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Abstract. Evolutionary techniques have been used in the design and optimiza-

tion of combinational logic circuits. This procedure is called evolvable hard-

ware and Cartesian Genetic Programming (CGP) is the evolutionary technique

with the best performance in this context. Despite the good results obtained by

CGP techniques, its search procedure usually evolves a single candidate solu-

tion by an evolution strategy and this approach tends to be trapped in local op-

tima. On the other hand, clonal selection techniques in general, and CLONALG

in particular, were designed to avoid converging to a low-quality local optimum.

Thus, we propose here using the representation of CGP with the search proce-

dure of a Clonal Selection Algorithm to minimize the number of transistors of

combinational logic circuits. Furthermore, a parameter sensitivity analysis is

performed. The results are assessed considering a benchmark from the litera-

ture and showed a reduction in the number of transistors when compared to the

baseline ESPRESSO.

1. Introduction

Digital circuits are present everywhere nowadays since the technology took place in all

aspects of our lives. The miniaturization of electronic devices requires more compact

circuits. Thus, optimization plays an important role in this regard.

The evolutionary computing community has been addressing the evolution of

combinational logic circuits (CLCs) since the 1990s, being a part of Evolvable Hardware

(EH) [Haddow and Tyrrell 2018]. EH refers to the employment of Evolutionary Algo-

rithms (EAs) and Bio-Inspired Algorithms (BIAs) for creating, optimizing, and adapting

physical hardware designs [Coello et al. 2000, Manfrini et al. 2016, Wang et al. 2008].

In general, the evolutionary design of circuits refers to the use of a randomly

generated initial population, exploring possible solutions given a required behavior in

a certain problem. The optimization refers to the minimization/maximization of some

desired parameter, such as the number of logic gates, frequently motivated by practical

needs [Hodan et al. 2021]. However, finding a fully working solution is a hard task, and

there are scalability issues in which the computational complexity grows exponentially

with the number of inputs.

Following the benchmark suite with several test-problems with different

sizes [de Souza et al. 2020], in this work we aim the minimization of the number of tran-

sistors. The regular objective function for CLCs in the literature is to minimize the number



of logic gates. The reason why de Souza et al. [de Souza et al. 2020] look to the number

of transistors and not the number of gates is that transistors constitute the essential build-

ing block used to mount digital circuits in the context of integrated circuits. Therefore,

when evaluating the effective cost of a given circuit, minimize the number of transistors

enables it to be assembled into smaller and cheaper chips for the final product.

A common strategy when using EH [Stomeo et al. 2005] is the division of the

problem into two, where first one desires to obtain a feasible solution and then opti-

mize the solution [da Silva et al. 2018]. The interest in this work is the optimization of

fully functional circuits, where the constraints represent the similarity between the out-

puts of the circuit being evaluated and those presented in a given truth table. Cartesian

Genetic Programming (CGP) was adopted in [de Souza et al. 2020] and is pointed out

as the best technique for evolving CLCs [Vasicek 2015]. Due to the CGP characteris-

tic of evolving a single candidate solution by an evolutionary strategy, the method is

inclined to be stuck in local optima. Here, we propose the modification of the stan-

dard CGP’s evolutionary search procedure to a clonal selection algorithm called CLON-

ALG [de Castro and von Zuben 2002], both in finding feasible solutions and minimiz-

ing the number of transistors of CLCs. This is motivated by the fact that CLON-

ALG can escape from converging to low-quality local optima. The proposed combi-

nation of CGP with CLONALG is compared to a baseline CGP using the benchmark

from [de Souza et al. 2020] and the proposal reached the best results in general.

The remainder of the paper is as follows: Section 2 describes the fundamentals of

the techniques used in the development of this work. Section 3 goes into detail on how

we combine CGP and CLONALG to improve its performance. In Section 4, the com-

putational experiments are discussed and carried out with benchmark problems. Finally,

Section 5 presents the conclusions and future works.

