Random Forest for Code Smell Detection in JavaScript
Diego S. Sarafim', Karina V. Delgado', Daniel Cordeiro'

1 School of Arts, Sciences and Humanities — University of Sao Paulo
Ermelino Matarazzo — SP — Brazil.

{d.s.sarafim, kvd, daniel.cordeiro}Qusp.br

Abstract. JavaScript has become one of the most widely used programming lan-
guages. JavaScript is a dynamic, interpreted, and weakly-typed scripting lan-
guage especially suited for the development of web applications. While these
characteristics allow the language to offer high levels of flexibility, they also
can make JavaScript code more challenging to write, maintain and evolve. One
of the risks that JavaScript and other programming languages are prone to is
the presence of code smells. Code smells result from poor programming choices
during source code development that negatively influence source code compre-
hension and maintainability in the long term. This work reports the result of
an approach that uses the Random Forest algorithm to detect a set of 11 code
smells based on software metrics extracted from JavaScript source code. It also
reports the construction of two datasets, one for code smells that affect func-
tions/methods, and another for code smells related to classes, both containing
at least 200 labeled positive instances of each code smell and both extracted
from a set of 25 open-source JavaScript projects.

1. Introduction

JavaScript is a powerful, flexible, and widely used scripting language. The 2022 Stack
Overflow Developer Survey! that JavaScript has been the most commonly used program-
ming language for the last ten years.

The flexibility of JavaScript is at the same time a powerful feature and a factor
that makes code more difficult to write and maintain when it is not correctly used.

The quality level attained during the implementation phase can affect the com-
plexity of the source code and considerably increase the costs involved in the later stages
of the software lifecycle [Banker et al. 1993]. Due to aspects that include lack of experi-
ence, deadline pressures, and even community factors [Tamburri et al. 2019], developers
may lack the ability, discipline, time, and willingness to find suitable solutions to recurrent
problems and to keep source code complexity under control [Parnas 1994].

One of the direct consequences of the lack of discipline and ability of devel-
opers over the implementation phase is the introduction of code smells, symptoms of
poor choices during development activities that violate good programming practices that
can negatively affect maintainability [Yamashita and Moonen 2013], and the evolution of
computer programs [Abbes et al. 2011]. Previous studies have shown that code smells
reduce source code comprehensibility [Abbes et al. 2011] and make it more prone to
changes and faults [Khomh et al. 2012].

'https://survey.stackoverflow.co/2022/ (Accessed: 15 August 2022)

To mitigate the harmful effects of code smells on software maintenance and evo-
lution, they should ideally be detected and corrected as early as possible. Many ap-
proaches, techniques, and tools have been proposed to identify code smells, some of
them are commercial products such as SonarQube?, and some of them are a result of
academic works such as JSNose [Fard and Mesbah 2013], Lacuna [Obbink et al. 2018],
and SMURF [Maigaetal. 2012]. One very common approach to detecting code
smells is the usage of techniques that base their search on predefined declarative rules
[Marinescu 2004, Fontana et al. 2012, Padilha et al. 2014]; on the other hand, a relatively
recent literature review has found that only a handful conducted studies investigated
the usage and effectiveness of machine learning based techniques on the detection of
code smells [Azeem et al. 2019]; moreover, the majority of those studies explored code
smell detection on Java resulting in a good opportunity for further studies to examine
the usage of machine learning techniques on different programming languages especially
those that are prone to different and unique types of code smells which is the case of
JavaScript [Fard and Mesbah 2013, Almashfi and Lu 2020].

Encouraged by the apparent lack of studies that employ machine learning tech-
niques to detect JavaScript code smells, the fact that JavaScript can be affected by unique
types of code smells and by results of previous works that demonstrated the effectiveness
of decision tree-based machine learning algorithms in the task of detecting code smells
[Amorim et al. 2015] we developed an approach to detect JavaScript code smells by em-
ploying Random Forest algorithm on software metrics extracted from JavaScript source
code.

To the best of our knowledge, there are no standard code smell datasets for the
JavaScript language in the literature. Thus, for the purposes of our study, we need to
construct a dataset with metrics extracted from classes and methods/functions. Every
instance of the dataset is labeled with values of true or false indicating respectively the
presence or absence of each code smell in that piece of code, for example, for each method
or function used to build our dataset, we extracted a set of software metrics and labeled the
entry with true or false for every code smell that can affect methods and functions. This
dataset was then used to train a Random Forest algorithm to correctly classify positive
and negative instances of code smells.

