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Abstract. This paper addresses the problem of real-time short-term multi-
period off-gas prediction in a steel making batch process, denominated Linz-
Donawitz Gas (LDG). Baselines, heuristic statistical methods, multi-modal mul-
tivariate Long Short-Term Memory (LSTM) and Ensemble Gradient Boosting
Decision Tree (GBDT) strategies were proposed and compared. Proposed me-
thods, mixing classification and regression tasks, achieved good results on reco-
verable LDG prediction, establishing a benchmark on subject for future works.
Experiments suggest improvements from 19.4% to 15.85% on average in mean
absolute percentage error (MAPE) over recent reviewed papers within a similar
scenario at same steel making plant.

1. Introduction
It is undeniable that steel is fundamental for the world development. Due to its relevance,
steel production occupies a prominent position in the global economy. In an integrated
steel making plant, there are many phases until the final product and, for competitively and
efficiency, each step must be optimized and byproducts, generated in intermediate phases,
must be harnessed. In the process to convert iron into a steel, molten iron and scrap are
charged into a vessel called basic oxygen furnace (BOF) converter or just converter. Then,
oxygen is blown with high pressure inside the converter to reduce carbon on total mass.
This process produces an off-gas rich in carbon monoxide (CO) and carbon dioxide (CO2).
By the end of steel making process, the percentage of carbon in converted liquid steel will
be lower than 1%, for commercial steel grades.

The decarburization process using top blowing oxygen on BOF is referred as Linz-
Donawitz (LD) process, in honor to Linz and Donawitz cities in Austria, pioneers on this
process. This way, the BOF is also known as LD converters [Fruehan 1998]. Oxygen
blowing time vary typically from 15 to 30 minutes, while total conversion time vary from
30 to 40 minutes, and this process is commonly called heat or batch of liquid steel pro-
duction [de Oliveira Junior et al. 2016]. The off-gas generated during oxygen blow is
called Linz-Donawitz Gas (LDG). As this gas has a moderate calorific power due to high
carbon monoxide (CO) concentration, it is commonly used as fuel for many subsequent
processes on an integrated steel making plant, such as power plants. As a byproduct of
steel making process, the LDG is correlated with production plan and activities.

LDG is an off-gas with variable chemical composition. It is considered recove-
rable when carbon monoxide (CO) content percentage reaches at least 25%, as typical
value, [Fruehan 1998] and oxygen (O2) below 2.5%, as illustrated in Figure 1. This fi-
gure indicates the percentage of main gases present on LDG (O2, CO2, CO e N2) and its



variation over a typical oxygen blowing. At beginning and ending of blowing in BOF, the
percentage content of CO is insufficient to classify the off-gas as recoverable. In general,
the main recoverable LDG area is situated in the middle of heat time, highlighted between
the vertical dotted lines.

Figure 1. Typical LDG chemical concentration curve over time [Li et al. 2011]

According to works of Pena et al. [Pena et al. 2019], it was possible to predict
steel making industry off-gas, including LDG, using statistical techniques. However,
those auto-regressive techniques commonly fail to deliver good results on fast changing
non-linear scenarios, which is characteristic of LDG batch generation. To minimize this
impact, Pena et al. [Pena et al. 2019] proposed a post-processing heuristic over prediction
of LDG using production data and statistical moving average techniques. In that inves-
tigation, three BOF in the same industrial plant of present work were analyzed, scoring
17.7%, 19.1% and 21.4% in mean absolute percentage error (MAPE) metric, and with
average of 19.4% for all BOF. According to Colla et al. [Colla and et. al. 2019], similar
results were obtained using recurrent neural networks for LDG prediction, scoring from
10% to 18% MAPE (10% on average for short-term forecasts), unfortunately lacking
more robust benchmark numbers. At Wang et al. [Wang et al. 2020] paper, comparable
relative metrics, like MAPE, for recoverable LDG results are missing.

