
Using automatic planning to find the most probable
alignment: A history-based approach

Matheus P. Almeida1, Karina V. Delgado2, Sarajane M. Peres2, Marcelo Fantinato2

1Institute of Mathematics and Statistics – University of São Paulo
São Paulo – SP – Brazil

2School of Arts, Sciences and Humanities – University of São Paulo
Ermelino Matarazzo – SP – Brazil.

{matheus.pereira.almeida, kvd, sarajane, m.fantinato}@usp.br

Abstract. In many organizational contexts, the existence of a normative pro-
cess model makes it possible to verify if the actual execution of activities of a
business process conforms to that model. Non-conforming behavior can be de-
tected by aligning the actions recorded in the event log with a related normative
process model. The alignment approach uses a cost-function to build an exe-
cution path that shows which actions do not conform to the model, and which
are the expected activities for that trace. In this paper, we are interested on
finding the optimal probable alignment using a history-base cost-function, i.e.
a function based on the process execution history. For that, we use as a base
implementation the planning-based approach, previously proposed in the liter-
ature, which demonstrates to find large processes faster when compared to A*
for standard cost-functions. We incorporate in this tool the automatic genera-
tion of an history-base cost-function to find an optimal probable alignment. In
addition, we evaluated our approach using data from both synthetic event logs
and a real-life event log.

1. Introduction

Process mining uses a set of techniques for discovering, observing, and improving busi-
ness processes by learning from event logs [van der Aalst W., 2016]. These techniques
can provide insights about business processes based on facts recorded in event logs. The
pillars of process mining are process discovery, conformance checking, and enhancement
[van der Aalst W., 2016]. Conformance checking uses as input an event log and a business
process model; based on this information, it compares how well the event log conforms
to the process model and vice versa. This task is used to check exactly where an actual
execution differs from the process model. Some methods were proposed in the litera-
ture to solve the conformance checking task, for instance, the alignment method [van der
Aalst W., 2016].

The idea of alignment offers a reliable method for conformance checking, mak-
ing it feasible to identify the deviations that results in nonconformity. A pairwise match
between actions recorded in the event log and actions permitted by the process model
indicates that a recorded process execution and a process model are in alignment. Some-
times the activities recorded in the event log may match none of the activities prescribed
by the process model. In such cases, the alignment algorithm needs to execute moves to

continue the conformance checking. In an alignment algorithm, given a certain state of
a process instance, there are three types of move: a synchronous move occurs when the
execution of the activity recorded in the event log corresponds to an allowed transition in
the process model; a model move occurs when there is no log move; and, finally, a log
move occurs when there is no model move.

In general, there is a large number of possible alignments between a process model
and a specific trace in the event log, as there may be several explanations why a trace is
not conforming. In this case, the objective is to find an alignment that has least expensive
deviation, that is called optimal alignment. For this, a standard cost function is usually
used, which assigns unit cost to the deviations. However, if we intend to find the most
likely explanation, we must define a different cost function. One option is to use non-fixed
costs that may vary depending on the history of previously observed process executions.
The most likely alignment using this kind of history-base cost-function is called optimal
probable alignment [Alizadeh et al., 2015].

According to Dunzer et al. [2019], among the approaches to solve the alignment
task are ad-hoc implementations of the A* algorithm to compute optimal alignments
[Adriansyah et al., 2013; Alizadeh et al., 2015; Koorneef et al., 2018; Boltenhagen et al.,
2021; Bloemen et al., 2022] and an approach that uses PDDL [Aeronautiques et al., 1998]
to formulate the alignment as a planning problem [Leoni et al., 2017; Leoni and Marrella,
2017].

The approaches that uses an standard-cost function are [Leoni et al., 2017; Leoni
and Marrella, 2017; Boltenhagen et al., 2021] and the approaches that uses a history-base
cost-function are [Koorneef et al., 2018; Alizadeh et al., 2015]. Bloemen et al. [2022]
and Adriansyah et al. [2013] use a variant of the standard cost-function whose goal is to
improve time and memory consumption, respectively.