Although the construction of the dataset was an important aspect of this study, our
main contribution lies in the proposed approach for JavaScript code smell detection which
we discuss in detail in Section 4.

The structure of the paper is as follows. Section 2 offers brief descriptions of
the 11 code smells we focused in this work along with details of the labeling rules for
each type. Section 3 presents our approach to construct the dataset used in this study and
Section 4 presents our detection approach in more details. In Section 5 we discuss the
results obtained. Finally, Section 6 concludes the paper.

2. Code Smells

Code smell is a term coined by Fowler and Beck [Fowler 2018] to refer to violations of
programming principles and good practices. Although errors or incorrect application be-
havior are not direct manifestations of code smells, it has been shown before that code

https://www.sonarqube.org/ (Accessed: 15 August 2022)

smells can negatively affect maintainability [Yamashita and Moonen 2013], and the evo-
lution of computer programs [Abbes et al. 2011] as well as make them more prone to
changes and faults [Khomh et al. 2012].

This section describes 11 code smells that were the subject of this study.
Part of them, namely large class, lazy class, long method, and long parame-
ter list were proposed by Fowler [Fowler 2018] and have been constantly studied
in previous works [Fard and Mesbah 2013, Almashfi and Lu 2020, Fontana et al. 2013,
Maneerat and Muenchaisri 2011, Arcelli Fontana et al. 2016], those can affect pro-
gramming languages that support object-oriented programming such as Java and
C++. Complex method, unused variable, and undeclared variable were proposed by
[Almashfi and Lu 2020]. Long message chain and long scope chaining were proposed
by [Fard and Mesbah 2013]. Finally, dead code is another example of code smell that
has received attention in previous works [Fard and Mesbah 2013, Obbink et al. 2018,
Almashfi and Lu 2020, AIAbwaini et al. 2018].

Following we present 11 code smells along with the rules we followed to manually
label their presence or absence in the dataset we constructed for this study. We start
presenting those code smells that affect methods and functions and then we present those
that affect classes.

2.1. Method/Function Code Smells

The majority of the code smells we focused in our study affect methods and functions.

Complex Method/Function. Complex methods are hard to understand and thus hard
to maintain and evolve, the complexity of a function may indicate the need for refactor-
ing of the source code. During the dataset build phase, the instances of this code smell
were labeled with the help of SonarQube (version 8.9.2 — Community Edition). Follow-
ing what was proposed by [Almashfi and Lu 2020], any method/function with cyclomatic
complexity higher than 20 was labeled as a positive case of complex method/function.
Cyclomatic complexity is a software quality metric that measures the number of linearly
independent paths in the source code.

Long Parameter List. All instances of this code smell were labeled with the help of
SonarQube, any method or function with a parameter list length that exceeds 5 parameters
was labeled as a positive instance in accordance with [Fard and Mesbah 2013].

Dead Code. Dead code (code that is never called or reached) is a threat to maintainability
because it can needlessly make code more difficult to understand [Almashfi and Lu 2020,
Nguyen et al. 2012]. Instances of this code smell were also labeled with the help of Sonar-
Qube which can find portions of code that are not reachable when they are preceded by
termination statements such as return or throw statements.

Long Method/Function. Too many lines of code in a method may be an indicator that
the method aggregates too many responsibilities. All the instances of this code smell were
labeled with the help of SonarQube. Any method or function with more than 105 lines of
code and cyclomatic complexity higher than 9 according to [Arcelli Fontana et al. 2016]
was labeled as a positive case of this code smell.

Unused Parameter. Unused parameter is any parameter present in the signature of a
method that is never accessed, they needlessly make method signatures more difficult to

comprehend and can be misleading since no matter which value of the argument passed
to such parameters the behavior of the method will be the same. Unused parameters
instances were labeled with the help of SonarQube which can detect this type of code
smell.

Unused Variable. Variables that are declared and not used take up space, can be mis-
leading, and decreases code clarity [Almashfi and Lu 2020]. Instances of this code smell
were labeled with the help of SonarQube which can detect such occurrences.

Undeclared Variable. There are two ways to declare variables in JavaScript: explicit and
non-explicit. Explicit declarations are preceded by one of the three keywords var, let
and const. Non-explicit declarations omit the usage of those keywords and have the
side effect of placing these variables in the global scope of the application. It is strongly
recommended to declare variables using var, let, or const keywords and only to
declare global variables when they are needed, placing those declarations outside methods
to avoid confusion. Instances of this code smell were labeled with the aid of SonarQube
which can detect this smell. Any non-explicit variable declaration inside methods or
functions was labeled as a positive instance.