In this paper, we propose 6 strategies, being 2 baseline benchmarks, 2 using
multi-modal multivariate GBDT models and 2 using multi-modal multivariate LSTM
neural network models, to predict multi period short-term generation of recoverable
LDG. Multi-modal in this paper is composed by a temporal modal (multivariate sensor
data) and a tabular modal (production system data), commonly present on any similar
steel making production process. GBDT was chosen due to its performance when com-
pared with model for tabular data or more complex deep learning models, as presented
in [Gorishniy et al. 2021]. Recurrent neural networks strategies are frequently used
for industrial scenarios involving time series [Colla and et. al. 2019, Wang et al. 2020,
Zhao et al. 2018], being LSTM block one of most recent, flexible, and robust architecture
for this purpose. The numerical results suggests that our strategies, to predict short-term
generation of recoverable LDG, can establish a benchmark on literature.

We highlighted that the use of this multi-modal multivariate strategy in recover-
able LDG generation prediction is the first contribution of this work. In addition, mixing
classification and regression tasks improved results with a state-of-art architecture on sub-



ject, learning from time series and production data directly and simultaneously, reducing
dependencies on experts’ knowledge to build complex heuristics or more complex mo-
dels. The second contribution of this paper is to establish a new benchmark on subject for
future works.

The remainder of this paper is structured as follows: Section 2 describes used
dataset, presenting an exploratory analysis; Section 3 presents model architectures, data
transformation pipelines and hyper parameters configuration; Section 4 describes met-
rics; Experiments description and numerical results were presented in Section 5; finally,
Section 6 provides some concluding remarks.

2. Exploratory analysis and variable selection
The investigation was performed on data from three BOF, that were labeled as 1, 2, and
3. The Figure 2 shows a typical production day from BOF 1. The first graph (time series)
represents CO concentration on LDG (in %), the second graph (time series) represents
the flag of recoverable LDG thresholds over time, and third (time series) represents BOF
off-gas flow (in kNm3/h). It is possible to observe that all series have characteristics of
non-linearity over time and batch processing.

Figure 2. Typical day at BOF 1 production

2.1. Data Sources
In this work, each BOF data was collected from time series modal of LDG/BOF sensors
and tabular modal from production system software. For time series data, we collected the
main variables present on related works and added others from interviews with business
process experts [Pena et al. 2019, Wang et al. 2020]. Time series were extracted with 1-
minute frequency and aggregated by median values. For production data, the historical
of heats were extracted from main production control systems. From heats on each BOF
history, production plan and actual values were extracted. The join between temporal
data and production data was made using the oxygen blowing actual start date. Over
this collected time frame, many operational modes can be observed, such as different
production rates, partial BOF maintenance and total production stoppage.

2.2. Production data analysis
From production tabular data, were extracted the chemical analysis information of molten
iron (% of C, S, P, Mn, Si, etc.), percentage rates of scrap by heat, codes (or strategies)



of O2 blowing, molten iron weight and BOF code number. The real data from produc-
tion history were just used as predictors 10 minutes before the planned production start
date time. Thus, it was considered the availability of those variables at this time because
they are mandatory to start the production process on BOF, and usually they are available
as soon as the production system collect the real information. Moreover, complemen-
tary data were computed with predictors, for instance, planned oxygen blowing start date
(minutes), planned blowing duration time (minutes). These times were calculated based
on production scheduling before heat stars. Therefore, the model will have all the sim-
ulated available actual data from production and planned process states at the current
moment t.

2.3. Variable selection and generation of samples

Due to the large number of process variables and sensors (order of thousands), the use
of every data available makes the problem almost impractical. Then, a pre-selection of
variables was done by business knowledge and experiments.

