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Abstract. The forecasting problem is one of the main applications arising from
the synergy between finance and artificial intelligence. With the advancement
in the field of deep learning, some ANN achieved very satisfactory results and
gained more attention. One approach to increase the time series forecasting
model’s performance is ensemble models, combining each model’s prediction
(stacking). However, there are some difficulties in combining and evaluating
these models for a good performance in financial time series. We use synthetic
and real-world time series to evaluate the model stacking, trying to understand
the main financial time series components. Using this ensemble method, we
reduced the prediction error for both scenarios.

1. Introduction
Time series forecasting is a research subject that has been around for a long time with
various application topics such as life sciences, medicine, business decision-making,
finance, climate modeling and physics, to name a few. Time series models are constantly
developing and, more recently, have incorporated machine learning as a crucial solution
tool in many situations. The first approaches used mathematical and statistical models
such as regression, auto-regressive, exponential smoothing, and even structural time series
models. All these models depend on the underlying function to explain the relationship
between the responses and explanatory variables. At the same time, modern machine
learning methods are generally entirely data-driven.

Artificial neural networks (ANN) arise from biology, and from the first proposed
models, a great diversity of derivations of it emerged. For example, long short-term
memory (LSTM) is a type of ANN that can capture long and short-time dependencies, and
it was introduced in 1997 by [Hochreiter and Schmidhuber 1997] with many applications
that employ this architecture, including stock price prediction [Selvin et al. 2017]. The
research community improved and created new ANN architectures based on these
architectures and ingenious techniques. Architectures based on LSTM and convolutional
neural networks (CNN) are now being employed on multivariate and univariate time
series forecasting [Sezer et al. 2020]. Although CNN approaches are usually associated
with image processing, recent works have shown that the CNN architectures also have
competitive results for the time series forecasting and time series classification domain
[Ismail Fawaz et al. 2019].

We can extract better performance by employing different architectures of
artificial neural networks. Some training techniques combine different architectures based
on the performance of the training data set. When performing these combinations, we
need to consider what was obtained through the training data and what will be reflected in



the test data. As the finance series has a high noise level, their analysis is quite uncertain
and usually requires testing on several different data sets. To better understand the factors
affecting different architectures’ performance and verify the generalization capacity of
neural networks in different situations, we used synthetic series generated by different
mathematical processes. We show that some synthetic series generation processes better
reflect the behavior obtained in real-world series. Furthermore, combining different
networks outperforms individually trained architectures for most real-world activities. We
summarize the contributions of this work in the:

1. We propose an ensemble of state-of-the-art deep learning approaches to predict
financial time series outperforming all the individual methods.

2. We compare the results obtained in the real-world time series with the
synthetically generated ones, highlighting possible characteristics or components
of the real-world data that the synthetic time series can simulate.

2. Brief review of the time series modeling using DL

With the appearance of the LSTM method [Hochreiter and Schmidhuber 1997] research
community shifted its attention to testing it. Using a combination of the decoupled
extended Kalman filter learning and LSTM, [Pérez-Ortiz et al. 2002] presents impressive
results considering LSTM limitations on learning over a long sequence of symbols.
[Cheng et al. 2006] presents favorable positive results for the vanilla recurrent neural
network (RNN), which outperformed the multilayer perceptron (MLP) on a multi-step-
ahead prediction problem using multiple data sets for comparison. Throughout the years,
LSTM and other RNN architectures remained a baseline for applications in time series
predictions. For instance, we can observe in [Sezer et al. 2020] how RNN dominated
almost all of the period of 2005 to 2019 for time series forecasting in financial markets.
More recently, we have observed convolutional methods in the time series forecasting for
finance.