Long Message Chain. Long chaining of functions with the dot operator may result in
overcomplex control flows that are hard to comprehend, maintain, and evolve. The label-
ing process for the instances of this code smell was fully manual, methods or functions
with 4 or mode chained calls were labeled as positive instances of a long message chain
in accordance with [Fard and Mesbah 2013].

Long Scope Chaining. JavaScript allows functions to be declared inside one another,
these nested functions are called closures and they can be used to emulate encapsulation
which is one of the key principles of object-oriented programming. One of the side effects
of closures is that they produce a chain of scopes where inner functions have access to
the scope of the functions they are nested in and since multiple nesting is allowed, adding
too many levels of nested closures can make a function hard to comprehend and maintain.
The labeling process for instances of this code smell was fully manual, following what
was proposed by [Fard and Mesbah 2013] functions with more than 3 levels of chained
closures were labeled as positive instances of long scope chaining.

2.2. Class Code Smells

Although JavaScript does not fully comply with object-oriented design rules, it does sup-
port the implementation of objects and is susceptible to code smells that affect classes.
Our study focused on two of them, which we describe in the following.

Large Class. A class that has many responsibilities, many lines of code, or many methods
is a class that does too much work and should be refactored into smaller classes that are
easier to maintain and evolve. The labeling process for instances of this code smell was
manual, any class declaration with at least 400 lines of code along with an attribute or
method count higher than 20 or any object with more than 750 lines of code were labeled
as positive instances of large class as per [Fard and Mesbah 2013, Almashfi and Lu 2020].

Lazy Class. A class that aggregates too few responsibilities and attributes is a class that
may not justify its existence and should be reconstructed. The labeling process for this
code smell was manual, classes with less than 40 lines of code and less than 3 properties

were labeled as a positive instances of the lazy class as per [Almashfi and Lu 2020].

3. Dataset

Machine learning algorithms such as random forest rely on datasets with labeled instances
so that they can be trained and learn how to correctly classify unseen and unlabeled in-
stances they are exposed to. The goal of our study was to employ a multi-label classifi-
cation of code smells so that our solution could simultaneously detect each type of code
smell (if any) affecting a function or a class. To attain that goal, we constructed 2 different
datasets with a very similar structure, both are composed of software metrics and indica-
tions of the presence or absence of each type of code smell. One dataset contains metrics
extracted from classes as well as indications of the presence/absence of those code smells
that affect classes, the other one does the same for methods and functions.

All instances included in both datasets were extracted from 25 open-source
Table 1 shows the list of all

JavaScript projects cloned from GitHub repositories.

JavaScript projects explored during dataset construction.

Table 1. Projects used for dataset construction.

ID Name Resource Commit hash
1 Ember https://github.com/emberjs/ember.js e2474ba66
2 Map Talks https://github.com/maptalks/maptalks.js d69448ee
3 A-Frame https://github.com/aframevr/aframe ec0d4d8b
4 Atom https://github.com/atom/atom 07edc2b25
5 Chartjs https://github.com/chartjs/Chart.js 6283c6f1

6 TWGL,s https://github.com/greggman/twgl.js aa7feda

7 Express https://github.com/expressjs/express c221b859
8 Axios https://github.com/axios/axios cc86¢6¢

9 Strapi https://github.com/strapi/strapi 0dd74c685
10 Sheet]S https://github.com/Sheet]S/sheetjs bb99765

11 Cytoscape.js https://github.com/cytoscape/cytoscape.js {ff9475b
12 PDF Kit https://github.com/foliojs/pdfkit Tcd6472
13 Three.js https://github.com/mrdoob/three.js f31cb9ec8b
14 React https://github.com/facebook/react 848e802d2
15 JSPaint https://github.com/1j01/jspaint 41dd061

16 VuelS https://github.com/vuejs/vue 6aal1872
17 Meteor https://github.com/meteor/meteor cf2b6dafl
18 Xeokit-SDK https://github.com/xeokit/xeokit-sdk 63e01818
19 Play Canvas https://github.com/playcanvas/engine 5222de3ad
20 Open Layers https://github.com/openlayers/openlayers 7Tcalaee84
21 Mark Text https://github.com/marktext/marktext 2bb405a0
22 Apex Charts https://github.com/apexcharts/apexcharts.js 218bda9f
23 Taro https://github.com/Cloud9c/taro f9874da