2. Methods

Artificial neural networks, ant colony algorithms, particle swarm optimization, artifi-

cial immune systems, and evolutionary techniques are examples of bio-inspired methods

which have been widely applied in several areas, such as science, engineering and busi-

ness management [Fan et al. 2020]. Artificial Immune Systems (AISs) are techniques

which mimics the defence system of an organism against pathogens [Hatata et al. 2017]

for solving computational intelligence problems. The immune system function in a live

organism consists of innate and adaptive responses executed by specialized cells and

molecules (antibodies) aimed at defending the organism against infection. The responses

to invading microbes (antigens) can be of two fundamental types: innate (natural), the

nonspecific immune system, in which the responses occur similarly to every pathogen;

and adaptive, in which the responses improve on repeated exposure to a given infec-

tion [Delves and Roitt 2000].

Observing the behavior of this system and using its operating princi-

ples, different methods were implemented to solve problems: immune network

theory [Zhang et al. 2013], negative selection [Ji and Dasgupta 2007], clonal

selection [de Castro and von Zuben 2002], grammar-based immune program-

ming [Bernardino and Barbosa 2011]. A clonal selection approach called CLONALG is

used here as the search mechanism and is detailed in the following section.



2.1. Clonal Selection Algorithm

The clonal selection algorithm (CLONALG) [de Castro and von Zuben 2002] is an AIS

approach which evolves the antibodies inspired by the concept of clonal expansion and se-

lection. According to this method, each cell (candidate solution) is cloned, hypermutated,

and those with higher antigenic affinity (quality) are selected.

An important step when using CLONALG is to determine the value of the muta-

tion rate. Usually, it is taken inversely proportional to the affinity of the antibody with re-

spect to the antigen. That is, it is proportional to the quality of the candidate solution when

solving the optimization problem. Also, according to [Bernardino and Barbosa 2009a],

AISs usually do not use recombination operators, such as crossover in traditional genetic

programming techniques. Moreover, new candidate solutions can be randomly generated

to improve the exploration capability of the algorithm.

Algorithm 1 shows CLONALG’s pseudocode (adapted

from [Bernardino and Barbosa 2009b]). In this algorithm, affinities contains the

values of the objective function to be optimized (fitness), antibodies contains the

population of candidate solutions. β is the number of clones that each antibody is

allowed to generate, ρ is a parameter used to compute the mutation rate, pRandom is the

percentage of new cells that are randomly generated, clones contains the population of

clones generated by the function “clone”, nPop is the number of candidate solutions, and

cA contains their corresponding affinities.

Algorithm 1: A CLONALG’s pseudocode for optimization problems.

Data: β, ρ, pRandom, nPop

Result: bestSolution

1 begin

2 antibodies←− initializePopulation(nPop);

3 affinities←− evaluate(antibodies);

4 while stopping criteria is not met do

5 clones←− clone(antibodies, affinities, β);

6 hypermutate(clones, affinities, ρ);

7 cA←− evaluate(clones);

8 select(antibodies, affinities, clones, cA);

9 genNew(antibodies, affinities, pRandom);

10 bestSolution←− getBest(antibodies);

2.2. Cartesian Genetic Programming

Cartesian Genetic Programming (CGP) [Miller 2011] is a bio-inspired technique,

in which programs are directed acyclic graphs (DAGs). CGP was firstly devel-

oped for evolving digital circuits. However, its representation is very flexible,

and applications for evolving robot controllers [Garcı́a and Coello 2002], neural net-

works [Goldman and Punch 2013] and image classifiers [Goldman and Punch 2015] can

be found in the literature. CGP has three used defined parameters, namely number of



Figure 1. CGP individual’s representation.

rows (nr), number of columns (nc), that defines the topology of the matrix, and levels-

back (lb). The levels-back limits the number of columns at the left side where inputs can

be selected to constrain the connectivity of the graph. Figure 1 presents a CGP individual

with three primary inputs and one output. The functions are logical ones. The nodes that

directly contribute to the outputs are called active nodes (grey nodes in Figure 1). The

other ones are called inactive (white nodes in Figure 1). Continuous lines define the phe-

notype. Considering a situation which all nodes carry out some computational function,

representing functions in the form of graphs is more concise than traditional GP trees,

because they allow the reuse of previously calculated subgraphs [Miller 2011]

CGP commonly uses an evolutionary strategy (1+λ) as evolutionary mechanism,

in which the best individual generates λ offspring. Usually λ = 4 [Miller 2011], presented

in Algorithm 2.