CNN emerges as an alternative solution in the deep learning (DL)
domain for time series forecasting/classification employed on various applications
[Ismail Fawaz et al. 2019], [Sezer et al. 2020]. One of the first applications of CNN in
the time series classification was in the work of [Zheng et al. 2014], outperforming the
MLP. Other applications merged time series modeling and CNN, which was the case of
[Yang et al. 2015] that applied the CNN architecture to recognize human activity from
body-worn inertial sensors. [Di Persio and Honchar 2016], compared the CNN method
against the MLP and RNN methods and surpassed them when analyzing the root mean
square error (RMSE) accuracy metric. CNN was used to predict future stock prices trend
(up or down), but using the order book as input. When analyzing the precision and recall
metrics, CNN architecture overcomes the compared methods, MLP, and support vector
machine (SVM). More recently, [Wang et al. 2019] employed CNN for the multivariate
problem compared with a set of usual techniques such as auto-regressive, MLP, LSTM,
and other machine learning methods was presented a different approach for multivariate
time series forecasting applying CNN surpassing the contender algorithms. As we
perceive in [Ismail Fawaz et al. 2019] work, we see more techniques using CNN for time
series models, such as residual network (RESNET) and fully convolutional networks
approaches.



The idea of an ensemble model combining ANN is not so recent, as can
be seen in [Dietterich 2000] and [Jin et al. 2004]. These models combine different
architectures of neural networks and treat them as large neural networks. We can see some
applications related to time series in epilepsy detection [Akyol 2020] and applications in
forecasting [Maqsood et al. 2004]. Here we propose an ensemble based on best time
series forecasting deep neural network architectures with RESNET, CNN, and LSTM.
The next chapter will give more details about how this ensemble was assembled.

3. Methods
We divide this section into three topics: A summary of the models employed for time
series forecasting, a description of the synthetic time series generation techniques, and
present metrics for evaluation.

3.1. Predictor models

3.1.1. LSTM, CNN and RESNET

Long Short-Term Memory (LSTM) architecture is a variant of the recurrent networks
that can capture the series’s long and short-term time dependencies. LSTM has an
internal gate mechanism regulating the information flow carrying the relevant learning
through the sequence processing. This architecture is commonly used in time series
forecasting, obtaining state-of-the-art results in many cases [Hu et al. 2021]. Some
application examples are stock price prediction [Selvin et al. 2017], acoustic modeling,
speech recognition, and weather forecasting.

Convolutional Neural Networks (CNN) have convolutional kernels acting like
each neuron’s receptive field. CNN is inspired by the optical nervous system
and was initially designed for two-dimensional shape recognition. The architecture
CNN gained greater visibility in 2012 due to competitions such as ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [Krizhevsky et al. 2012], considerably
surpassing previous years’ results. Recent works have extended the use of CNN
for time series, natural language processing, and financial time series [Hu et al. 2021]
[Lim and Zohren 2021]. Here we use CNN adapted for 1D time series applications.

The Residual Network (RESNET) [He et al. 2016] is an ANN architecture
proposed to solve image classification problems. One of the main benefits is that the
RESNET can deal better with the vanishing or exploding gradients that very deep nets
may face. The mechanism of the RESNET relies on the approximation of the residual
maps F(x), employing a block of stacked convolutions layers and using a short skip
connection to feed the block output. More recently, works have been employing the
RESNET architecture with slight modifications to solve time series problems such as
prediction and classification [Ismail Fawaz et al. 2019].

3.1.2. Ensemble modeling

Ensemble modeling is a way of stacking neural networks into a package to work as
a single predictor. Here we have a combination that uses the values generated by
each predictor in the set. Besides this adopted method, there are also other ensemble



approaches. Figure 1 shows how we ensemble the three different neural networks. The
stacking models give the predictor instance the loss value from the training and errors for
the testing series. Once we select the model by the smallest loss in the training set, we
return the error for the model picked. The input dataset is divided into training, validation,
and testing, and then it is inserted into the ensemble with RESNET, CNN, and LSTM,
where the learning and prediction of each model are processed. Then, the predictor
selection is made based on the neural network that generated the smallest training loss,
this network is selected, and its error values are selected as the error of the ensemble
model. The tests performed in this work present how prediction capabilities can be
improved by stacking networks.
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Figure 1. Left: Ensemble model scheme. Right: RESNET, CNN, and LSTM
network architectures ensemble components.

3.1.3. Auto-regressive integrated moving average

In addition to ANN, the research community applies classical methods, such as auto-
regressive integrated moving average (ARIMA), as a baseline. ARIMA relies on the
fundamental principle that the future values of a time series came from a linear function
of past observations and white noise terms. The ARIMA model pioneered by Box and
Jenkins is the most popular and effective statistical model for time series forecasting.