Leoni and Marrella [2017] showed there is an improvement in terms of process-
ing time for large processes applying the planning-based approach when compared to
A*. For this reason, we propose modifications on top of the planning-based approach of
Leoni and Marrella. Our proposal is to adopt the automatic generation of the historical
base cost function, originally proposed by Koorneef et al. [2018], but slightly modified
in our proposal to allow finding an optimal probable alignment. Furthermore, the pro-
posal by Koorneef et al. [2018] has not been empirically evaluated before. In our work,
we extended the Leoni and Marrella tool to implement our ideas and performed exper-
iments with synthetic and real-life event log to empirically validate the effectiveness of
our proposal.

The rest of the paper is organized as follows: Section 2 presents the background;
Section 3 reports the technique proposed by Leoni and Marrella [2017] to convert the
alignment task in planning problem; Section 4 describes the approach proposed by Al-
izadeh et al. [2015] and Koorneef et al. [2018] to generate costs using the history; Section
5 describes our approach, which combines both previously mentioned approaches, as well
as our contributions to them. Section 6 presents the experiments performed on both real-
life and synthetic event logs. Finally, Section 7 concludes the paper.

2. Background
A process model is represented as a labelled Petri net. A labelled Petri net is a directed
graph with two types of nodes: place and transition. These nodes are graphically repre-
sented by circles and rectangles, respectively. Nodes are connected by arcs and connec-
tions between nodes of the same type are not allowed.

Definition 1 (Labelled Petri net [Valk and Vidal-Naquet, 1981]) A labelled Petri net
is a tuple ⟨P, T, F,A, ℓ,mi,mf⟩ that contains: A finite set of P places; a finite set of
T transitions such that T ∩ P = ∅; a flow relation F ⊆ (P × T) ∪ (T × P); a set of
activity labels A; a function ℓ : T → A that associates a label with some transitions in T;
an initial marking mi and a final marking mf .

Transitions Inv ⊂ T that are associated with no labels are called invisible transi-
tions. Figure 1 shows an example of a labelled Petri net and the respective event log used
as example in this paper. This labelled Petri net has five transitions and one of them is an
invisible transition (t1), four places and a token on p1.

Figure 1. Example of a labelled Petri net and the respective event log, adapted
from Koorneef et al. [2018].

We assume an event log contains data related to only one process model. An
event log is a multiset of traces and a trace is a sequence of activities. Furthermore, the
occurrence of an activity is related to an event that has attributes as ID, timestamp, costs
and resources [van der Aalst W., 2016]. For example, the trace ⟨a, b, c⟩ appears 40 times
in the event log of Figure 1, where a, b and c are activities.

A noisy trace is a trace that does not fit into the process model for some reason
and it usually has an infrequent occurrence in the event log. Such a non-fitted trace is
not expected according to a given process model. Therefore, either the assumed process
model needs be adapted to represent that trace, or there was a problem while executing
the process, which is reflect in the event log. For example, ⟨a, b⟩ is a noisy trace.

Definition 2 (Legal moves [van der Aalst W., 2016]) Let N = ⟨P, T, F,A, ℓ,mi,mf⟩
be a labelled Petri net and L be an event log. A legal alignment move is represented by
a pair (sL, sM), where sL represents an activity in the event log and sM in the process
model. ≫ denotes that no move happened. The possible legal moves are:

• a log move if sL ̸=≫ and sM =≫,
• a model move if sL =≫ and sM ∈ T,
• a synchronous move if sL ̸= ≫ and sM ∈ T for the same activity,

Definition 3 (Alignment [van der Aalst W., 2016]) Let N = ⟨P, T, F,A, ℓ,mi,mf⟩ be
a labelled Petri net and L be an event log. Let Y be the universe of all legal alignment

moves for N and L. Let σ ∈ L be a trace. Sequence y ∈ Y is an alignment of N and σ
if, ignoring all occurrences of ≫, the projection on the first element results in σ and the
projection on the second results in a sequence σ that can be replayed in the labelled Petri
net.

Figure 2 shows two possible alignments for the Petri net and the event log given
in Figure 1. The first row represents the trace ⟨a, b⟩ that is being aligned, and the second
row represents the movements in the labelled Petri net. In the first alignment y1, there
were two synchronous moves and one model move where sL =≫ and sM = d. In the
second alignment y2, there were also two synchronous moves and one model move where
sL =≫ and sM = c.

Figure 2. Example of alignments.

