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Abstract. Motor imagery is a paradigm in Brain-Computer Interface (BCI) sys-
tems based on EEG data. Recently, Deep Neural Networks (DNNs), such as
EEGNet, have become a vital component for those systems, overcoming previ-
ous state-of-the-art techniques for classifying these data. However, most motor
imagery EEG datasets are relatively small, hindering DNNs from achieving bet-
ter results. In this sense, we propose using Generative Adversarial Networks
to augment dataset 1 from the BCI Competition IV for classification efficiency
improvement. In addition, we explore augmentation with Gaussian noise for
comparison purposes. The experiments were analyzed considering the intra-
subject and cross-subject perspectives.

1. Introduction

Brain-Computer Interface (BCI) system is a device that establishes communication from
neural activity to control applications. Since it may be a substitute for traditional input
commands, it has several possible applications in emerging technologies for medical,
assistive, or entertainment purposes [Nam et al. 2018].

Electroencephalography (EEG) allows monitoring/acquiring neural activity
through electrodes positioned on the scalp [Gu et al. 2021]. Frequently, EEG is chosen
instead of several other methods due to being a non-invasive, relatively safe, and comfort-
able technique. A BCI system should be able to process noisy signals in EEG data and
generate an output according to a paradigm, such as P300, evoked potentials, or motor
imagery. Among them, motor imagery has gained increased attention among researchers
for being a very challenging task, which requires the classification of an imagined motor
movement (i.e., without any motor execution) within a predefined set of possibilities.

One of the remarkable techniques used in BCI systems for motor imagery EEG
data is the Filter Bank Common Spatial Pattern (FBCSP) [Ang et al. 2008], which com-
bines the use of spatial filters and the Common Spatial Pattern algorithm to obtain relevant
temporal-spatial features to be classified. The reliable performance achieved by FBCSP
in several EEG datasets inspired the design of Deep Learning (DL) structures based on it.
In this perspective, we highlight the Shallow Convolutional Neural Network (SCNN) and



the Deep Convolutional Neural Network (DCNN) [Schirrmeister et al. 2017], which al-
lied the temporal-spatial features from FBCSP to the learning flexibility of Convolutional
Neural Networks (CNNs). Based on SCNN, a Deep Neural Network called EEGNet
has been proposed [Lawhern et al. 2018], including two new layers, the depthwise and
pointwise convolution, which allowed an efficient transformation of the feature, using a
network with a reduced number of parameters.

The outstanding performance of these DNNs in several motor imagery EEG
data, mainly the EEGNet, consolidated its use in BCI systems [Gu et al. 2021]. How-
ever, DNNs requires a considerably large amount of data for proper learning dur-
ing training, which might not be available. In that sense, data augmentation tech-
niques might be used to generate synthetic data. Particularly in the DL context, Gen-
erative Adversarial Networks (GANs) have shown promising results in several prob-
lems [Aggarwal et al. 2021], generating artificial data as a result of a competition be-
tween a generator and a discriminator model. Regarding EEG data, some initial efforts
with GANs were made [Lashgari et al. 2020], but there remains a lack considering small
(motor imagery) datasets and more sophisticated models of GANs, such as the condi-
tional Wasserstein GAN with gradient penalty (cWGAN-GP) [Mirza and Osindero 2014,
Gulrajani et al. 2017].

Based on this, in this work, we propose using cWGAN-GP to perform data aug-
mentation for dataset 1 of BCI Competition IV [Blankertz et al. 2007], which presents
considerably small EEG data, with only four subjects and 200 window samples each.
SCNN, DCNN, and the EEGNet are used to evaluate the proposed approach. In addition,
the results are compared to data augmentation using noise, considering both the intra-
subject and cross-subject perspectives.

The organization of the works is as follows. In Section 2, the related works are
presented, followed by a description of the methodology used for data processing, classi-
fication, and data augmentation using GANs in Section 3. Section 4 present the compar-
ative results and the discussion. Finally, Section 5 concludes the work.