3.2. Synthetic time series generation and real-world data

3.2.1. ARMA, harmonic and Gaussian noise

Although financial time series generally do not present simple auto-correlations, we
employed an auto-regressive moving average (ARMA) as a less complicated problem.



We assume that if the model can not predict rightly in this simple scenario, the model
will also be unsatisfactory in the real-world scenario. It is possible to generate synthetic
time series from simulated stochastic processes using many functions. Our first choice
to simulate a stochastic process is employing auto-correlated moving average series with
second-order auto-correlation.

We combined harmonic functions (sine) with the ARMA to simulate a long-term
dependent function. With this combination, we can evaluate the ability of predictive
models to certain seasonal behaviors of the series, such as the seasonal behaviors we
observe in real-world actions. Finally, we included Gaussian noise to simulate normally
distributed interference on the time series. We chose an online library with some
implemented functions to generate univariate time series (https://github.com/TimeSynth).

3.2.2. NARMA synthetic series

Another synthetic series we tested was a non-linear auto-regressive moving average
(NARMA) [Waheeb et al. 2019]. We use this synthetic time series based on the
assumption that financial time series may have a non-linear component in the auto-
correlation. This non-linear component would explain the recent success of non-linear
models in predicting financial time series. The following equation briefly formulates how
we generated the NARMA series:

x(t) = 0.5x(t− 1)e(t− 1) + e(t) (1)

where e(t) is the white noise in the uniform distribution N(0, 1).

3.2.3. FBM as synthetic financial series

In finance, it is common to find approximations of some time series by models that use
Brownian motion, and this can be observed, for example, for stock price [Osborne 1959].
It is possible to find in the literature authors who use fractional Brownian motion (FBM)
[Dieker and Mandjes 2003] model to simulate financial series either for commodity
or stocks [Ibrahim et al. 2021], [Imperial and Segura 2018]. As initially proposed by
[Mandelbrot and Van Ness 1968], FBM has parameter H called Hurst parameter, 0 <
H < 1, where H = 1/2 is a two-sided Brownian motion, H = 1 are straight lines
with a normally distributed slope, H ∈ (1/2, 1] the correlation of two increments over
non-interlapping time-intervals is positive, and for H ∈ (0, 1/2) it is negative:

BH(t) :=
1

Γ + 1/2

(∫ 0

−∞
[(t− s)(H−1/2) − (−s)(H−1/2)] dB(s)

+

∫ t

0

(t− s)(H−1/2) dB(s)

)
(2)

Then we moved on to a further exploration experiment with different series
constructed by varying values of H and compared with what was obtained in real series.
To implement FBM, we use the library in https://pypi.org/project/fbm/.



3.2.4. Real-world financial series

We use the logarithmic return for real series instead of the value itself. This transformation
prevents the predictive model from overfitting the value at t − 1 of the series, which can
quickly occur in applications like this. We also used different real financial time series
from different types and sectors to execute our experimentation with the best models
selected from the synthetic time series tests. We ran the models for 30 financial products
of different types and sectors, such as Stocks (Information Technology, Financials,
Consumer Discretionary, Communication Services, Energy, Industrials, Health Care),
Funds, Crypto Currency and Index.

3.3. Performance metrics and evaluation

To evaluate the performance among the models, we choose two distinct metrics. These
methods’ accuracy measures are largely used in the literature. The root mean square error
(RMSE) is the first chosen and most used. Moreover, we suggest using the mean absolute
scaled error (MASE) to better compare results with different datasets and not be affected
by the data scale.

4. Experiments

4.1. Experiment parameterization and data

We employed a computer with an Intel Core i7-7500U CPU and NVIDIA GeForce
940MX GPU. We implemented the models using Keras and Tensorflow as the main
libraries of ANN to execute the tests. Additional simulations were also executed using
the Google Colaboratory (https://colab.research.google.com/).