Considering the example in Figure 2, identifying which alignment is optimal de-
pends on the cost function in use. The standard cost-function assigns a cost 1 to log
moves and model moves (except for invisible transitions) and 0 to synchronous moves.
In this case, both alignments are optimal. In the example shown in Table 2, we raise a
second issue related to which of the two alignments should be considered the most likely
explanation. We should adjust a way of defining costs in order to display the most likely
explanation for the alignment. For that, we consider the most likely explanation must be
related to what has already been observed in the event log and that conforms to the pro-
cess model. This alignment is referred as probable alignment [Alizadeh et al., 2015]. In
order to find this type of alignments, we use the cost function of Koorneef et al. [2018]
that takes into account an event log to assign probabilities to activities (cf. Section 4.1).

3. Encoding the Alignment Task as a Planning Problem
Leoni and Marrella [2017] encode the alignment task as an observable, static and deter-
ministic planning problem. For each trace to be aligned, a problem and domain descrip-
tion files are created using the PDDL language [Aeronautiques et al., 1998].

3.1. Problem description
In the problem file, there are three types of objects: place, transition and event. These
types represent the places, the transitions of the labelled Petri net and finally, the type
event is used to record exactly in which activity we are while aligning the trace.

Additionally, two boolean predicates were defined: token and tracePointer.: token
holds iff the current place contains a token; tracePointer keeps track of the current activity
that is being aligned, and holds iff the activity received as a parameter is the next to be
aligned. The final objective is to minimize the total cost of the alignment.

For example, for trace σL = ⟨a, b, b, c⟩ and the labelled Petri net in Figure 1, the
objects are:
{: objects a b c d inv - transition

p1 p2 p3 p4 - place
ev1 ev2 ev3 ev4 evEND - event

}.

In this example, five objects of type event were defined because the trace σL has four
elements. For instance, ev4 corresponds to the activity c in σL and the evEND was
included to indicate the end of the trace. Notice that the invisible transition inv was
explicitly introduced. For this example, the initial state is represented as:
(: init
(tracePointer ev1)
(token p1)

)

and the desired goal state G is:
(: goal (and (tracePointer evEND) (token p4)

(not (token p1)) (not (token p2))
(not (token p3))

))

The goal is to complete the alignment, i.e., to have one token in p4 and zero tokens in
any other places in the Petri net. Additionally, the tracePointer has reached the end of the
trace σL under analysis.

3.2. Domain description
The main component of the domain description is the set of actions. The three possible
legal moves given in Definition 2 are represented as actions [Leoni and Marrella, 2017]:

• Synchronous move action: An action of this type is created for each pair of
transition t ∈ T\inv and event e ∈ σL to represent a synchronous move.

• Model move action: An action of this type is created for each transition t ∈ T .
• Log move action: An action of this type is created for each event e ∈ σL to

represent a log move.

The quantity of actions will vary depending on the trace being aligned as well
as the process model. For trace σL = ⟨a, b, b, c⟩ and the Petri net in Figure 1 there are
four synchronous move actions, five model move actions and four log move actions. For
example, the synchronous move for c is represented by the following action:
(:action moveSync#c#ev4-evEND

:parameters (?ev4 - event ?evEND - event)
:precondition (and (token p3)

(tracePointer ev4))
:effect (and (not (token p3))

(token p4)
(not (tracePointer ev4))
(tracePointer evEND)

))

Suppose we are in the state where (token p3) and (tracePointer ev4)
are true, i.e. the place p3 has a token in the Petri net and ev4 (that corresponds to
c) is the actual event of the trace σL under analysis. Since the preconditions of ac-
tion moveSync#c#ev4 are satisfied, after applying this action, the effects are: (i)
the token in place p3 is consumed and one token is produced in place p4; and (ii) the
trace pointer moves from ev4 to evEND. Thus, in the next state (token p4) and
(tracePointer evEND) are true and then we have reached the desired goal state.

In the proposal of Leoni and Marrella [2017], a standard cost-function was used.
Additionally, it is possible to associate manually different and non-unitary costs for each
action.

4. Approaches to generate history-base cost-function to find probable
alignments

The computation of probable alignments is based on a history-base cost-function which
considers the probability of an activity to be executed [Alizadeh et al., 2015]. Koorneef
et al. [2018] and Alizadeh et al. [2015] focus on generating this cost-function taking into
account the history executions of the process model. In section 4.1, we specially describe
how Koorneef et al. [2018] compute the probabilities of log and model move. These
probabilities are used in our proposal. In Section 4.2 , we describe functions that are
called cost-profile, responsible for transforming the probabilities into costs. One of them
is used in our proposal.