Table 1. Summary of process selected tabular data and time series variables

Tabular variables per heat Units and comments

Molten iron chemical analysis % of C,Cr,Cu,Mn,P,S,Si,Ti in molten iron
Planned O2 blowing total volume kNm3

Planned scrap rate % of total weight
Actual scrap rate before O2 blowing start % of total weight or null if not available
Planned time duration of O2 blowing in minutes
O2 blowing strategy (planned and actual) code identifiers
Molten iron weight in tons
O2 blowing run-time counter in minutes or null if O2 blowing didn’t started
Countdown timer for O2 blowing start in minutes (can be negative if delayed)
Time series variables Units and comments

Gas chemical concentration analysis % of CO,CO2 and O2 on BOF off-gas
BOF off-gas flow in kNm3/h
O2 lance activation flag binary
O2 blowing strategies (planned and actual) code identifiers
O2 blowing duration (planned and actual) in minutes

Five main time series variables were used: BOF off-gas percentage concentration
of CO, CO2, O2, off-gas flow (kNm3/h), and a binary variable for O2 lance activation flag.
Historian of planned and actual O2 blowing strategy codes were computed over time based
on production data. Planned and actual blowing duration were computed over time as
well. In summary, 9 time series and 36 tabular data variables, from production system
were selected, as described in Table 1. Tabular data includes variables for next 2 heats in
production schedule.

The strategy of sampling data follows a multi-modal pattern, where each sample
has two groups of different data modal, defined as time series variables and process ta-
bular data. Each training sample contain its own multi-modal data, including time series
variables with the last 120 minutes values at time t, tabular process variables with next
2 scheduled heats at time t. Samples include answers for next 60 minutes of continuous
LDG generation values, its binary quality threshold of recoverable LDG and real blowing
start delays. Generation of samples were done by applying a rolling window strategy with



1-minute frequency. During this process, no scaling or learning tasks are applied to all
data before train/validation and test split. Incomplete samples and outliers are discarded.
For this work, based on business experience, samples with blowing start delays greater
than 30 minutes are identified as outliers and excluded.

3. Methods

Figure 3. Model architecture for recoverable LDG prediction - Ensemble GBDT

The modeling proposed in this work compares an Ensemble Gradient
Boosting Decision Tree (GBDT) [Friedman 2001, Ke et al. 2017] and a multi-
modal multivariate recurrent neural network Long Short-Term Memory (LSTM)
[Staudemeyer and Morris 2019]. Models were designed to accept as input samples of
multi-modal data, like time counters, molten iron weight and chemical analysis, volume
of oxygen blowing and time series sensors. Similar multi-modal design was proposed by
Sala et al. [Sala et al. 2018], however applicable to a different steel making problem.

For GBDT architecture, data are inputted on transformation pipeline to feature
extraction and aggregation process, creating the models’ inputs, as illustrated in Figure
3. As the figure presents, tabular data indexed by time and heat variables (production
sequences, chemical analysis, molten iron weight, oxygen blowing strategies, O2 blow-
ing programmed volumes and scrap percentage) are processed on feature engineering
block and concatenated with data coming from time series feature engineering. The com-
bination of these features generates Xt, which t is the current point in the time where
model will predict the next 60 minutes of recoverable LDG. The predictions are denoted
ŷt+i, i ∈ {1...60}. For each t, multiple models were trained in parallel for multiple strate-
gies of prediction implemented in this work. Multi-period regressors are trained to predict
BOF off-gas flow and multi-period binary classifiers to predict future threshold of reco-
verable LDG (where CO > 25% and O2 < 2, 5%) for each t+ i. Following the same idea
presented in [Ke et al. 2017] for LightGBM, the GBDT implementation does not support
multiple outputs on a single trained model, hence the strategy used was to train multiple
models for multi-period prediction, with one model for each value predicted on ŷt+i.