4.1.1. Architectures setup

We employed different model configurations inspired by the literature and our empirical
tests in our experiments. We use the Auto-ARIMA, a module to automatically search
the hyper-parameters (p, q, d) for the ARIMA model. The LSTM parameterization
employed was extracted from [Sagheer and Kotb 2019] that has extensively tested
recurrent architectures for the time series forecasting problem of petroleum production.
The employed LSTM architecture has two layers, with 128 for the entrance and 64 cells
for the last LSTM layer, followed by a dense output layer with size M . For the CNN
architecture, we applied the hyper-parameters of the [Mehtab et al. 2020] that also tested
different CNN configurations for the stock prices prediction, and we chose the winner
configuration. Finally, we employed RESNET, using an architecture inspired by the
[Ismail Fawaz et al. 2019], using one-dimensional convolutions and an LSTM layer at
the end.

4.1.2. Data preparation

We simulated a time series with ten thousand time steps for the tests with the synthetic
dataset. This size is compatible with financial time series data when dealing with
daily data. We employed 30 different series of different sizes for the real-world time



series, ranging from 2862 to 17112, with most being intermediate values. These series
were taken from Kaggle databases (https://www.kaggle.com/), specifically:
Cryptocurrency Historical Prices, Huge Stock Market Datasets, and Financial time series
datasets. Each time series was separated into three data sets in our experiments, 70%
for training, 20% for testing, and 10% for validation. After this separation, each training
round was performed with an observation window of N (32, 64, 128, and 256). Next,
we perform an empirical analysis employing the value of N = 256 for the test series,
as it presented the best results. Windows larger than 256 would bring limitations to
real series that could be chosen due to the structure of the experiments and the division
between training, testing, and validation. Only more extensive series were selected for
our experiments. The prediction step M means that a single value M steps ahead of the
observation window is evaluated. Thus, our experiments displayed N and M values: the
observation window and the desired future time step.

4.2. Empirical results for real-world financial time series
First, we compare the most employed deep learning techniques in financial time series
forecasting, LSTM and CNN. As the M increases, we observe that the error of the
predictions equalizes. As we can observe in the table 1, especially for lower values of
M , CNN had lower RMSE and MASE values than the LSTM approach. Interestingly,
CNN was better regarding the error for most assets, being better than LSTM for 57%
of the assets. On the other hand, LSTM had a lower overall average. We choose the
prediction window of size M = 10 to extend our analysis by comparing four techniques:
Auto-ARIMA, RESNET, LSTM, CNN, and the ensemble method of the three ANN
architectures. We employ the ensemble technique described in Section 3 to improve the
results baseline. The table 2 presents all the RMSE and MASE errors for each asset and
each model, including the ensemble. From this result, we already observe that for most
of the assets, the ensemble model error was lower than LSTM and CNN. In the results,
compared between CNN and LSTM in the financial series, it is possible to see that LSTM
has a smaller average error when considering all assets. CNN manages to do better most
of the time, so this behavior can be, in a way, captured by the ensemble that makes the
proposed method perform very close or better in the average values and present the minor
error for individual assets more times than the other models. Considering the RMSE,
we calculate the average error among the CNN, LSTM, and ensemble assets with similar
performance. The Auto-ARIMA had the second-best performance regarding the number
of assets, with the lowest error for MASE and RMSE metrics. However, considering
the MASE metric, the ensemble performed close to CNN, which had the best result. To
better understand the characteristics causing this behavior, we extend our analysis using
the ensemble technique in synthetically generated time series.

4.3. Empirical results for synthetic time series
We evaluated each model by training and testing on synthetic time series constructed
using auto-correlation, Gaussian noise, and harmonic functions composition (GN+H),
the non-linear time series NARMA and FBM. Table 3 presents the result for all the
mentioned predictive models for both the RMSE and the MASE. In this table, it is
possible to notice the best results obtained by the ensemble model. When analyzing
the NARMA series, the ensemble outperforms the other techniques for both metrics,
RMSE and MASE. Considering linear auto-correlated time series with Gaussian noise and



Table 1. Results for 30 financial series. Column LSTM and CNN presents MASE
error for each model. Column dif presents the difference between models,
i.e dif = MASECNN − MASELSTM , negative values mean that CNN has
a minor error. The Asset column represents the asset ticker in the U.S.
market. CNN is better in 57% of cases, LSTM in 37% and tied in 6%. Times-
best shows how many times the model has the minor error for each series.

