical classification approaches for discriminating between all three
cases (positive, negative and missing) which are out of scope.

The linear ensemble could not outperform ALS-MF, possibly due to the high cor-
relation between the models’ predictions, a remark observed from a correlation analysis.
We notice that item-item and NCF have the most correlated outputs, with a Pearson coef-
ficient of 0.96. The least correlated algorithm to others is the Logistic MF. If more diverse
models were included into this pool, such as the models proposed by [Wu et al. 2019] and
[Salakhutdinov et al. 2007], the ensemble result would be probably better.

6. Conclusions
This paper has addressed the problem of predicting missing answers on large surveys
by using CF-based algorithms as predictor models. Five algorithms (item-item, iterative
matrix factorization, neural collaborative filtering, logistic matrix factorization, ensemble
with all of them) have been tested on a quite large survey with four checkpoints to provide
the estimated matrix with pairs of respondent-answer events. In the experiments, the
performances of the algorithms in terms AUC have been compared. Results showed that



there is no significant difference among algorithms performance and that there are patterns
present in the scores given by employees. It should be noted that the results cannot reveal
undesired effects such satisficing as they consider that favorable scores reflect the faithful
perception of respondents. Nevertheless, this effect is partially mitigated by the bias terms
of ALS-MF or the deviation modeling of item-item. An alternative approach could be
using of comments of respondents (side information) for identifying this phenomenon. In
future works, we intend to explore the learned patterns to reduce the questionnaire size
and include other variables to be estimated like the commitment of each respondent to
include or not comments about a specific aspect of the company.
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