24 P4wm https://github.com/douglasbagnall/p4wn fcddaof

25 Tudu List https://github.com/jdubois/Tudu-Lists d4aldea

3.1. Labeling process

The first step in the construction of the datasets was the manual detection and labeling
of approximately 200 instances of classes, methods, and functions affected by each code
smell. A class or a method can be affected by multiple code smells so, every instance
received positive or negative flags indicating all code smells affecting them. A portion
of the instances was identified with the help of SonarQube (version 8.9.2 — Community
Edition). Other code smells instances were found using a search method based on indirect
evidence, such as classes with a large or a small number of lines possibly indicating
instances of large or lazy classes, respectively. Despite the method to find the instances,
all of them were manually verified and labeled based on rules described in Section 2.

3.2. Software metrics extraction process

After labeling each instance of the datasets we then computed the software metrics for
each class and method/function included in both datasets.

The metric extraction process was implemented in JavaScript with the help of
Babel® (version 7.17.3), a library that can work as a transpiler and can be used to generate
and traverse abstract syntax trees (AST) from JavaScript source code. Generating and
traversing an abstract syntax tree is useful as the traversal process allows us to visit all
code entities, objects, properties, functions, and code blocks as well as keep track of
scope. During the traversal of the AST for a given input file, our process extracts the
information it needs to calculate the class metrics and the method/function metrics.

The dataset for classes is composed by 2 columns indicating the presence of the
2 class-related code smells and 19 software metrics that can be extracted from classes,
namely: lines of code (LOC), lines of code excluding accessor and mutator methods
(LOCNAMM), number of methods (NOM), number of public, private and static methods
(NOPM, NOPVM, and NOSM respectively), number of accessor and mutator methods
(NOAM), number of methods excluding accessor and mutator methods (NOMNAMM),
number of attributes (NOA), number of public attributes (NPA), number of private at-
tributes (NOPVA), number of static attributes (NOSA), weighted methods count (WMC),
weighted methods count of not accessor or mutator methods (WMCNAMM), average
methods weight (AMW), average methods weight of not accessor or mutator methods
(AMWNAMM), weight of class (WOC), number of constructor methods (NOCM) and
number of non-constructor methods (NONCM).

The dataset for methods and functions contains a set of 16 method/function-
related metrics: lines of code (LOC), reachable lines of code (RLOC), reachable lines
of code ratio (RLOCR), cyclomatic complexity (CYCLO), number of parameters (NOP),
number of accessed parameters (NAP), accessed parameters ratio (APR), number of de-
clared variables (NOV), number of accessed variables (NAV), accessed variables ratio
(NAVR), declared global variables (NOGVD), maximum nesting level of control struc-
tures (MAXNESTING), maximum method nesting level (MMNC), maximum message
chain length (MaMCL), mean message chain length (MEMCL) and number of message
chain statements (NMCS). As well as 9 columns indicating the presence or absence of the
9 code smells that can affect methods and functions.

Shttps://babeljs.io/ (Accessed: 15 August 2022)

4. Proposed approach

This section describes the proposed approach to detect the JavaScript code smells dis-
cussed in Section 2. For this work we adopted a combination of techniques explored
in previous studies, that is, the extraction of software metrics through static analysis
of JavaScript source code [Fard and Mesbah 2013, Almashfi and Lu 2020] (that was ex-
plained in Section 3.2) and the employment of Random Forest, a tree-based machine
learning algorithm to perform a multi-label classification over the data in order to detect
code smells [Amorim et al. 2015].

4.1. Random Forest for multi-label classification of code smells

Random Forest is a supervised ensemble learning model composed of decision trees, each
one using a specific subset of the input features. Each input is subject to the classifica-
tion process of each tree. The classification result of each tree is taken as a vote, the
classification result most voted by the trees becomes the classification result of the for-
est. Among the advantages of random forests are their ability to generate human-readable
classification rules and estimate the importance of each feature for the classification.