4.1. Probabilities of a log and model moves
Next, we formally present the definitions of the probabilities of log and model moves
proposed by Koorneef et al. [2018]. The probability of a log move is based on the proba-
bility of an activity in the event log. In the last one, Koorneef et al. [2018] also takes into
account unobserved activities.

Definition 4 (Probability of an activity in the event log [Koorneef et al., 2018]) Let
an activity X be a discrete random variable with an outcome in the set of activities
A. Let us extend the set of activities to allow for unobserved activities B, for example
B = {∗}. The probability of seeing outcome i is P (X = i) = θi,∀i ∈ A ∪ B, where
0 ≤ θi ≤ 1 and

∑
i∈A∪B θi = 1. θ could be estimated based on the event log. Let θ̂

be the estimate of the true probability θ. Given the observations, θ̂ can be computed by
θ̂ = E(|X = i|) = |X=i|∑

j∈A |X=j| =
|X=i|

n
,∀i ∈ A ∪ B. Where the |.|, is the number of times

the outcome appears.

Definition 5 (Probability of a log move [Koorneef et al., 2018]) The estimated proba-
bility of a log move is:

θ̂Li = E(|XL = i|) = 1− θ̂i
k − 1

,∀i ∈ A ∪ B, (1)

where k is the number of possible outcomes in A ∪ B, 0 ≤ θ̂Li ≤ 1 and
∑

i∈A∪B θ̂
L
i = 1.

According to Definition 5, the most likely log move should be the least frequent
activity in an event log.

Definition 6 (Probability of a model move [Koorneef et al., 2018]) The probability of
a model move is equal to the probability of a transition given a marking in a labelled
Petri net N . Let marking M be the state of a labelled Petri net. Given N , a marking
M is a discrete random variable with outcomes in the set of markings. To compute this
probability, N is represented by a Markov Chain where states are markings. The prob-
ability of seeing outcome i given M = m is P (T = i|M = m) = ϕi|m,∀t ∈ T , where
0 ≤ ϕi|m ≤ 1 and

∑
i∈T ϕi|m = 1. The estimate of the true probability of ϕ, ϕ̂ is computed

by:

ϕ̂i|m = E(|t = i|m|) = |t = i|m|∑
j∈T |t = j|m|

, ∀t ∈ T. (2)

Note that in Definitions 5 and 6, the independence of the events is guaranteed and,
consequently, we only have one cost associated with each type of activity.

4.2. Cost-profile functions
Note that, as mentioned, a probability is assigned to activities, but it is necessary to trans-
form this probability into a cost. The cost-profile functions are responsible for these trans-
formation. In this functions, a low cost must be assigned for a movement associated to
activities whose execution are more probable, and a high cost for movements associated
with unlikely activities.

In [Koorneef et al., 2018], the probabilities p are transformed into costs and then
a minimization of the sum of costs is performed using the A∗ algorithm. The cost-profile
function used in [Koorneef et al., 2018] is f1(p) = −log(p).

Alizadeh et al. [2015] propose a different form to compute costs for each model
and log move that is also based on a event log. However, an activity can have more than
one cost, if this activity occurs more than 1 time in the trace. This feature prevents its
use together with the proposal of Leoni and Marrella [2017] because in this case we only
need to assign one cost for each action. In [Alizadeh et al., 2015] the A* algorithm is also
used and three different types of cost-profile were defined:

f2(p) =
1

p
f3(p) =

1
√
p

f4(p) = 1 + log
1

p
. (3)

5. The history-based approach applied in Automated Planning to find
probable alignments

In order to find probable alignments taking into account the history executions, we com-
bine the proposal of Leoni et al. [2017] and Leoni and Marrella [2017] with the history-
base cost-function proposed by Koorneef et al. [2018] that has been slightly modified. In
section 5.1 we show an overview of our approach. In section 5.2 we describe the modifi-
cations made to the methods presented in the approach presented in Section 4 to compute
the probabilities of both log and model moves. We also present a formal definition of the
history-base cost-function used in this paper.