Algorithm 2: Evolutionary strategy commonly used on CGP (1 + λ).

1 begin

2 Initial population randomly generated;

3 Select the fittest individual to be the parent;

4 while stopping criteria is not met do

5 Mutate the parent to generate λ new individuals;

6 Evaluate the λ new individuals;

7 Select the fittest individual from the (1+λ) ones to be the next parent;

CGP mainly uses mutation as genetic variation operator. Miller [Miller 2011]

highlights that there is no general-purpose crossover operator with good perfor-

mance for CGP. However, for evolving digital circuits it is possible to find

good-performing crossover operators [da Silva and Bernardino 2018, Walker et al. 2006,

Husa and Kalkreuth 2018]. Mutation can vary depending on the CGP implementation

and its function, for instance, point mutation (PM - the most common in CGP), sin-

gle active mutation (SAM) [Goldman and Punch 2013] and multiple active mutation

(MAM) [da Silva and Bernardino 2018]. In PM, an user defined parameter (µg) deter-

mines the number of nodes that will be mutated. The genes are randomly chosen and its

value is changed to another valid random value. Furthermore, any node can be connected



directly to the primary inputs, independently of the value of lb. However, PM can modify

only inactive nodes, leading to wasted objective function evaluations since the offspring

phenotype is the same as its parent. For this purpose, SAM was developed and it en-

sures that at least one active node is mutated for each individual of the offspring. While

an active gene is not mutated, another gene is randomly selected and its value changed.

This guarantees that (i) exactly one active node is mutated and (ii) zero or more inac-

tive nodes can be mutated. MAM is based on SAM but mutates n (user defined) active

nodes [da Silva and Bernardino 2018].

3. Proposed Approach

Here, we propose using CLONALG as the evolutionary mechanism of CGP instead of

the the traditional evolutionary strategy (1 + λ). Thus, the proposal adopts the original

representation of CGP but the remaining of the search procedure is modified.In addition,

to keep the diversity of the population, our proposal considers the following features in

the search approach: (i) every antibody in the population is cloned, (ii) the number of

clones is the same for every antibody, and (iii) each candidate solution is replaced if a

better hypermutated clone is generated. Also, we defined pRandom= 0 and, thus, no

random individual is generated during the evolutionary search. We intent to investigate

this parameter in future works.

According to CLONALG, worst individuals are subject to more modification than

the best ones, which need a finer tuning. The proposal here is to use the concept of

somatic hypermutation borrowed from CLONALG in the mutation process that occurs

in CGP. Thus, instead of just the fittest individual mutating to form the next generation,

all individuals are cloned and modified to generate new candidate solutions. Also, these

clones are modified according to the quality of the original candidate solutions. For this

purpose, MAM is adopted here. The number of mutations is given by

nMutations(i) = round

(

nPop− 1− i+ (nMax× i)

nPop− 1

)

(1)

where nMutations is the number of active nodes modified in the i-th individual, nPop

is the population size, nMax is the maximum number of active nodes allowed to be

modified and round is a function that rounds its parameter to the nearest integer value. It

is important to highlight that i represents the index of the ordered individuals according

to the objective function, where i = 0 represents the best individual and i = nPop− 1 is

the worst one.

The quality of an individual is given by its fitness. In the context of CGP applied

to EH, fitness can be either the number of matches with respect to the truth table (for

obtaining a feasible solution) and, once a feasible solution is found, the fitness is the

combination of feasibility and the number of transistors of the solution.