M = 1 M = 2 M = 5 M = 10 M = 15 M = 20
Sector Asset LSTM CNN dif LSTM CNN dif LSTM CNN dif LSTM CNN dif LSTM CNN dif LSTM CNN dif

Inf. Tech. AAPL 0.622 0.700 0.078 0.628 0.917 0.289 0.627 0.750 0.123 0.624 0.770 0.146 0.622 0.803 0.181 0.616 0.613 -0.003
Financials AIG 0.674 0.646 -0.028 0.656 0.650 -0.006 0.662 0.659 -0.003 0.654 0.645 -0.009 0.652 0.645 -0.007 0.654 0.645 -0.009
Financials ALL 0.492 0.461 -0.031 0.492 0.463 -0.029 0.478 0.462 -0.016 0.464 0.455 -0.009 0.457 0.469 0.012 0.480 0.451 -0.029
Cons. Disc. AMZN 0.420 0.426 0.006 0.419 0.418 -0.001 0.407 0.410 0.003 0.413 0.408 -0.005 0.438 0.403 -0.035 0.409 0.397 -0.012
Financials AXP 0.634 0.634 0.000 0.635 0.633 -0.002 0.632 0.632 0.000 0.638 0.632 -0.006 0.644 0.637 -0.007 0.640 0.643 0.003
Cripto Curr. Bitcoin 1.088 1.093 0.005 1.083 1.099 0.016 1.012 1.001 -0.011 0.916 0.926 0.010 1.098 1.086 -0.012 1.024 1.017 -0.007
Funds HO1 0.732 0.739 0.007 0.733 0.743 0.010 0.749 0.760 0.011 0.777 0.782 0.005 0.773 0.781 0.008 0.767 0.772 0.005
Funds NG1 0.618 0.613 -0.005 0.622 0.621 -0.001 0.612 0.613 0.001 0.602 0.603 0.001 0.591 0.591 0.000 0.597 0.598 0.001
Com. Serv. DIS 0.626 0.627 0.001 0.629 0.627 -0.002 0.631 0.625 -0.006 0.627 0.625 -0.002 0.630 0.624 -0.006 0.630 0.625 -0.005
Inf. Tech. GOOGL 0.802 0.805 0.003 0.810 0.807 -0.003 0.818 0.820 0.002 0.849 0.852 0.003 0.820 0.811 -0.009 0.906 0.910 0.004
Energy HES 0.611 0.607 -0.004 0.605 0.586 -0.019 0.592 0.565 -0.027 0.576 0.560 -0.016 0.492 0.474 -0.018 0.494 0.474 -0.020
Industrials MMM 0.635 0.620 -0.015 0.622 0.620 -0.002 0.622 0.621 -0.001 0.622 0.620 -0.002 0.613 0.620 0.007 0.613 0.610 -0.003
Inf. Tech. MSFT 0.535 0.538 0.003 0.536 0.531 -0.005 0.536 0.534 -0.002 0.534 0.533 -0.001 0.531 0.529 -0.002 0.537 0.532 -0.005
Inf. Tech. MSI 0.903 0.908 0.004 0.910 0.900 -0.010 0.854 0.862 0.008 0.801 0.814 0.012 0.851 0.852 0.001 0.953 0.957 0.003
Com. Serv. OMC 0.623 0.614 -0.009 0.612 0.616 0.004 0.610 0.610 0.000 0.604 0.610 0.006 0.603 0.596 -0.008 0.591 0.588 -0.002
Energy OXY 0.641 0.635 -0.006 0.636 0.636 0.000 0.637 0.645 0.007 0.635 0.637 0.002 0.634 0.638 0.004 0.639 0.640 0.001
Health Care PFE 0.663 0.665 0.002 0.662 0.668 0.006 0.666 0.667 0.001 0.675 0.668 -0.007 0.663 0.668 0.005 0.677 0.672 -0.005
Cons. Disc. POOL 0.813 0.805 -0.007 0.777 0.771 -0.006 0.819 0.839 0.020 0.882 0.903 0.021 0.972 0.986 0.015 0.888 0.892 0.004
Cons. Disc. RL 0.699 0.700 0.001 0.681 0.670 -0.012 0.628 0.605 -0.023 0.617 0.578 -0.039 0.580 0.588 0.008 0.517 0.514 -0.003
Industrials RSG 0.613 0.603 -0.009 0.600 0.602 0.002 0.671 0.646 -0.025 0.712 0.649 -0.064 0.605 0.599 -0.006 0.586 0.590 0.004
Cons. Disc. SBUX 0.521 0.516 -0.005 0.520 0.526 0.005 0.522 0.518 -0.003 0.511 0.518 0.007 0.510 0.508 -0.002 0.504 0.503 -0.001
Energy SLB 0.623 0.613 -0.010 0.640 0.613 -0.026 0.617 0.608 -0.009 0.607 0.607 0.000 0.630 0.612 -0.019 0.605 0.604 0.000
Index SP500 0.563 0.554 -0.009 0.563 0.554 -0.009 0.560 0.553 -0.007 0.562 0.555 -0.007 0.557 0.553 -0.004 0.555 0.559 0.004
Inf. Tech. STX 0.641 0.630 -0.011 0.643 0.664 0.021 0.621 0.620 -0.002 0.644 0.638 -0.006 0.551 0.575 0.023 0.607 0.606 -0.001
Health Care TMO 0.582 0.575 -0.006 0.578 0.575 -0.003 0.579 0.577 -0.002 0.582 0.582 0.000 0.574 0.572 -0.001 0.584 0.572 -0.012
Health Care VRTX 0.423 0.430 0.007 0.415 0.416 0.001 0.419 0.416 -0.002 0.380 0.383 0.003 0.337 0.340 0.004 0.363 0.369 0.006
Com. Serv. VZ 0.729 0.718 -0.011 0.722 0.718 -0.005 0.721 0.713 -0.008 0.720 0.717 -0.003 0.732 0.719 -0.014 0.727 0.718 -0.009
Inf. Tech. WDC 0.579 0.575 -0.004 0.573 0.580 0.007 0.559 0.561 0.002 0.560 0.564 0.004 0.550 0.550 0.000 0.587 0.586 -0.001
Inf. Tech. XLNX 0.593 0.590 -0.002 0.602 0.594 -0.008 0.585 0.585 -0.001 0.584 0.584 0.000 0.585 0.581 -0.004 0.583 0.584 0.002
Cons. Disc. YUM 0.387 0.383 -0.004 0.390 0.383 -0.008 0.380 0.379 -0.001 0.367 0.367 0.000 0.366 0.367 0.001 0.364 0.360 -0.004
average 0.6362 0.6341 0.6331 0.6400 0.6275 0.6285 0.6246 0.6262 0.6220 0.6259 0.6232 0.6200
times-best 12 19 11 20 11 21 16 17 14 17 12 18