5.1. Overview of the histoy-based approach applied in Automated Planning
Figure 3 shows an overview of our approach to generate the most probable alignment.
Given a real-life process execution recorded in a training event log which includes only
the traces in accordance with the process model and that are used to automatically cal-
culate the probabilities of the activities and the costs. These costs are included in the
planning domains. The next parts are equal to the proposal of Leoni et al. [2017] and
Leoni and Marrella [2017]. The planning domains and the planning problems files are
generated from a Petri net and the event log that includes the original traces that will be
aligned, called event log to align 1. Given these two files, an off-the-shelf planner could
be use to return a sequence of actions that are then transformed to the aligned trace.

5.2. Computing a history-base cost-function
We use history executions of the process model, which were recorded in the training
event log and are in conformance with the model, to generate costs automatically. The

1Notice that a planning domain and a planning problem are generated for each trace of the event log to
align.

Figure 3. An overview of the history-based approach applied in Automated Plan-
ning to generate the most probable alignment.

method used to calculate the log move probabilities is very similar to that proposed in
equation 1, however, we will consider that the entire set of activities is known, so, taking
this as an assumption, there is no need to add the set B for unobserved activities. For
example, considering the activity a, the number of observations of a is 201, and the sum
of all observed activities is 809. Therefore the estimated probability of a log move (θ̂La) is
equals to 1−201/809

4−1
. For the calculation of model moves, we use equation 2, but we do not

calculate the probability of invisible transitions and assign cost 0 to it.

Definition 7 (history-base cost-function of an alignment) The history-base cost-
function κ assigns a non-negative cost to each legal move:

κ(sL, sM) =

0 sL = sM
0 sL =≫ and sM ∈ Inv

f(ϕ̂i|m) sL =≫ and sM /∈ Inv

f(θ̂) sM =≫

(4)

Note that a cost 0 is assigned to a synchronous move or a move of an invisible
transition, otherwise, a non-negative cost is assigned for a log move or a model move.
The cost of an alignment between the event log and the labelled Petri net is computed as
the sum of the cost of all constituent moves.

We adopted f4(p) = 1 + log(1/p) as a cost-profile, considering the good results
obtained with this function by Alizadeh et al. [2015]. The costs generated using Equation
4 are decimal numbers and must be natural numbers to be used in the PDDL, so we
multiplied all results by a factor of 1000 and then truncated this result.

In the first alignment y1 shown in Figure 2, the two synchronous moves have cost
0, the probability of the model move where sL =≫ and sM = d is 20%, and the cost
associated with the cost-profile f4 is 1.698, then after multiplying with 1000 we obtain
1698. The total cost of y1 is 0 + 0 + 1698. For y2 the two synchronous moves have cost
0, the probability of the model move where sL =≫ and sM = c is 80%, and the cost
associated with the cost-profile f4 is 1.096, then after multiplying with 1000 we obtain
1096. The total cost of y2 is 0 + 0 + 1096. Thus, the most probable alignment is y2.

6. Implementation and Validation

The implementation2 was based on the GUI software provided by Leoni et al. [2017].
This tool is integrated with the Fast-Downward planning framework [Helmert, 2006] to
find optimal alignments. We extend this tool with our approach for automatic generation
of the costs based on the history. To use the history-base cost-function, we import a
training event log, used to generate the costs automatically. Thus, the tool computes the
most probable alignment for each trace in the event log being aligned, with base on the
frequency of the traces in the training event log.

Experiments were performed on synthetic and real-life event logs and process
models. We compare the standard cost-function and a history-base cost-function. A ma-
chine with an Intel(R) Core(TM) i5-2430M CPU 2.80GHz and 4GB RAM was used.

The evaluation method is similar to that used by Alizadeh et al. [2015]. Initially,
we separated the event log in training event log (used to calculate the probabilities of the
activities) and testing event log (used to do the actual alignment). The split ratio was
80% for the training event log and 20% for the testing event log. Only conforming traces
were included in the training event log, the real-life event log was filtered to ensure only
conforming traces. After that, we inserted noise into the testing event log, in an increasing
proportion of 10%, 20%, 30% and 40% of noise. The traces in the initial event log, i.e,
the one before splitting and inserting noise, is what we call original or correct traces.