2. Related Works

As shown by Lashgari et al. [Lashgari et al. 2020], many researchers have contributed
with approaches to applying GANs to EEG data. These amounted to up to 21% of the
papers linking data augmentation to EEG, and only a fraction of those dealt with raw EEG
signal, with many proposing mapping to other domains. In [Ko et al. 2019], the authors
proposed a semi-supervised GAN with three distinct loss functions. Before training the
GAN, the authors used a sliding window to increase the amount of data and, after training,
obtained an average increase of 2.2% in accuracy when compared to a Recurrent Neural
Network (RNN) classifier. In [Fahimi et al. 2020], the authors proposed a conditional
DCGAN, which uses the traditional minimax loss, in a motor imagery dataset and t-SNE
as visualization to verify that the GAN converged. They obtained an average increase of
3.6% in accuracy compared to a CNN classifier. In the recent work of [Zhang et al. 2022],
the authors proposed an approach very similar to that presented in this work, in which they
use a conditional WGAN but applied to P300 detection. They ran comparisons against
other data augmentation methods, such as SMOTE and ADASYN, but GAN had better
results with an average increase of 9% over the P300 dataset’s original baseline.



3. Methodology
In this work, we propose using Generative Adversarial Networks to a Motor Imagery
dataset for classification efficiency improvement. We first introduced state-of-the-art
CNNs that classify EEG data, aiming to evaluate their performance in the selected dataset
without data augmentation. However, these CNNs are known to demand a consider-
ably large dataset for efficient training. Since we consider a relatively small dataset, we
propose using a conditional Wasserstein Generative Adversarial Network with gradient
penalty (cWGAN-GP) to generate synthetic samples. To evaluate it, we extract the Power
Spectral Density of the synthetic data and compare it with that of the original data. Addi-
tionally, for comparison purposes, we also consider the noise augmentation method and
the baseline results. In the following subsections, we describe the dataset and the pro-
posed approach.

3.1. Dataset and Preprocessing
We use the motor imagery dataset 1 from BCI Competition IV [Blankertz et al. 2007] for
all subsequent analyses. This dataset is relevant because it considers some representative
imagined actions in a real scenario but with limited complexity. Three behaviors are
possible: moving the left hand (LH), right hand (RH), and foot/feet (F). Each subject
must only execute two of those (left hand movement is compulsory). One objective of the
BCI competition for this dataset was to find out which subjects were artificially created.
For our analysis, we remove these and keep only real ones (labeled as A, B, F, and G). The
data acquisition occurred over four sessions that generated 50 trials each, summing up to
200 trials per subject. The recording setup used 59 EEG electrodes (most over sensory-
motor areas) distributed according to the international 10-20 system. The acquired signals
were digitized at 1000 Hz, then a band-pass filter between 0.05 and 200 Hz was applied.

At the competition, the EEG signals were also available down-sampled to 100 Hz,
which we chose to use. Our experiments consider an intra-subject (using data from a
single subject) and a cross-subject perspective. To validate the results, we used repeated
cross-validation, splitting the data into four equal parts, two assigned to compose the
training set, one to the validation set, and one to the test set. We performed experiments
using 1, 2, 10, and 30 independent simulations but chose two as there was no relevant
accuracy variation. We also proposed experiments with different electrodes to find a
better (more suitable for GAN training) set, as the 59 electrodes may present exceeding
complexity. Based on Park et al [Park and Chung 2020], for the 23 electrodes selection,
the considered sets and locations are shown in Figure 1.

(a) 59 electrodes (b) 23 electrodes (c) 3 electrodes

Figure 1. Distinct sets of electrodes chosen to be investigated.