Thus, according to the proposal, each individual of the population generates one

child and the selection is performed by selecting the best individual between each parent

and its corresponding offspring. Then, the population is ordered according to its fitness

in order to apply the mutation scheme. We used the strategy from [Deb 2000] for ranking

the candidate solutions, where: (i) any feasible solution is preferred when compared to an

unfeasible one, (ii) when two feasible circuits are compared, that with the smallest number



of transistors is better, and (iii) when two unfeasible solutions are compared, the one with

smaller constraint violation (differences with respect to the truth table) is preferable.

Here we are interested in both (i) evolving and (ii) optimizing the circuits in

terms of reducing the number of transistors. For this purpose, the objective function is

changed from finding a feasible circuit to reduce the number of transistors, once a feasi-

ble circuit is found. Furthermore, according to the literature, CGP presents better results

when considering a small population (5 individuals) [Miller 2011, da Silva et al. 2018,

da Silva and Bernardino 2018]. However, a parameter sensitivity analysis is also per-

formed here, in order to verify the behavior of the evolutionary search when using higher

populations.

4. Computational Experiments

Computational experiments were performed to analyze the performance of the proposal

when designing and optimizing CLCs in terms of reducing the number of transistors.The

source code and supplementary material can be found at Github1. Also, a parameter

sensitivity analysis is performed, where the proposed CGP with CLONALG is analyzed

according to the benchmark proposed in [de Souza et al. 2020]. We analyzed the number

of individuals in the population (nPop) and the maximum number of active nodes allowed

to be modified during the hypermutation (nMax).

The results assessment considers the three mandatory metrics presented

in [de Souza et al. 2020]: (i) The number of transistors of the solutions: this is the ob-

jective function of the optimization problem and reflects the characteristics of the circuit;

(ii) the success rate (SR, in %): percentage of the independent runs in which a feasible

solution is obtained. This performance measurement reflects the ability of search methods

in obtaining fully functional circuits; and (iii) the relative reduction (RR, in %): represents

the capacity of the search method in generating compact circuits. It is calculated as:

RRp,s =
|fm(xp,s)− f(xp,b)|

f(xp,b)
× 100, (2)

where fm(xp,s) is the median of the number of transistors obtained by solver s when

applied to problem p, and f(xp,b) is the number of transistors of a baseline solution.

ESPRESSO is a popular heuristic for optimization of CLCs and is adopted here as the

baseline, as in [de Souza et al. 2020].

We also consider the use of performance profiles (PPs) [Dolan and Moré 2002,

Barbosa et al. 2010] for analysing the relative performance of the algorithms. In PPs, the

probability that the performance of a given method is within a factor τ > 1 of the best

one is ρs(τ), and one can extract: (i) the approach that obtained the best results for most

problems (largest ρ(1)), (ii) the most reliable approach (smaller τ such that ρ(τ) = 1),

and (iii) the best overall performance (largest area under the PPs curves).

The problems are the same presented in [de Souza et al. 2020], categorized into

three groups, considering the circuits’ simplification, balancing, and the number of inputs

and outputs.

1https://github.com/ciml/cgp_clonalg



The proposal was evaluated with respect to the following parameter settings:

(i) nPop = 10 and nMax = 3 (labeled as 10 3), (ii) nPop = 10 and nMax = 5 (labeled

as 10 5), and (iii) nPop = 20 and nMax = 3 (labeled as 20 3). Due to the stochas-

tic nature of metaheuristics, 15 independent runs were performed for each scenario. For

all experiments, we used the CGP parameters suggested in [de Souza et al. 2020], ex-

cepting lb, in which lb = nc, as recommended by the literature [da Silva et al. 2018,

da Silva and Bernardino 2018, Goldman and Punch 2013, Miller 2011]. The comparison

is performed considering the variation SAM-R, a implementation with CGP with SAM,

starting with a randomly-generated initial population [de Souza et al. 2020].