The same basic architecture mechanism present in Figure 3 were adapted to pre-
dict recoverable LDG using recurrent neural networks. Nevertheless, eliminating the time



Figure 4. Multi-modal multivariate LSTM network architecture

Figure 5. PROG-Baseline post pro-
cessing strategy

Figure 6. [GBDT/LSTM]-MM-PROG
post processing strategy

series feature extraction and Ensemble GBDT by multi-modal multivariate LSTM with
an appropriate pipeline. The architectural diagram of multi-modal multivariate LSTM
models can be observed in Figure 4. In this figure, both tabular and time series data
pass through a transformation pipeline, detailed in Section 3.1, to prepare the input data
for neural network blocks. Input layers consider a specific neural network appropriated
blocks for each modal, with different data shapes. For tabular data, multi-layer percep-
tron (MLP) architecture was chosen due to its simplicity and capability to be applicable
as a sanity check model for tabular data [Gorishniy et al. 2021]. Two dense layers fully
connected were used, with node numbers described on Figure 4 for each layer, by ex-
periments. For time series data, LSTM cells were used. The concatenation block join
exits from previous model layers and send to a fully connected final dense layer and out-
put activation, according to prediction task. This strategy layout was based on Ofli et al.
[Ofli et al. 2020] work, however adapting the modal blocks to multivariate time series and
tabular data.

As illustrated in Figure 3, the post processing block strategy is applied to join
trained model results and return final predictions. Six different post processing strate-
gies were implemented and compared: 1st and 2nd are baseline strategies, named ZERO-



Baseline and PROG-Baseline, respectively; 3rd and 4th are based on trained GBDT
strategies, named GBDT-MM-PROG and GBDT-MM-MIX; and, 5th and 6th are multi-
modal multivariate LSTM trained strategies, named LSTM-MM-PROG and LSTM-
MM-MIX.

ZERO-Baseline is a trivial method predicting zero values for all i in ŷt+i. It mea-
sures how unbalanced the recoverable LDG flag is for binary classification. If batches are
sparse over time and delays are frequent, no prediction can be a good prediction. PROG-
Baseline uses just steel making production data plan and statistics, using the scheduled O2

blowing start time and duration for each planned heat in next 60 minutes, adjusting them
by mean of O2 blowing start delays (in minutes) and mean of recoverable LDG on training
data. The returns of post processing predictions are the recoverable LDG, as illustrated in
Figure 5. All next strategies should outperform these benchmarks.

Figure 7. Post processing of mixed classifier and regressor strategies

GBDT-MM-PROG and LSTM-MM-PROG follows the same basic rules of post
processing of PROG-Baseline, however adding trained model of delays in planned O2

blowing start and exchange the statistical calculated means and duration by recoverable
LDG curve prediction models, as presented in Figure 6. The reason to predict delays over
planned O2 blowing start time instead of predicting patterns of gaps between heats (time
series model only approach) is related to the non-stationary production rate over time.
Delays over time tends to be more stable and stationary, since industrial operators try, as
much as possible, to execute production as planned.

GBDT-MM-MIX and LSTM-MM-MIX are the main strategies implemented in
this work, using multi-output models to predict the continuous BOF off-gas flow and
multi-output binary classifiers to predict recoverable LDG threshold over forecast horizon
ŷt+i. For each ŷt+i, the regressor and binary classifier models’ outputs are multiplied
to mix the results, returning the final post processed prediction of recoverable LDG, as
presented in Figure 7. From this simple strategy, delays, gaps, thresholds, and curve
shapes are all inferred by model using multi modal data as input at once.

These strategies were motivated by non-linearity and batch process behavior, ob-
served on recoverable LDG, as well as the need to multi-period prediction ŷt+i for each
Xt. On preliminary experiments, none of single regression model, GBDT or LSTM, with-
out specific strategy for this batch process could straightforward achieve good results on
recoverable LDG problem. This characteristic was also observed by correlated studies
[Pena et al. 2019, Wang et al. 2020].



3.1. Data transformation pipeline and model hyper parameters

During the training task, the transformation pipeline learns statistical and scaling parame-
ters, as well as feature extraction parameters when applicable. In both model strategies,
ensemble or neural networks, a method to properly fill the missing data and outliers is
performed. In these cases, historical average during recoverable LDG moments for each
variable was filled. Real recoverable LDG values are scaled between 0 and 1. For evalu-
ation and prediction tasks on test samples, the trained pipeline is applied.