3.2. Classification

Signals acquired with EEG are, generally, represented as a multivariate time series, with
Xk ∈ Rd×T describing the trial k, composed of d electrodes (or channels) that lasts for
a time period T . Although an EEG signal is similar to images (two-dimensional data),
using regular CNNs (e.g., VGG16) is not efficient due to inherent characteristics dissim-
ilarities in EEG data. Classical networks, such as filter-bank CSP, on the other hand,
take advantage of those characteristics and, even with lower complexity, can obtain better
results. Based on this, Schirrmeister et al. [Schirrmeister et al. 2017] proposed two net-
works: Shallow Convolutional Neural Network (SCNN) and Deep Convolutional Neural
Network (DCNN). For their construction, they noted that EEG signals have local and
global modulations that evolve with time, requiring two unique convolutions: temporal
and spatial. As shown in Figure 2a and Figure 2b, these convolutions are placed in the
first two layers and have become a typical strategy in most CNNs related to EEG.

(a)

(b)

Figure 2. Architecture of the (a) Shallow Convolutional Neural Net-
work and (b) Deep Convolutional Neural Network. Adapted from
[Schirrmeister et al. 2017]

The objective of the SCNN is to decode band-power features, a direct influence
from FBCSP, as seen from the power and log operations applied after the first two convo-
lutions. While this network is efficient in many datasets, such operations come at the cost
that the model is meant to work more efficiently for oscillatory signals. For DCNN,
these operations were removed and replaced by regular convolutions at the detriment
of additional parameters, which means that a larger dataset is necessary. Lawhern et
al. [Lawhern et al. 2018] proposed the EEGNet (shown in Figure 3) based on the SCNN,
but removing the power and log operation, keeping the temporal and spatial convolutions
and also introducing another pair: a depthwise and a pointwise convolution. They allow
the model to learn frequency-specific spatial filters while combining them with significant



Figure 3. Architecture of the EEGNet. Adapted from [Nahmias et al. 2020]

synergy, achieving better results and increasing computational efficiency, as they require
much fewer parameters than regular convolutions.

The classification training, rooted in the work of Lawhern et
al. [Lawhern et al. 2018], is done in two steps. The first training step, executed
with 1500 epochs, has early stopping based on validation accuracy. The second step
combines the training and validation sets. The network continues training with this set
until the validation loss reaches a value equal to the best training loss from the first step.
Optimization happens using Adam with default parameters.

3.3. Data Augmentation with GANs
Generative Adversarial Networks [Goodfellow et al. 2014] are composed of two models,
trained alternately, that compete against one another. One is the generator G, whose
objective is to match an artificial distribution (pZ) to a real one (pX ). The second is
the discriminator, D, that receives samples from both distributions and has to predict
whether it belongs to the original data, X , or not. The generator, G, does not require prior
knowledge on pX to produce new samples, unlike most other generative models, instead,
it is induced indirectly to it based on the output of the discriminator.

Goodfellow et al. [Goodfellow et al. 2014] defined, for what is called the classical
GAN, an objective function based on the binary cross-entropy. There are two conflicting
objects to be achieved: identifying the real sample as 1 and the synthetic as 0. To improve
results, many authors have proposed other functions. For instance, the Wasserstein GAN
(WGAN), proposed by Arjovsky et al. [Arjovsky et al. 2017], has a very distinct objective
and has shown exceptional results with relatively low fine-tuning, with fast convergence in
many datasets. The authors hypothesize that the use of f-divergences (which includes the
classical GAN) as a metric to approximate pZ to pX is not a promising strategy. Instead,
they propose using Earth-Moving (or Wasserstein-1) distance, given that it allows the use
of a gradient optimization method, independent of the distance between the distributions.
Gulrajani et al. [Gulrajani et al. 2017] further improves the WGAN, proposing a penalty
over the norm of the gradient, that better satisfies an internal condition of Wasserstein-1
distance. The object function for the WGAN-GP is defined as:

min
G

max
D∈D

Ex∼pX [D(x)]− Ez∼pZ [D(G(z))]− λEx̂∼pG

[
(∥∇x̂D(x̂)∥2 − 1)2

]
, (1)

where x̂ is a sample from distribution pG , corresponding to a linear distribution interpo-
lated between pX and pZ , and λ is the penalty coefficient.