seasonal fluctuations, LSTM had the best performance for the MASE metric, followed
by the ensemble technique. When considering the RMSE, the ensemble matched the
LSTM with equally good performance or a little better. When we look at the FBM series,
CNN was the best technique outperforming the others on both RMSE and MASE metrics.
When we observe the average and how many times the model has a minor error, we can
see that the proposed method has better results.

Table 4 shows that FBM series behavior depends mainly on the H parameter. As
we approach the H = 1, the positive auto-correlated factor becomes more relevant, and
as it approaches H = 0.5, the series becomes more similar to the Brownian motion or
the Winner process. Values below 0.5 are negative auto-correlations that we decided were
not worth exploring. As we approach H = 1, the results show that the ensemble starts to
outperform the LSTM and the CNN. We believe that for series that are more similar to a
Brownian motion, ensemble and LSTM fail to generalize the behavior. However, LSTM
and the ensemble method perform better as the auto-correlation in the FBM becomes
relevant. This increase in performance may be caused by the fact that CNN can better
deal with noise data without overfitting, while LSTM and the ensemble can better capture
the auto-correlation implicitly present in the series. Here we can see that for the RMSE,
the ensemble has the second best result on average, behind the CNN, while for the MASE,
the ensemble has the best result but also has the minor error more times than the other
models.

We highlight some exciting insights from the results obtained in the real-world and
synthetically generated time series: from the observations, CNN and LSTM had better
performance for series with more noise and long-term dependent components such as



Table 2. Predictors RMSE and MASE comparison for Auto-ARIMA, CNN, LSTM,
and ENSEMBLE in 30 real-world financial series. N = 256 and M = 10.
Times-best shows how many times the model has the minor error for each
series.