Specifically for ensemble GBDT models, transformation pipeline extract features
from time series. The feature chosen by experiments were statistical metrics of mean,
standard deviation, median, energy and percentiles. In addition, the last 5 minutes of
each time series were kept as features. For neural network models, the preprocessing
pipeline for time series scales all features in datasets, converting the raw values to numbers
between −1 and 1. Also, categorical data from tabular modal are binary encoded during
the training, and categories that do not exist on training are ignored on prediction task.

For GBDT models, all hyper parameters were kept standard, as describe on Light-
GBM [Ke et al. 2017] library documentation used in this work (version 3.3.2)1. It is
aligned with the purpose of this paper, on establishing comparison baselines. For multi-
modal multivariate LSTM model, the hyper parameters of number of nodes on layers
were described on each block in Figure 4. All other parameters are present on Table 2,
and follow typical values present on TensorFlow/Keras [Abadi et al. 2015] library docu-
mentation (version 2.6)2 or were chosen by experiments.

Table 2. Hyper parameters for multi-modal multivariate LSTM models

Blocks Layers Numbers Activation Dropout

Time series modal block LSTM 32 tanh 0.2
Tabular modal block Dense 2 relu 0.2
Regression output block Dense 1 linear -
Binary Classifier ouput block Dense 1 sigmoid -

Optimizer Early Stop Patience Restore best values

Adam val loss 20 epochs Yes

Train tasks Epochs Batch Learning rate

1st - partial fit 10 2000 0.001
2nd - final fit 1000 200 0.0005

More hyper parameters Loss function Validation split

Regression Mean Square Error 0.2
Classifier Binary Cross Entropy 0.2

4. Metrics
The performance metrics chosen were root mean square error (RMSE), mean abso-
lute error (MAE), mean absolute percentage error (MAPE). RMSE (Equation 2) and
MAE (Equation 3) give an idea of the magnitude of error in kNm3/h, while MAPE
(Equation 1) give an idea of relative error over different BOF LDG predictions. All
chosen metrics are commonly used in comparable problems and general forecast-
ing problems [Colla and et. al. 2019, Luca Avila and De Bona 2020, Pena et al. 2019,

1https://lightgbm.readthedocs.io/en/v3.3.2/index.html
2https://www.tensorflow.org/versions/r2.6/api docs/python/tf

https://lightgbm.readthedocs.io/en/v3.3.2/index.html
https://www.tensorflow.org/versions/r2.6/api_docs/python/tf


Zhao et al. 2018]. This work also introduced the use of a different metrics for this type
of problem, Precision and Accuracy (Equations 4 and 5). They are commonly used in
classification problems, but as we mixed regression and binary classification models, the
correct indication of when LDG will be recoverable is so important as its absolute value
prediction. Dealing with MAPE singularity issue, the metric MAPEadj were defined
(Equation 6) and will replace MAPE scores on results. Similar adjustment was made in
comparable paper [Pena et al. 2019].

MAPE =
100

n

(
n∑

t=1

∣∣∣∣yt − ŷt

yt

∣∣∣∣
)

(1)
RMSE =

√√√√ 1

n

n∑
t=1

(yt − ŷt)
2 (2)
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n
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|yt − ŷt| (3)
Precision =

∑
True positive∑

True positive +
∑

False positive
(4)

Accuracy =

∑
True predict∑

Predict
(5)

MAPEadj =

MAPE(yt, ŷt), (|yt| > 1)
100, (|yt| ≤ 1) ∧ (|ŷt| > 1)
0, (|yt| ≤ 1) ∧ (|ŷt| ≤ 1)

(6)