Figure 2 presents the results of the performance profile for the median of the num-

ber of transistors considering all problems and methods. Based on PP, it is possible to

conclude that (i) 20 3 obtained the best results for most problems (largest ρ1), (ii) SAM-

R can be considered the most reliable (obtained at least a feasible solution in more prob-

lems), and (iii) 20 3 has the best overall performance (largest area under the performance

profiles curves).
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Figure 2. Performance Profiles for the median of the number of transistors con-

sidering all methods and problems. The normalized areas under the PP

curves are: 10 3 - 0.9255, 10 5 - 0.7728, 20 3 - 1.00, and SAM-R - 0.8895.

Tables 1, 2, and 3 present the results for SAM-R and the proposed variants for

groups 1, 2, and 3, respectively. The results of cmb, cordic, and vda are not presented

since neither the benchmark nor the proposed approaches found feasible solutions. Both

10 3 and 20 3 obtained better results when compared to SAM-R. Furthermore, the relative

reductions obtained by the proposal are higher than or equal to those obtained by SAM-R

in most cases. However, 20 3 has lower success rates, in general, when compared to both

10 3 and SAM-R. Statistical significance tests results can be found on the supplementary

material.



Table 1. Results for all problems of Group 1. Methods with asterisks (*) presents

statistical difference. Best results are in boldface.

Method Best Q1 Median Q3 Worst Mean std. SR (%) RR (%)