Auto-ARIMA RESNET CNN LSTM ENSEMBLE
Asset RMSE MASE RMSE MASE RMSE MASE RMSE MASE RMSE MASE

AAPL 0.0160 0.7226 0.0148 0.6204 0.0150 0.6200 0.0150 0.6240 0.0145 0.6198
AIG 0.0131 0.6873 0.0132 0.6438 0.0130 0.6450 0.0132 0.6545 0.0131 0.6438
ALL 0.0120 0.6461 0.0085 0.4550 0.0080 0.4550 0.0082 0.4635 0.0081 0.4553
AMZN 0.0219 0.7334 0.0124 0.4193 0.0120 0.4080 0.0120 0.4130 0.0118 0.4039
AXP 0.0135 0.7048 0.0130 0.6334 0.0130 0.6320 0.0126 0.6377 0.0126 0.6340
Bitcoin 0.0165 0.3755 0.0533 0.9310 0.0530 0.9260 0.0530 0.9160 0.0531 0.9220
HO1 0.0248 0.6905 0.0280 0.7787 0.0280 0.7820 0.0280 0.7770 0.0279 0.7791
NG1 0.0466 0.6995 0.0386 0.6086 0.0380 0.6030 0.0380 0.6020 0.0383 0.6051
DIS 0.0122 0.6842 0.0117 0.7298 0.0110 0.6250 0.0110 0.6270 0.0113 0.6257
GOOGL 0.0083 0.7419 0.0100 0.8790 0.0100 0.8520 0.0100 0.8493 0.0099 0.8547
HES 0.0240 0.8135 0.0170 0.5919 0.0170 0.5600 0.0171 0.5762 0.0171 0.5955
MMM 0.0100 0.6566 0.0098 0.6280 0.0100 0.6200 0.0097 0.6223 0.0097 0.6246
MSFT 0.0165 0.6910 0.0130 0.5348 0.0130 0.5330 0.0130 0.5340 0.0128 0.5322
MSI 0.0079 0.7426 0.0108 0.8635 0.0106 0.8139 0.0107 0.8014 0.0106 0.8135
OMC 0.0116 0.7030 0.0111 0.6044 0.0108 0.6098 0.0109 0.6039 0.0108 0.6057
OXY 0.0160 0.6810 0.0154 0.6746 0.0152 0.6370 0.0152 0.6350 0.0152 0.6326
PFE 0.0110 0.7047 0.0112 0.7426 0.0110 0.6680 0.0110 0.6750 0.0110 0.6640
POOL 0.0116 0.8143 0.0135 0.8955 0.0133 0.9034 0.0134 0.8823 0.0133 0.8936
RL 0.0132 0.7050 0.0130 0.5904 0.0129 0.5778 0.0130 0.6166 0.0129 0.5772
RSG 0.0072 0.5913 0.0094 0.6609 0.0094 0.6486 0.0095 0.7122 0.0094 0.6488
SBUX 0.0138 0.6975 0.0108 0.5309 0.0107 0.5177 0.0106 0.5110 0.0107 0.5143
SLB 0.0165 0.7023 0.0147 0.6168 0.0143 0.6069 0.0144 0.6068 0.0143 0.6074
SP500 0.0097 0.6812 0.0078 0.6059 0.0080 0.5550 0.0080 0.5620 0.0077 0.5531
STX 0.0216 0.6442 0.0226 0.6400 0.0225 0.6377 0.0223 0.6436 0.0227 0.6568
TMO 0.0133 0.6775 0.0125 0.6439 0.0121 0.5820 0.0121 0.5821 0.0121 0.5802
VRTX 0.0249 0.7007 0.0151 0.4090 0.0148 0.3834 0.0146 0.3805 0.0148 0.3833
VZ 0.0098 0.6922 0.0107 0.7516 0.0104 0.7168 0.0105 0.7202 0.0104 0.7162
WDC 0.0255 0.6435 0.0174 0.5640 0.0174 0.5638 0.0176 0.5603 0.0173 0.5587
XLNX 0.0154 0.6877 0.0137 0.5812 0.0136 0.5840 0.0136 0.5844 0.0136 0.5845
YUM 0.0137 0.6614 0.0085 0.4063 0.0081 0.3665 0.0082 0.3669 0.0081 0.3633
average 0.0159 0.6859 0.0154 0.6412 0.0152 0.6211 0.0152 0.6247 0.0152 0.6216
times-best 9 7 1 2 8 6 5 5 15 10