5. Experiments and Results

The experiments were accomplished for each BOF independently. Unfortunately, due to
the specific equipment and sensors characteristics of each BOF, it was not possible in this
work to generalize a model to all converters. For training and validation, this work used
279059, 325434 and 335071 multi-modal samples from BOFs 1, 2, and 3, respectively.
We used 80% of samples in the training and 20% on validation. For test were used 83776,
87139 and 106383 samples from BOF 1, 2 and 3, respectively. It must be highlighted that
test samples were not used in any training or validation tasks, and they were sampled after
dates of train/validation datasets. Samples are defined as described in Section 2.3

Table 3. Table of results by BOF and model prediction strategy

Model BOF MAPEadj(↓) RMSE(↓) MAE(↓) σMAE(↓) Accuracy(↑) Precision(↑)

ZERO-Baseline BOF1 27.33 103.34 53.63 0.48 0.727 0
PROG-Baseline BOF1 22.48 92.52 45.93 3.43 0.803 0.606
LSTM-MM-PROG BOF1 16.94 79.08 33.48 8.74 0.838 0.709
GBDT-MM-PROG BOF1 16.86 78.52 33.38 9.51 0.840 0.715
LSTM-MM-MIX BOF1 15.62 74.61 30.97 9.10 0.857 0.746
GBDT-MM-MIX BOF1 15.15 73.44 30.07 9.44 0.861 0.759
ZERO-Baseline BOF2 27.86 106.57 54.93 0.70 0.721 0
PROG-Baseline BOF2 24.23 86.87 45.51 3.44 0.799 0.605
LSTM-MM-PROG BOF2 19.79 79.14 37.44 9.68 0.834 0.705
GBDT-MM-PROG BOF2 19.53 78.62 37.06 10.14 0.836 0.711
LSTM-MM-MIX BOF2 16.82 70.50 31.70 9.01 0.865 0.766
GBDT-MM-MIX BOF2 16.34 69.29 30.77 9.40 0.869 0.780
PROG-Baseline BOF3 25.31 66.73 36.09 2.08 0.795 0.556
ZERO-Baseline BOF3 24.68 69.21 32.58 0.40 0.753 0
GBDT-MM-PROG BOF3 17.78 52.99 23.64 5.83 0.852 0.695
LSTM-MM-PROG BOF3 17.76 52.67 23.47 5.60 0.850 0.693
LSTM-MM-MIX BOF3 16.68 51.20 22.30 6.11 0.863 0.734
GBDT-MM-MIX BOF3 16.06 49.93 21.41 5.83 0.870 0.748
GBDT-MM-MIX (best) All 15.85 64.22 27.42 8.22 0.867 0.762



Table 4. Table of results on MAPEadj over prediction time horizon

Model BOF Ŷ(t+1 ... t+10) Ŷ(t+11 ... t+20) Ŷ(t+21 ... t+30) Ŷ(t+31 ... t+40) Ŷ(t+41 ... t+50) Ŷ(t+51 ... t+60)

PROG-Baseline BOF1 19.34 21.60 23.64 24.13 23.67 22.51
LSTM-MM-PRO BOF1 8.84 13.91 18.85 20.22 20.07 19.73
GBDT-MM-PROG BOF1 7.96 13.95 18.96 20.27 20.15 19.86
LSTM-MM-MIX BOF1 6.88 12.99 17.17 18.89 19.12 18.69
GBDT-MM-MIX BOF1 6.05 12.73 16.69 18.65 18.49 18.27
PROG-Baseline BOF2 21.09 23.93 25.77 25.90 25.11 23.57
LSTM-MM-PRO BOF2 10.51 16.90 22.24 23.58 23.17 22.35
GBDT-MM-PROG BOF2 9.85 16.45 21.95 23.47 23.11 22.35
LSTM-MM-MIX BOF2 7.93 14.03 18.34 20.25 20.28 20.09
GBDT-MM-MIX BOF2 7.24 13.13 17.71 20.23 20.09 19.67
PROG-Baseline BOF3 23.46 26.14 26.20 26.52 25.72 23.84
LSTM-MM-PRO BOF3 9.82 15.91 20.13 20.52 20.33 19.81
GBDT-MM-PROG BOF3 9.57 15.85 20.20 20.67 20.47 19.91
LSTM-MM-MIX BOF3 8.00 14.38 18.76 19.69 19.86 19.37
GBDT-MM-MIX BOF3 7.63 13.60 17.96 19.19 19.08 18.91
GBDT-MM-MIX (best) All 6.97 13.15 17.45 19.36 19.22 18.95