For the purposes of our study, we had to implement and train two Random Forest
models to perform a muti-label classification. One model was responsible for classifying
class-related code smells and the other handled the classification of method-related code
smells, they were implemented in Python with help of scikit-learn library (version 1.1.2).
The training consisted in exposing the random forests to the two datasets we constructed.
The hyperparameter number of estimators used for classifying class-related code smells
was 11 and for classifying method/function-related code smells was 25. Both values were
defined after a search for the values with the best performance, the search method was
to increase the number of number of estimators and calculate precision, recall, and f-
measure using cross-validation until the point where adding more estimators would not
result in performance increments.

After being trained, the model is ready to be exposed to new unlabeled data and
perform the classification task that ultimately indicates what instances are affected by
what code smells. The generation of this new data is done by a metric extraction process
explained in Section 3.2.

4.2. Testing process

As a result of the metric extraction process, two CSV files are obtained, one con-
tains metrics extracted from classes and the other contains metrics extracted from meth-
ods/functions.

Figure 1 shows the stages of the testing process. First, the source is read from
a JavaScript file. This code is then used as input into a process that extracts software
metrics. The output of this process is two CSV files, one contains metrics of all meth-
ods/functions inside the code and the other contains metrics from classes. The corre-
sponding CSV file is used as input to a random forest classifier that has been previously
trained specifically for class or method/function code smells. The final result is a CSV
file indicating the presence or absence of the corresponding type of code smells as per
random forest classification.

Figure 1. Testing process for class or method/function code smells

metrics extraction Random Forest

Q_g -» || l — - | 7
JS csv csv
S. Results

To measure the effectiveness of our approach we adopted three metrics that are broadly
used in the machine learning domain to evidence the performance of techniques on clas-
sification tasks [Antunes and Vieira 2015], they are Precision, Recall, and F-Measure.

The results were assessed using 10-fold cross-validation to accurately estimate
the performance of the model in the predictive task. Tables 2 and 3 present the results
obtained by the random forest model for class and method/function code smells, respec-
tively. Those results indicate that our approach demonstrates great effectiveness in detect-
ing most of the code smells we focused on in our study, the only exception is the detection
of dead code for which our model predicted no false positive instances but had problems
with a high count of false negatives (smelly instances classified as non-smelly).

Table 2. Precision, Recall, and F-measure for class code smells.

Code Smell Precision Recall F-Measure

Avg. (Std.) Avg. (Std.) Avg. (Std.)
Large class 0.975 (0.023) 0.972 (0.025) 0.977 (0.023)
Lazy class 0.990 (0.013) 1.000 (0.000) 0.995 (0.004)
Avg. class code smells 0.982 0.986 0.984

Table 3. Precision, Recall, and F-measure for method/function code smells.

Code Smell Precision Recall F-Measure
Avg. (Std.) Avg. (Std.) Avg. (Std.)
Complex method 0.989 (0.005) 0.983 (0.016) 0.986 (0.009)

Long parameter list
Long method

Dead code

Unused parameter
Unused variable
Undeclared variable
Long message chain
Long scope chaining

1.000 (0.000)
0.985 (0.029)
1.000 (0.000)
0.990 (0.004)
0.962 (0.021)
1.000 (0,000)
0.990 (0.030)
0.995 (0.023)

0.995 (0.008)
0.962 (0.017)
0.481 (0.035)
0.903 (0.013)
0.807 (0.012)
0.964 (0.005)
0.980 (0.009)
0.995 (0.010)

0.997 (0.002)
0.973 (0.019)
0.649 (0.020)
0.944 (0.006)
0.878 (0.015)
0.982 (0.001)
0.985 (0.014)
0.995 (0.011)

Avg. method/function code smells

0.989

0.937

0.962

We conducted an additional test in which we compared the effectiveness of our
approach with the results obtained by SonarQube, a popular platform for continuous code

inspection that performs static code analysis and is capable of detecting defects, security
breaches and code smells. Unfortunately, only 6 of the 11 code smells analyzed are also
covered by Sonar. These 6 code smells are: complex method, long parameter list, dead
code, unused parameter, unused variable, and undeclared variable.

For this test we executed a full SonarQube analysis on Strapi and Tudu List
JavaScript projects followed by a full execution of our approach on the same projects,
during both analyses, each tool analyzed every JavaScript file inside the projects to detect
as many code smells as possible. Table 4 presents the results for each code smells in terms
of Precision, Recall and F-Measure.

Table 4. SonarQube vs. our approach on Strapi and Tudu List projects.