seasonality. Also, we observe that for some of the assets CNN, LSTM, and Auto-ARIMA
had a better performance. When considering non-linear auto-correlation, the ensemble
was the best technique. Therefore, we could infer that non-linear auto-correlations are
an important component of most financial time series. In this segment, another inference
is that the models have to deal with a higher level of noise and long-term dependent
factors. The real-world financial time series noise probably changes as we change the
asset, requiring different treatments to approximate the underlying function.

5. Conclusion

This work proposes stacking CNN, LSTM, and RESNET as an ensemble model to
predict financial time series returns. From the results in real-world time series, we can
observe that our proposed ensemble could outperform the architectures individually and



Table 3. Predictors RMSE and MASE comparison for Auto-ARIMA, CNN, LSTM,
and ENSEMBLE in synthetic series Gaussian noise, NARMA, and FBM.
Times-best shows how many times the model has the minor error for each
series.

Auto-ARIMA RESNET CNN LSTM ENSEMBLE
series RMSE MASE RMSE MASE RMSE MASE RMSE MASE RMSE MASE

GN+H 0.645 1.169 0.525 0.915 0.439 0.774 0.426 0.737 0.426 0.742
NARMA 0.091 1.012 0.106 0.974 0.091 0.899 0.088 0.759 0.088 0.758
FBM 0.015 9.138 0.008 4.778 0.005 1.714 0.006 2.190 0.005 1.749
average 0.2502 3.7730 0.2130 2.2223 0.1783 1.1290 0.1733 1.2287 0.1731 1.0832
times-best - - - - 1 1 2 1 3 1

Table 4. Predictors RMSE and MASE comparison for Auto-ARIMA, CNN, LSTM,
and ENSEMBLE in FBM series for H from 0.6 to 0.9. N = 256 and M = 10.
Times-best shows how many times the model has the minor error for each
series.

Auto-ARIMA RESNET CNN LSTM ENSEMBLE
H RMSE MASE RMSE MASE RMSE MASE RMSE MASE RMSE MASE

0.60 0.0434 9.8181 0.5047 183.8652 0.0138 2.0930 0.0538 18.3445 0.0567 11.6263
0.65 0.0347 13.0468 0.4961 380.0690 0.0333 19.3465 0.0408 23.9500 0.0519 24.1616
0.70 0.0205 11.6987 0.1099 19.1818 0.0203 9.8568 0.0110 4.8795 0.0129 15.9911
0.75 0.0071 7.2596 0.0050 2.9711 0.0060 4.6125 0.0040 1.3440 0.0037 1.4443
0.80 0.0319 41.0465 0.2876 533.2403 0.0123 22.0960 0.0428 55.4170 0.0034 3.0467
0.85 0.0031 8.2716 0.0020 2.8107 0.0023 2.5195 0.0020 1.7698 0.0017 1.6499
0.90 0.0327 106.3641 0.2058 797.7468 0.0020 6.7070 0.0210 75.6623 0.0019 6.4832
average 0.0248 28.2151 0.2302 274.2693 0.0128 9.6045 0.0250 25.9096 0.0189 9.2004
times-best - 1 - - 2 1 1 2 4 3

the Auto-ARIMA. We also investigate why individual methods were better for some of the
assets in some cases. We tested the methods using synthetically generated time series to
identify possible components that generate the financial series. The identification of these
components can help in choosing the best predictors. Thus, we hope to have provided
subsidies for future investigations using different processes for generating synthetic time
series. To better understand which factor could affect the performance of the models,
we use three different synthetically generated time series to evaluate all the models with
different underlying functions that generate the time series. One of the main inferences is
that non-linear auto-correlation may play an essential role in the asset price returns series
generation. In future works, long-term dependencies and the noise level need to be better
explored, which is heavily related to deep learning overfitting. Long-term dependencies
also provide more chances to capture a hidden underlying function, which can be an
essential component for some assets. Understanding which processes generate specific
types of time series returns can help to select models and assess which ones were better
for each technique employed while controlling the improvements of the models.
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