Another topic of importance in GANs is the architecture of the models. If models
of high complexity are chosen, then it is relatively easy to guarantee that the discrim-
inator will converge, on the other hand, this will probably mean the opposite for the



generator. Once the generator fails to converge, it tends to search for easier paths, leading
to issues such as mode collapse, in which it will generate samples from few or single
class, and may even generate a single sample. The conditional GAN, proposed by Mirza
et al. [Mirza and Osindero 2014], aims to solve this issue by adding a class conditional
perspective to the objective function in the form of a new variable as input into both
models. In fact, Zheng et al. [Zheng et al. 2020] demonstrate that, for theirs datasets,
using conditional on the WGAN-GP resulted in increased quality of synthetic data over
the non-conditional one. For the architecture, it is suggested to start building on from
DCGAN [Radford et al. 2015] and then try adding or reducing the number of layers –
although a very empirical approach, it is the most common one, as there is not a fixed rule
that works for all cases.

From this idea, we reached the architecture shown in Table 1. We chose EEGNet
as the discriminator due to its efficiency in classifying the data, since it obtained high
accuracy in the dataset of interest, and it should mean that it was able to extract relevant
features (which should also be in the synthetic samples). GAN training is similar to clas-
sifier training, with 250 epochs for the training set, after which the training and validation
sets were combined and trained for 50 additional epochs. The power spectral density of
the synthetic signals was calculated every 50 epochs for visual inspection of the quality
of samples during training. Synthetically augmented datasets were constructed once the
GAN training was concluded, with proportions of 1:1 (equally amounts of real and syn-
thetic samples), 1:2 (one real to two synthetic samples), 1:3, and 1:5. These sets were
used to train a classifier and compared against each other and the baselines.

Table 1. GAN architecture.

Generator Discriminator (EEGNet)

Layer Output Layer Output

Input (16) Input (3, 400, 1)
Linear (512) Conv and BNorm (16, 3, 401)
Linear and BNorm (1024) Conv and BNorm (64, 1, 400
Upsample and BNorm. (64, 1, 50) Mean Pooling (64, 1, 100)
Conv and BNorm (64, 3, 50) Conv (64, 1, 101)
TConv and BNorm (64, 3, 100) Conv and BNorm (64, 1, 101)
Upsample and BNorm (64, 3, 200) Mean Pooling (64, 1, 12)
Conv and BNorm (128, 3, 200) Flatten (768)
TConv and BNorm (64, 3, 400) Linear (2)
Conv (1, 3, 400) LogSoftmax (2)

BNorm: Batch Norm
Conv: Convolution
TConv: Transposed Convolution

3.4. Data Augmentation with Gaussian Noise

Data augmentation with generative models falls into the same issue as when classifying,
i.e., if the dataset is small, then the many parameters tend to overfit the data, causing
poor generalization. In that sense, there are many other techniques not based on neural



networks for data augmentation, with augmentation by Gaussian noise being one of them.
Although very simple, it has been proven effective in many works centered around EEG
data [Wang et al. 2018, Pei et al. 2021]. Its application can be done sample by sample
with

x̃ = x+N
(
µ,σ2

)
, (2)

where µ and σ are, respectively, the mean and standard deviation.

Training with Gaussian noise meant constructing synthetically augmented distri-
butions, as done in the GAN training. Hence, for comparison purposes, we shall include
this method in the analysis. In the first experiments, we chose µ = 0 and σ = 0.2. In the
end we show additional experiments for a wider range of signal-to-noise ratios by varying
σ from 0.02 to 0.5.

3.5. Performance Evaluation of Data Augmentation

The Fréchet Inception Distance (FID) [Heusel et al. 2017] is used to evaluate how similar
the synthetic distribution generated by the GAN is to the real one. It became the norm
when comparing different GANs. However, this metric tends to be uncertain for data that
differs from natural images. A promising approach is to use a specific network trained
with EEG data. However, this approach can not be used straightforwardly due to the high
variability in EEG signals. Visual inspection of raw EEG data is also possible, but it
requires specialized personnel to evaluate the quality of the synthetic data. Hence, as an
alternative, we propose using Power Spectral Density (PSD) to assess the quality of the
GAN training. Since motor imagery activation occurs predominantly in the µ and α bands
(8–13 Hz), both distributions’ PSD should be similar or, at least, predominantly occurring
in these bands. Note that PSD may determine how similar the original and synthetic data
are (which can be related to the quality of the samples) but do not provide any insight into
diversity.