Table 3 presents an overview of results, grouped by BOF and sorted by metric
MAPEadj . Standard deviation of MAE (σMAE) was also included. All proposed strate-
gies outperform ZERO-Baseline and PROG-Baseline for all BOF. Highlighted on BOF3,
ZERO-Baseline MAPEadj outperform PROG-Baseline, due to higher delays over plan-
ning. All MIX strategies, on MAPEadj , outperform it’s counterpart PROG strategy by at
least 1% point, and GBDT-MM-MIX outperform PROG-Baseline by at least 7% points.
GBDT-MM-MIX also improved Accuracy and Precision over all models, increasing the
reliability of predictions. In the end of Table 3, it’s included the best model with the
average of its metrics for all BOF.

Table 4 present results of MAPEadj aggregated by 10-minute predictions. It is
possible to observe, highlighted at end, that almost all strategies first 30-minutes have
better scores than last 30-minutes. Even though models have worse performance on last
30-minutes, they outperform PROG-Baseline strategy, which is the default information
provided by production planning system from any BOF.

The Figure 8 shows four frame examples in rolling time window on every 5 min-
utes. PROG-Baseline, LSTM-MM-MIX and GBDT-MM-MIX predictions are compared
with ground truth values (Real Recoverable LDG). These 4 frames also show the evolu-
tion of predictions over time. On 1st frame, PROG-Baseline predicted starts for next 2
heats, but real values are delayed by 3 and 5 minutes respectively (last delay visible on
2nd frame). At 2nd frame, model predictions were very close to curve shape and actual
values, but both missing 1 minute at end of first heat and 1 minute at start of second. On
3rd and 4th frames, first heat is finishing and the second is planned on last 30-minutes.
Both models predicted reasonably well the recoverable LDG start and end, but couldn’t
predict the shape of the curve, averaging the predictions over time, exemplifying worse
performance on Table 4 for last 30-minutes.

As presented results in Table 3, proposed models succeeded in predict the multi
period recoverable LDG using multi-modal multivariate mixed strategies. Result sug-
gests an improvement compared to Pena et al. [Pena et al. 2019] work at same industrial
plant. Analyzing the prediction horizon 4, the scores obtained by best strategy on average



Figure 8. Four samples of predictions in rolling time window on test dataset

were between 6.97% and 19.36%, which are better for very short-term predictions when
compared to results in Colla et al. [Colla and et. al. 2019] (6.97% against best 10%).

6. Conclusions
The objective of this paper is to compare and improve strategies for recoverable LDG
prediction found in the literature. The mixed strategy proposed in this work suggests,
by experiments, that both multi-modal multivariate LSTM and GBDT has potential to
predict recoverable LDG generation over time. Besides the application presented, the
architectures proposed can be adapted to any industrial process by batch with a time series
predictions.

Beyond just quantitative metrics, each model has its own qualitative advantages
and disadvantages. GBDT on open-source available libraries, for instance LightGBM
used, could not train multi output in a single model and demands a feature engineering
pipeline over time series. Recurrent neural networks are more flexible architecture, being
able to be trained for multiple outputs, multi-modal multivariate data and learning to
extract features on time series. Moreover, the LSTM proposed strategy achieved second
best results systematically on test datasets.

Finally, no hyper parameter optimization or more complex deep neural networks
were exhaustively explored. Future works can further improve the contributions presented
by focusing efforts on hyper parameters optimization, improve feature extraction from
time series, review new proposals of GBDT for multi output training or compare results
with new Transformer neural architectures.
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