To measure the ability of the approaches to reconstruct the original traces, we
analyzed two metrics: the correct alignment metric (CA) and the Levenshtein distance
(LD). The CA metric is calculated by comparing the correct trace (which conforms to
the model) with both traces, the one reconstructed using the standard cost-function and
the one reconstructed using the history-base cost-function. Therefore, if the reconstructed
trace is equals to the correct trace, we increase CA in 1. The metric LD [Levenshtein,
1966] computes the minimum number of activities edits (insertions, deletions or substi-
tutions) required to change the reconstructed trace to obtain the correct trace. Finally, we
compute the gain results that show how much better our approach was compared to the
standard cost-function. This is done by using the values of CA and LD obtained from
both cost-functions and applying the formula 1− history base cost function

standard cost function
∗ 100.

6.1. Synthetic Event Log and Process Model

For the experiments with synthetic data, we used the PLG2 [Burattin, 2015] tool to gen-
erate the event logs conforming to their respective model. We also generate four process
models, with increasing sizes, according to the method used in [Leoni et al., 2018]. By
size, we are talking about visible and invisible transitions. So, we generated process mod-
els of 23, 35, 50 and 96 transitions. For each process model, we created an event log
with 20,000 traces. The training event logs and testing event logs contain 16000 and 4000
traces, respectively. The results are shown in Table 1.

As the model complexity increased, the CA metric decreased, both for the stan-
dard cost-function and for the history-base cost-function. Despite that, in the first two
models, we verify our approach obtained better results than the approach using the stan-

2Detalhes omitidos por double-blind reviewing

Table 1. Results of experiments on synthetic data.

Noise 10% Noise 20%

PN Length
Standard

Cost-function
History-base
Cost-function

Standard
Cost-function

History-base
Cost-function

CA LD CA LD CA LD CA LD

23 382 10024 396 9781 658 7383 676 6831
35 539 14762 541 14625 534 18809 548 18306
50 0 92424 0 92027 0 108579 0 107676
96 0 121068 0 120525 0 137203 0 135158

Noise 30% Noise 40%

PN Length
Standard

Cost-function
History-base
Cost-function

Standard
Cost-function

History-base
Cost-function

CA LD CA LD CA LD CA LD

23 616 7801 648 6940 560 9335 613 8261
35 467 23639 504 22768 398 28391 448 27468
50 0 119276 0 118015 0 128879 0 127478
96 0 153515 0 147135 0 169759 0 159849

dard cost-function. Regarding the LD metric, we noticed that in all traces, our approach
managed to significantly improve the quality of the alignment found, for all scenarios.

In Table 2 we show the gain, i.e., how much our approach had a better result than
the approach using the standard cost-function. For example, for the Petri net of length 23
and noise 10%, our approach had an improvement in CA of 3.7% and LD of 2.5%. An
interesting pattern that we can see is that, in most cases, as the amount of noise increased,
the gain of LD got with our approach increased as well.

Table 2. Gain of our approach over the standard cost-function on synthetic data.

Noise 10% Noise 20% Noise 30% Noise 40%

CA LD CA LD CA LD CA LD

23 3,7% 2,5% 2,7% 8,0% 5,1% 12,4% 9,5% 13,0%
35 0,4% 0,9% 2,6% 2,7% 7,9% 3,8% 12,6% 3,4%
50 0,0% 0,4% 0,0% 0,8% 0,0% 1,0% 0,0% 1,1%
96 0,0% 0,4% 0,0% 1,5% 0,0% 4,3% 0,0% 6,2%

6.2. Real-life Event Log and Process Model

We used an event record obtained from a fine management system of the Italian police
[Mannhardt et al., 2016] to assess the applicability of our approach to real-life scenarios.
Figure 4 shows the labelled Petri net for this process model. This is the same real-life
event log and process model used by Leoni and Marrella [2017].

Figure 4. A process model for managing road traffic fines extracted from
[Mannhardt et al., 2016].

The event log consists of 150,370 traces, after which we filtered to obtain traces
that are in conformance with the process model presented. After that, we obtained a
filtered event log with 146,773 traces. In these traces, we applied the same method used
to evaluate the experiment results with synthetic data. The result are in Table 3.

Table 3. Results of experiments on real-life data.

Standard History-base
cost-function cost-function gain (%)

Noise(%) CA LD CA LD CA LD

10 11656 41924 11770 40949 0,97% 2,33%
20 2884 63162 3030 61661 4,82% 2,38%
30 5929 50220 6086 48174 2,58% 4,07%
40 3529 63672 3619 61679 2,49% 3,13%

We can see that there was a significant improvement in all scenarios. For the CA
metric, for instance, the less significant result was 0,97% for 10% of noise and the biggest
improvement 4,82% for 20% of noise. For the LD metric, the biggest improvement was
4,07% for 30% of noise and the less significant result was 2,33% for 10% of noise.