4. Experimental Results and Discussion
Experimental results are divided into the selection of the classifier, defining a performance
baseline, and evaluation of the data augmentation approach, as presented below.

4.1. Baseline Classification

Table 2 1 shows the results obtained with the optimized hyper-parameters of SCNN,
DCNN, and EEGNet classifiers. The DCNN could not provide results as good as the other
networks due to the dataset’s small size. EEGNet and SCNN got very similar results, with
the difference coming from subject B data, which, from our analysis, has shown the low-
est accuracy in all scenarios. The performance from subjects F and G data were very
close on both nets, and subject A being classified with the same accuracy. When moving
to cross-subject, SCNN has a marginal improvement over EEGNet. Even with this, we
still chose EEGNet for the rest of the experiment, as the mean intra-subject accuracy was
slightly better.

Table 3 shows the accuracy obtained with the three proposed sets of electrodes.
The obtained results for 23 electrodes led to the best results. It also indicates that many
electrodes may not necessarily mean better performance, even more since some electrodes
are in regions on the scalp where motor imagery has little influence. With three electrodes,



Table 2. Accuracy (%) for the test set, with mean and standard deviation.

Network A B F G Mean Cross-Subject

EEGNet 79.33± 5.56 62.08± 8.50 73.08± 7.45 87.92± 3.74 75.60 68.18± 3.55
SCNN 79.17± 4.97 56.58± 6.68 75.83± 7.00 85.75± 4.98 74.33 68.74± 2.94
DCNN 63.83± 6.15 51.67± 4.85 56.75± 5.95 84.75± 4.48 64.25 58.83± 4.77

both the mean and cross-subject accuracy degraded. Yet, the results are still sharp, i.e., for
subjects A, B, and G, the performance loss is subtle, especially for G, whose results are
almost equal to that with 59 electrodes. The computational complexity with only three
electrodes is also lower since this amount is equivalent to less than 15% of the 23 and
only 5% of the 59. Thus, this may aid the GAN training. For this reason, we chose to
keep the three electrodes set for the rest of the experiments.

Table 3. Accuracy (%) with EEGNet for distinct sets of electrodes.

# Electrodes A B F G Mean Cross-Subject

59 83.00 56.67 86.25 88.17 78.52 79.18
23 83.52 68.83 84.67 90.58 81.90 83.32
3 79.33 62.08 73.08 87.92 75.60 68.18

4.2. Data Augmentation

Figure 4 shows the PSD obtained for subject G data using the proposed GAN architec-
ture (Table 1) after training. These results are important evidence that GANs present
the capability of generating samples similar to the real ones. For the left-hand data PSD
(Figure 4a), there is a difference with synthetic samples, with half the expected power
(0.2 against 0.4 of the expected), but not for the right hand (Figure 4b). Nonetheless,
the main characteristic, the frequency bands, are similar in both cases. These figures are
also relevant because they allow the classification of the imagined movement to be clearly
recognizable, which explains why subject G had such good results in either of the three
CNNs.

Once we had some evidence that the GAN had been trained successfully (i.e., ver-
ified that the PSD of the real and synthetic data – conditionally to the class – are close,
we stopped the training of the GAN), we moved on to the classification step. Table 4 dis-
plays the results obtained with both GAN and noise augmentation under an intra-subject
perspective. For subject A data, neither of the approaches could improve the results, with
GAN severely degrading the accuracy. For subject B data, the results are opposite with
both improving, but noise augmentation showed to be the most relevant, raising the accu-
racy by almost 4%. Subject F data had a similar result to subject A data for GAN, and
noise had no significant role. A marginal improvement was observed for subject G data,
with noise augmentation improving by almost 1%.