C17

SAM-R 9.00 10.00 10.00 10.00 11.00 9.80 4.90e-01 100.00 61.54

10 3* 9.00 9.00 9.00 10.00 10.00 9.33 4.88e-01 100.00 65.38

10 5 9.00 9.00 9.00 10.00 10.00 9.47 5.16e-01 100.00 65.38

20 3* 9.00 9.00 9.00 9.00 9.00 9.00 0.000e+00 100.00 65.38

cm42a

SAM-R 29.00 31.00 34.00 36.00 38.00 33.48 2.66e+00 100.00 78.21

10 3 30.00 32.00 32.00 33.00 34.00 32.27 1.22e+00 100.00 79.49

10 5 28.00 32.5 34.00 34.00 36.00 33.20 1.90e+00 100.00 78.21

20 3 30.00 31.00 33.00 33.00 35.00 32.46 1.39e+00 100.00 78.85

cm82a

SAM-R 20.00 24.00 25.00 29.00 47.00 27.36 6.67e+00 100.00 84.28

10 3 19.00 22.00 23.00 23.5 25.00 22.87 1.60e+00 100.00 85.53

10 5 22.00 23.00 23.00 24.5 27.00 23.80 1.57e+00 100.00 85.53

20 3 19.00 22.00 23.00 23.00 24.00 22.15 1.41e+00 100.00 85.53

cm138a

SAM-R 27.00 30.00 32.00 33.00 40.00 32.36 2.94e+00 100.00 78.38

10 3 26.00 27.50 28.00 28.00 30.00 27.87 1.006e+00 100.00 81.008

10 5 27.00 28.00 28.00 29.50 33.00 28.87 1.60e+00 100.00 81.008

20 3 26.00 27.00 28.00 28.00 28.00 27.46 6.60e-01 100.00 81.008

decod

SAM-R 41.00 49.00 54.00 57.00 64.00 53.12 5.52e+00 100.00 59.09

10 3* 41.00 49.00 52.00 56.00 59.00 51.87 5.004e+00 100.00 60.61

10 5* 48.00 54.5 57.00 61.00 64.00 56.53 5.000e+00 100.00 56.82

20 3 42.00 48.00 52.00 55.00 57.00 50.92 4.70e+00 100.00 60.61

f51m

SAM-R 74.00 80.00 89.00 93.00 128.00 89.60 1.22e+01 100.00 86.05

10 3 85.00 87.00 89.00 95.00 97.00 90.46 4.35e+00 86.67 86.05

10 5 71.00 85.00 96.00 105.00 119.00 95.15 1.50e+01 86.67 84.95

20 3 75.00 82.00 91.00 94.00 103.00 88.77 7.67e+00 100.00 85.74

majority

SAM-R 11.00 12.00 12.00 13.00 23.00 12.92 2.56e+00 100.00 50.00

10 3 11.00 11.00 12.00 12.00 13.00 11.80 6.76e-01 100.00 50.00

10 5 11.00 12.00 12.00 12.00 13.00 12.13 5.16e-01 100.00 50.00

20 3 11.00 11.00 11.00 12.00 12.00 11.38 5.06e-01 100.00 54.17

z4ml

SAM-R 35.00 42.00 48.00 51.00 76.00 48.08 8.86e+00 100.00 90.46

10 3 34.00 38.00 40.00 41.5 45.00 39.73 3.01e+00 100.00 92.05

10 5 36.00 38.5 41.00 45.00 47.00 41.47 3.80e+00 100.00 91.85

20 3 35.00 36.00 38.00 39.00 42.00 37.92 2.25e+00 100.00 92.45



Table 2. Results for all problems of Group 2. Methods with asterisks (*) presents

statistical difference. Best results are in boldface.

Method Best Q1 Median Q3 Worst Mean std. SR RR

9symml

SAM-R 77.00 100.00 118.00 157.00 210.00 128.84 3.95e+01 100.00 88.64

10 3 89.00 95.5 99.00 117.00 126.00 106.00 1.27e+01 100.00 90.47

10 5 88.00 103.00 106.00 120.00 152.00 112.00 1.56e+01 100.00 89.8

20 3 75.00 83.00 96.00 108.00 122.00 95.31 1.56e+01 100.00 90.76

alu2

SAM-R 306.00 316.75 327.50 338.25 349.00 327.50 2.15E+01 8.00 81.70

10 3 - - - - - - - 0.00 -

10 5 - - - - - - - 0.00 -

20 3 - - - - - - - 0.00 -

alu4

SAM-R 158.00 181.50 205.00 243.50 267.00 209.70 3.40E+01 92.00 98.02

10 3 - - - - - - - 0.00 -

10 5 - - - - - - - 0.00 -

20 3 - - - - - - - 0.00 -

cm85a

SAM-R 42.00 47.00 51.00 56.00 68.00 51.84 7.14e+00 100.00 91.64

10 3* 45.00 48.00 49.00 50.5 54.00 49.27 2.40e+00 100.00 91.97

10 5 43.00 49.00 50.00 51.00 53.00 49.47 2.53e+00 100.00 91.80

20 3* 44.00 45.00 46.00 48.00 49.00 46.38 1.56e+00 100.00 92.46

cm151a

SAM-R 36.00 42.00 44.00 46.00 78.00 46.00 8.11e+00 100.00 71.43

10 3 38.00 41.00 44.00 45.00 46.00 42.93 2.58e+00 100.00 71.43

10 5 42.00 43.00 44.00 45.00 50.00 44.53 2.07e+00 100.00 71.43

20 3 39.00 40.00 41.00 43.00 46.00 41.69 2.18e+00 100.00 73.38

cm162a

SAM-R 54.00 63.00 65.00 69.00 78.00 66.00 5.97e+00 100.00 67.50

10 3* 57.00 59.00 61.00 64.00 65.00 61.00 2.80e+00 100.00 69.50

10 5* 55.00 61.50 64.00 65.5 67.00 63.07 3.37e+00 100.00 68.00

20 3 57.00 59.00 61.00 62.00 64.00 60.54 2.30e+00 100.00 69.50

cu

SAM-R 58.00 62.00 67.00 68.00 79.00 66.28 5.12e+00 100.00 74.33

10 3* 65.00 67.50 68.00 70.00 80.00 69.13 3.58e+00 100.00 73.95

10 5* 63.00 69.00 72.00 74.00 84.00 72.007 5.16e+00 100.00 72.41

20 3 64.00 66.00 67.00 68.00 71.00 67.23 1.96e+00 100.00 74.33

x2

SAM-R 51.00 56.00 61.00 67.00 99.00 62.80 9.51e+00 100.00 64.94

10 3* 57.00 61.00 64.00 66.00 70.00 63.73 3.59e+00 100.00 63.22

10 5 57.00 63.00 64.00 68.75 72.00 65.07 4.20e+00 93.33 63.22

20 3* 56.00 59.00 60.00 63.00 66.00 60.62 2.90e+00 100.00 65.52



Table 3. Results for all problems of Group 3. Methods with asterisks (*) presents

statistical difference. Best results are in boldface.