7. Conclusion
Techniques for conformance checking attempt to see whether process executions truly
differ from the process model. A reliable method of conformance checking that allows to
identify the deviations that result in nonconformity is provided by the notion of alignment
[Van der Aalst et al., 2012]. In this work, we propose a slight modification to the automatic
generation of history-base cost-function proposed by Koorneef et al. [2018] and use our
version of such a function on top of the planning-based tool of Leoni et al. [2017] to find
an optimal probable alignment. A training event log is used to assign probabilities to
the occurrence of activities and to the log and model moves. Different from [Koorneef
et al., 2018] activities not observed in the event log were not considered. In addition, a
cost-profile described in [Alizadeh et al., 2015] was used to generate the costs from the

probabilities. Some manipulations were made in the values of the costs in order to be
used in the PDDL. The empirical evaluation with synthetic and real-life event logs and
process models of growing complexity showed that our approach improves upon the study
of Leoni and Marrella [2017].

References
Adriansyah, A., van Dongen, B. F., and van der Aalst, W. M. (2013). Memory-efficient

alignment of observed and modeled behavior. Technical Report 3, BPM Center Report.
Aeronautiques, C., Howe, A., Knoblock, C., McDermott, I. D., Ram, A., Veloso, M.,

Weld, D., SRI, D. W., Barrett, A., et al. (1998). PDDL – the planning domain def-
inition language. Technical Report CVC TR-98-003/DCS TR-1165, Yale Center for
Computational Vision and Control.

Alizadeh, M., de Leoni, M., and Zannone, N. (2015). History-based construction of align-
ments for conformance checking: Formalization and implementation. In Data-Driven
Process Discovery and Analysis, pages 58–78. Springer International Publishing.

Bloemen, V., van Zelst, S., van der Aalst, W., van Dongen, B., and van de Pol, J. (2022).
Aligning observed and modelled behaviour by maximizing synchronous moves and
using milestones. Information Systems, 103:101456.

Boltenhagen, M., Chatain, T., and Carmona, J. (2021). A discounted cost function for
fast alignments of business processes. In Polyvyanyy, A., Wynn, M. T., Van Looy,
A., and Reichert, M., editors, Business Process Management, pages 252–269. Springer
International Publishing.

Burattin, A. (2015). PLG2: Multiperspective processes randomization and simulation for
online and offline settings. preprint arXiv:1506.08415.

Dunzer, S., Stierle, M., Matzner, M., and Baier, S. (2019). Conformance checking: A
state-of-the-art literature review. In 11th Int’l Conf on Subject-Oriented Business Pro-
cess Management, pages 1–10.

Helmert, M. (2006). The fast downward planning system. J Artif Intell Res, 26:191–246.
Koorneef, M., Solti, A., Leopold, H., and Reijers, H. A. (2018). Automatic root cause

identification using most probable alignments. 13th Int’l Workshop on Business Process
Intelligence, pages 204–215.

Leoni, M., Lanciano, G., and Marrella, A. (2017). A tool for aligning event logs and
prescriptive process models through automated planning. In BPM (Demos).

Leoni, M., Lanciano, G., and Marrella, A. (2018). Aligning partially-ordered process-
execution traces and models using automated planning. Int’l Conf on Automated Plan-
ning and Scheduling, 28(1):321–329.

Leoni, M. and Marrella, A. (2017). Aligning real process executions and prescriptive
process models through automated planning. Expert Syst Appl, 82:162–183.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions, and
reversals. In Soviet Physics Doklady, volume 10, pages 707–710.

Mannhardt, F., Leoni, M., Reijers, H., and Aalst, W. V. D. (2016). Balanced multi-
perspective checking of process conformance. Computing, 98(4):407–437.

Valk, R. and Vidal-Naquet, G. (1981). Petri nets and regular languages. Journal of
Computer and System Sciences, 23(3):299–325.

Van der Aalst, W., Adriansyah, A., and van Dongen, B. (2012). Replaying history on
process models for conformance checking and performance analysis. WIREs Data
Mining and Knowl Discov, 2(2):182–192.

van der Aalst W. (2016). Process Mining – Data Science in Action. Springer.