For the cross-subject experiments, there are three classes, turning it into a more
complex problem, but with more input samples since data from all subjects are gathered
together, so GAN is expected to have better efficiency. The obtained results are shown in



(a) Left Hand

(b) Right Hand

Figure 4. Power spectral density from synthetic samples with 3 electrodes for
subject G.

Table 4. Accuracy (%) with data augmentation in intrasubject classification.

Subject Augmentation Baseline 1:1 1:2 1:3 1:5

A GAN 79.33 75.25 73.58 75.58 72.33
Noise(σ = 0.2) 79.33 78.67 78.58 78.33 76.92

B GAN 62.08 63.42 62.50 63.83 63.92
Noise(σ = 0.2) 62.08 62.75 65.42 65.65 65.75

F GAN 73.08 67.45 66.54 67.09 66.63
Noise(σ = 0.2) 73.08 73.17 72.67 72.83 73.20

G GAN 87.92 88.50 87.75 88.42 88.33
Noise(σ = 0.2) 87.92 88.00 88.83 88.33 88.75



Table 5. As expected, both techniques show considerable efficiency. The GAN improves
the accuracy by 2% and noise improves by 4%. With the increase in synthetic samples
proportion, there is a negative impact using GAN and a positive using noise.

Table 5. Accuracy (%) with data augmentation in cross-subject classification.

Augmentation Baseline 1:1 1:2 1:3 1:5

GAN 68.18 70.42 70.25 69.02 69.21
Noise(σ = 0.2) 68.18 71.03 71.86 71.97 72.71

As the previous experiments demonstrated, noise augmentation is an efficient
method. To gain a better insight into it, we conducted additional experiments with in-
creased signal-to-noise ratios, which resulted in Table 6. Subject B data was chosen, as
it had a higher positive change in accuracy. These results prove, once again, that this
method is capable of increasing the accuracy, even for a large level of noise (σ = 0.5).
Nonetheless, the most prominent increase was obtained with the lowest standard deviation
and largest synthetic-real ratio.

Table 6. Accuracy (%) achieved for subject B (62.08%) with noise augmentation.

σ (SNR [db]) 1:1 1:2 1:3 1:5 Mean Gain

0.02 (34.0) 65.50 66.42 66.08 67.25 +4.23
0.1 (20.0) 62.92 66.67 66.92 65.50 +3.42
0.2 (14.0) 62.83 65.33 66.08 65.75 +2.92
0.3 (10.4) 64.33 63.67 66.75 66.50 +3.23
0.5 (6.0) 60.50 64.33 64.00 65.42 +1.48

We applied the noise augmentation for all subjects and cross-subject with the best
σ and proportion observed for subject B data. The results in Table 7 show that σ = 0.2 and
σ = 0.02 contribute similarly since we had subject B data as a reference. Both increase
the intra-subject and cross-subject mean accuracy by a similar percentage.

Table 7. Accuracy (%) achieved with 0.2 and 0.02 standard deviation and 1:5
proportion.

σ A B F G Mean Cross-Subject

Baseline 79.33 62.08 73.08 87.92 75.60 68.18
0.02 77.42 67.25 72.08 89.50 76.56 72.94
0.2 76.92 65.75 73.20 88.75 76.15 72.71

5. Conclusion
In this paper, we proposed a data augmentation approach with GANs, focusing on a small
dataset of motor imagery EEG signals. Extracting the power spectral density from sam-
ples generated by the cWGAN-GP proved clear evidence of convergence, with changes



of activity in similar frequencies to those of the original distribution. The use of GAN
to augment the number of samples from the BCI competition IV dataset 1 has shown
positive results for the intra-subject perspective for two out of four subjects, increasing
the classification accuracy in a higher amount in the cross-subject scenario. The small
number of training samples has possibly limited the potential of the GAN, surpassed by
the noise augmentation technique. Further research should explore data augmentation,
with techniques such as noise and sliding window, to aid the GAN training, which still
depends on a relatively large number of samples.
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