Method Best Q1 Median Q3 Worst Mean std. SR RR

cc

SAM-R 74.00 81.00 87.00 92.00 98.00 86.76 6.27e+00 100.00 66.02

10 3* 78.00 85.50 87.00 90.00 97.00 87.40 4.72e+00 100.00 66.02

10 5 84.00 87.50 90.00 94.50 101.00 91.07 5.00e+00 100.00 64.84

20 3* 79.00 84.00 84.00 85.00 88.00 83.85 2.64e+00 100.00 67.19

frg1

SAM-R 84.00 89.00 96.00 100.00 114.00 96.20 7.27e+00 100.00 94.02

10 3 89.00 92.00 95.00 97.00 102.00 94.67 3.27e+00 100.00 94.08

10 5 83.00 94.50 99.00 100.75 104.00 97.07 5.53e+00 93.33 93.83

20 3 84.00 91.00 95.00 97.00 102.00 94.15 4.65e+00 100.00 94.080

pm1

SAM-R 53.00 57.00 58.00 59.00 62.00 57.84 2.09e+00 100.00 97.22

10 3* 58.00 60.50 64.00 69.00 72.00 64.73 4.85e+00 100.00 96.93

10 5 60.00 62.00 63.50 65.75 71.00 63.86 3.28e+00 93.33 96.95

20 3* 57.00 59.00 60.00 64.00 65.00 60.62 3.04e+00 100.00 97.12

sct

SAM-R 83.00 93.5 97.50 103.00 112.00 97.72 6.93e+00 72.00 79.08

10 3 112.00 112.00 112.00 112.00 112.00 112.00 0.00 6.67 75.97

10 5 - - - - - - - 0.00 -

20 3 127.00 127.00 127.00 127.00 127.00 127.00 0.00 6.67 72.75

t481

SAM-R 43.00 48.00 55.00 68.00 144.00 63.60 2.40e+01 100.00 99.42

10 3* 41.00 43.50 46.00 47.50 50.00 45.93 2.81e+00 100.00 99.52

10 5 41.00 45.00 47.00 49.50 56.00 47.47 3.60e+00 100.00 99.51

20 3* 39.00 42.00 44.00 46.00 47.00 43.62 2.66e+00 100.00 99.54

tcon

SAM-R 36.00 38.00 43.00 49.00 57.00 43.80 6.31e+00 100.00 12.24

10 3* 36.00 40.00 42.00 44.00 49.00 42.40 3.68e+00 100.00 14.29

10 5* 38.00 47.50 48.00 49.00 52.00 47.60 3.60e+00 100.00 2.04

20 3 38.00 39.75 41.50 45.50 49.00 42.42 3.78e+00 93.33 15.31

5. Concluding Remarks and Future Work

We propose here improving CGP by using the search procedure of CLONALG when

designing and optimizing CLCs. Computational experiments were carried out based on

a benchmark with test-problems with different sizes (disposed into tree different groups)

and functionalities. In addition, we performed a parameter evaluation for the number of

individuals in the population and the maximum number of active nodes allowed to be

modified.

When compared with SAM-R, the proposed 10 3 and 20 3 obtained the best re-

sults in general. Also, the relative reductions obtained by the proposed approaches are

higher than or equal to those obtained by SAM-R in most cases. On the other hand, 20 3

has lower success rates in general when compared to SAM-R.



As a future work, we intend to merge CGP with others immune-inspired algo-

rithms, such as those inspired by the immune network theory. Also, future work must

consider to apply the proposed approach to solve larger problems. As the proposed ap-

proach increases the population size of CGP, high-performance computing techniques can

be explored to deal with the computational cost of the evaluations.
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