SonarQube Our Approach

Code Smell Precision Recall F-Measure Precision Recall F-Measure
Complex method 1.0 1.0 1.0 1.0 0.968 0.984

Long parameter list 1.0 1.0 1.0 1.0 1.0 1.0

Dead code 1.0 1.0 1.0 0.8 0.666 0.727
Unused parameter 1.0 0.818 0.899 1.0 0.972 0.986
Unused variable 1.0 1.0 1.0 0.916 0.733 0.815
Undeclared variable 1.0 1.0 1.0 1.0 0.989 0.994

As aresult, both SonarQube and our approach had very similar results on complex
method, long parameter list and undeclared variable code smells. SonarQube did better
on the task of detecting dead code and unused variables. For the code smell unused pa-
rameter, however, our approach obtained better results when compared with SonarQube.

As mentioned in the previous section, random forests have two crucial advantages:
(1) the classification process is based on human-readable rules, and (ii) the importance of
each feature for the classification can be estimated. We explored both of those advantages
next.

Figure 2 shows feature importance for all class and method/function-related code
smells classification. The features that most affect the classification of class-related
code smells are lines of code (LOC), lines of code excluding accessor, mutator meth-
ods (LOCNAMM), and the number of attributes (NOA), while feature importance for
method/function-related code smells is more diverse, with cyclomatic complexity (CY-
CLO) and the number of parameters (NOP) standing out.

Figure 3 depicts one of the constituent trees for the model while classifying long
method code smell. It is an example of how feature importance plays an important role in
the classification task and shows in a human-readable manner one of the rules discovered
by the model to classify this type of code smell. In this case, cyclomatic complexity
(CYCLO) and lines of code (LOC) were decisive in the classification. Any method with
cyclomatic complexity bigger than 16 and more than 106 lines of code would be classified
as a long method by this tree.

By exploring those abilities from Random Forest, we found that most of the rules
generated by the models to classify code smells are identical or very close to the ones used

Figure 2. Feature importance for class and method/function related code smells.

Feature Impertances (all class code smells)

0.5 A
04
z
i
= 03 1
by
g 021
w
m
[=]
T 01
=
0.0 1 - = — —_ . - - .
T T T T T T T T T T T T T T T T T T T
W = = = = ol - A - U o=
4285:333288¢838§828¢3¢
= 2 gz =z 3 = =g 2 = =
id = = = =
= g =z
Feature Importances (all method/function code smells)
035 4
030 1
v
o 025 A
=
& 020 -
2 015 A
m
S 0.10 -
=
005 A
000 -
[R - == - = =] [=
S88g22883§582¢¢¢8¢
= 2 = 2 5 =

MAXMESTING

Figure 3. Detection rule for the long method code smell.

CYCLO <=16.5
gini=0.311
samples = 1061

value = [1345, 320]

class = False

LOC <= 106.5
gini = 0.447
samples = 268

value = [144, 284]

class = True

during the labeling process of our dataset. This indicates that the algorithm is effective in
discovering classification rules for code smells and also suggests they could be explored
to become the ones that primarily determine the detection rules and the metrics to be used.

6. Conclusion

In this paper, we proposed an approach to detect a set of 11 different JavaScript code
smells, using software metrics extracted from static code analysis and two random forest
machine learning algorithms to detect classes and methods/functions affected by code
smells. Our approach can be used in any phase of the development lifecycle to help
mitigate the known bad consequences of code smell presence in programs.

Our empirical evaluation demonstrated that our approach is highly effective in
detecting the code smells we focused our study on, except for dead code. Such results
support previous studies that showed the effectiveness of tree-based algorithms to detect
code smells, and it also indicates this can be done to JavaScript source code with its own
code smells and particularities as previous works that used machine learning focused on
Java. For future work, we would like to improve the classification of dead code and
increase the variety of extracted metrics and detected code smells.

References

Abbes, M., Khomh, F., Gueheneuc, Y.-G., and Antoniol, G. (2011). An empirical study
of the impact of two antipatterns, blob and spaghetti code, on program comprehension.
In 2011 15th european conference on software maintenance and reengineering, pages
181-190. IEEE.

AlAbwaini, N., Aldaaje, A., Jaber, T., Abdallah, M., and Tamimi, A. (2018). Using
program slicing to detect the dead code. In 2018 8th International Conference on
Computer Science and Information Technology (CSIT), pages 230-233. 1EEE.

Almashfi, N. and Lu, L. (2020). Code smell detection tool for Java Script programs.
In 2020 5th International Conference on Computer and Communication Systems (IC-
CCS), pages 172-176. IEEE.

Amorim, L., Costa, E., Antunes, N., Fonseca, B., and Ribeiro, M. (2015). Experience
report: Evaluating the effectiveness of decision trees for detecting code smells. In
2015 IEEE 26th international symposium on software reliability engineering (ISSRE),
pages 261-269. IEEE.

Antunes, N. and Vieira, M. (2015). On the metrics for benchmarking vulnerability de-
tection tools. In 2015 45th Annual IEEE/IFIP international conference on dependable
systems and networks, pages 505-516. IEEE.

Arcelli Fontana, F., Mintyld, M. V., Zanoni, M., and Marino, A. (2016). Comparing
and experimenting machine learning techniques for code smell detection. Empirical
Software Engineering, 21(3):1143-1191.

Azeem, M. 1., Palomba, F., Shi, L., and Wang, Q. (2019). Machine learning techniques for
code smell detection: A systematic literature review and meta-analysis. Information
and Software Technology, 108:115-138.

Banker, R. D., Datar, S. M., Kemerer, C. F.,, and Zweig, D. (1993). Software complexity
and maintenance costs. Communications of the ACM, 36(11):81-95.

Fard, A. M. and Mesbah, A. (2013). Jsnose: Detecting Javascript code smells. In 2013
IEEE 13th international working conference on Source Code Analysis and Manipula-
tion (SCAM), pages 116-125. IEEE.

Fontana, F. A., Braione, P., and Zanoni, M. (2012). Automatic detection of bad smells in
code: An experimental assessment. J. Object Technol., 11(2):5—1.

Fontana, F. A., Zanoni, M., Marino, A., and Mintyld, M. V. (2013). Code smell detection:
Towards a machine learning-based approach. In 2013 IEEFE international conference
on software maintenance, pages 396-399. IEEE.

Fowler, M. (2018). Refactoring: improving the design of existing code. Addison-Wesley
Professional.

Khomh, F., Penta, M. D., Guéhéneuc, Y.-G., and Antoniol, G. (2012). An exploratory
study of the impact of antipatterns on class change-and fault-proneness. Empirical
Software Engineering, 17(3):243-275.

Maiga, A., Ali, N., Bhattacharya, N., Sabane, A., Guéhéneuc, Y.-G., and Aimeur, E.
(2012). Smurf: A svm-based incremental anti-pattern detection approach. In 2012
19th Working Conference on Reverse Engineering, pages 466-475. IEEE.

Maneerat, N. and Muenchaisri, P. (2011). Bad-smell prediction from software design
model using machine learning techniques. In 2011 Eighth international joint confer-
ence on computer science and software engineering (JCSSE), pages 331-336. IEEE.

Marinescu, R. (2004). Detection strategies: Metrics-based rules for detecting design
flaws. In 20th IEEE International Conference on Software Maintenance, 2004. Pro-
ceedings., pages 350-359. IEEE.

Nguyen, H. V., Nguyen, H. A., Nguyen, T. T., Nguyen, A. T., and Nguyen, T. N. (2012).
Detection of embedded code smells in dynamic web applications. In 2012 Proceedings
of the 27th IEEE/ACM International Conference on Automated Software Engineering,
pages 282-285. IEEE.

Obbink, N. G., Malavolta, L., Scoccia, G. L., and Lago, P. (2018). An extensible approach
for taming the challenges of Javascript dead code elimination. In 2018 IEEE 25th In-

ternational Conference on Software Analysis, Evolution and Reengineering (SANER),
pages 291-401. IEEE.

Padilha, J., Pereira, J., Figueiredo, E., Almeida, J., Garcia, A., and Sant’ Anna, C. (2014).
On the effectiveness of concern metrics to detect code smells: An empirical study. In
International Conference on Advanced Information Systems Engineering, pages 656—
671. Springer.

Parnas, D. L. (1994). Software aging. In Proceedings of 16th International Conference
on Software Engineering, pages 279-287. IEEE.

Tamburri, D. A., Palomba, F., Serebrenik, A., and Zaidman, A. (2019). Discovering com-
munity patterns in open-source: a systematic approach and its evaluation. Empirical
Software Engineering, 24(3):1369—-1417.

Yamashita, A. and Moonen, L. (2013). Exploring the impact of inter-smell relations on
software maintainability: An empirical study. In 2013 35th International Conference
on Software Engineering (ICSE), pages 682—-691. IEEE.

